Abstract
The aim of this article is to buid a Guide to the Analysis of Probability Textbook Lessons for secondary education (students aged 12-14), using the framework of Didactic Suitability. The facets, components and indicators of the didactic suitability construct are applied to categorize and organize didactic-mathematical knowledge on teaching and learning of probability in secondary education derived from research on the subject. The guide constitutes a systemic structure of descriptors (gradable and recognizable features in the textbook lesson) associated with the different components of partial suitability, which can facilitate the teacher's decision-making on how to use a textbook lesson in the classroom to optimise the instructional process.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Research Article
INT ELECT J MATH ED, Volume 20, Issue 4, November 2025, Article No: em0858
https://doi.org/10.29333/iejme/17183
Publication date: 01 Oct 2025
Article Views: 19
Article Downloads: 9
Open Access References How to cite this articleReferences
- Alayont, F., Karaali, G., & Pehlivan, L. (2023). Analysis of calculus textbook problems via bloom's taxonomy. PRIMUS, 33(3), 203-218. https://doi.org/10.1080/10511970.2022.2048931
- Alkhateeb, M. (2019). The language used in the 8th grade mathematics textbook. Eurasia Journal of Mathematics, Science and Technology Education, 15(7), Article em1719. https://doi.org/10.29333/ejmste/106111
- Alonso-Castaño, M., Alonso, P., Mellone, M., & Rodríguez-Muñiz, L. J. (2019). Conocimiento matemático de maestros en formación cuando crean y resuelven una tarea de probabilidad [Mathematical knowledge of teachers in training when they create and solve a probability task]. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz Escolano, & Á. Alsina (Eds.), Investigación en educación matemática XXIII (p. 606). SEIEM.
- Alsina, Á., & Vásquez, C. (2016). La probabilidad en educación primaria: De lo que debería enseñarse a lo que se enseña [Probability in primary education: From what should be taught to what is taught]. Uno: Revista de Didáctica de las Matemáticas, 71, 46-52.
- Arteaga, P., & Díaz-Levicoy, D. (2016). Conflictos semióticos sobre gráficos estadísticos en libros de texto de educación primaria [Semiotic conflicts about statistical graphs in primary education textbooks]. Educação e Fronteiras On-Line, 6(17), 81-96.
- Australian Curriculum, Assessment and Reporting Authority (ACARA). (2020). The Australian curriculum: Mathematics.
- Balcaza, T., Contreras, A., & Font, V. (2017). Análisis de libros de texto sobre la optimización en el bachillerato [Analysis of textbooks on optimization in high school]. Bolema: Boletim de Educação Matemática, 31(59), 1061-1081. https://doi.org/10.1590/1980-4415v31n59a11
- Batanero, C. (2014). Probability teaching and learning. Springer International Publishing. https://doi.org/10.1007/978-94-007-4978-8_128
- Batanero, C., & Álvarez-Arroyo, R. (2024). Teaching and learning of probability. ZDM – Mathematics Education, 56, 5-17. https://doi.org/10.1007/s11858-023-01511-5
- Batanero, C., & Borovcnik, M. (2016). Statistics and probability in high school. Sense Publishers. https://doi.org/10.1007/978-94-6300-624-8
- Batanero, C., & Díaz, C. (2007). The meaning and understanding of mathematics. The case of probability. In J. P Van Bendegen, & K. François (Eds), Philosophical dimensions in mathematics education (pp. 107-127). Springer. https://doi.org/10.1007/978-0-387-71575-9_6
- Batanero, C., & Sanchéz, E. (2005). What is the nature of high school students’ conceptions and misconceptions about probability? In G. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 241-266). Springer. https://doi.org/10.1007/0-387-24530-8_11
- Batanero, C., Chernoff, E. J., Engel, J., Lee, H. S., & Sánchez, E. (2016). Research on teaching and learning probability. Springer International Publishing. https://doi.org/10.1007/978-3-319-31625-3
- Batanero, C., Gómez, E., Contreras, J. M., & Díaz, C. (2015). Conocimiento matemático de profesores de primaria en formación para la enseñanza de la probabilidad: Un estudio exploratorio [Mathematical knowledge of pre-service primary teachers for teaching probability: An exploratory study]. Práxis Educativa 10(1), 11-34. https://doi.org/10.5212/PraxEduc.v.10i1.0001
- Batanero, C., Gómez, E., Serrano, L., & Contreras, J. M. (2012). Comprensión de la aleatoriedad por futuros profesores de educación primaria [Understanding of randomness by prospective primary education teachers]. Redimat, 1(3), https://doi.org/10.4471/redimat.2012.13
- Batanero, C., Henry, M., & Parzysz, B., (2005). The nature of chance and probability. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 15-37). Springer. https://doi.org/10.1007/0-387-24530-8_2
- Begolli, K. N., Dai, T., McGinn, K. M., & Booth, J. L. (2021). Could probability be out of proportion? Self-explanation and example-based practice help students with lower proportional reasoning skills learn probability. Instructional Science, 49(4), 441-473. https://doi.org/10.1007/s11251-021-09550-9
- Begué, N., Batanero, C., & Gea, M. M. (2018). Comprensión del valor esperado y variabilidad de la proporción muestral por estudiantes de educación secundaria obligatoria [Understanding of expected value and variability of the sample proportion by compulsory secondary education students]. Enseñanza de las Ciencias, 36(2), 63-79. https://doi.org/10.5565/rev/ensciencias.2256
- Bel, J. C., & Colomer, J. C. (2018). Teoría y metodología de investigación sobre libros de texto: Análisis didáctico de las actividades, las imágenes y los recursos digitales en la enseñanza de las Ciencias Sociales [Theory and research methodology on textbooks: Didactic analysis of activities, images, and digital resources in social studies teaching]. Revista Brasileira de Educação, 23, Article e230082. https://doi.org/10.1590/S1413-24782018230082
- Beltrán-Pellicer, P., & Giacomone, B. (2021). Una propuesta didáctica de probabilidad para el comienzo de la secundaria [A didactic proposal for probability at the beginning of secondary school]. Educação Matemática Pesquisa, 23(4), 246-272. https://doi.org/10.23925/983-3156.2021v23i4p246-272
- Beltrán-Pellicer, P., Giacomone, B., Burgos, M. (2018a). Online educational videos according to specific didactics: The case of mathematics. Cultura y Educación, 30(4), 633-662. https://doi.org/10.1080/11356405.2018.152465
- Beltrán-Pellicer, P., & Godino, J. D. (2019). An onto-semiotic approach to the analysis of the affective domain in mathematics education. Cambridge Journal of Education, 50(1), 1-20. https://doi.org/10.1080/0305764X.2019.1623175
- Beltrán-Pellicer, P., Godino, J. D., & Giacomone, B. (2018b). Elaboración de indicadores específicos de idoneidad didáctica en probabilidad: aplicación para la reflexión sobre la práctica docente [Development of specific indicators of didactic suitability in probability: application for reflection on teaching practice]. Bolema: Boletim de Educação Matemática, 32(61), 526-548. https://doi.org/10.1590/1980-4415v32n61a11
- Bhatti, A. J., Khurshid, K., & Ahmad, G. (2017). Curriculum alignment: An analysis of the textbook content. Pakistan Journal of Social Sciences, 37(1), 30-43.
- Bingölbali, E., & Bingölbali, F. (2020). Divergent thinking and convergent thinking: Are they promoted in mathematics textbooks? International Journal of Contemporary Educational Research, 7(1), 240-252. https://doi.org/10.33200/ijcer.689555
- Borovcnik, M., & Kapadia, R. (2014). A historical and philosophical perspective on probability. In E. Chernoff, & B. Sriraman (Eds.), Probabilistic thinking (pp. 7-34). Springer. https://doi.org/10.1007/978-94-007-7155-0_2
- Braga, G., & Belver, J. (2016). El análisis de libros de texto: una estrategia metodológica en la formación de los profesionales de la educación [Textbook analysis: A methodological strategy in the training of education professionals]. Revista Complutense de Educación, 27(1), 199-218.
- Breda, A., Font, V., & Pino-Fan, L. (2018) Criterios valorativos y normativos en la didáctica de las matemáticas: El caso del constructo idoneidad didáctica [Evaluative and normative criteria in mathematics didactics: The case of the didactic suitability construct]. Bolema: Boletim de Educação Matemática, 32(60), 255-278. https://doi.org/10.1590/1980-4415v32n60a13
- Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: Criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics Science and Technology Education, 13(6), 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
- Brown, M. (2009). The teacher-tool relationship: Theorizing the design and use of curriculum materials. In J. T. Remillard, B. A. Herbel-Eissenmann, & G. M. Lloyd (Eds.), Mathematics teachers at work: Connecting curriculum materials and classroom instruction (pp. 17-36). Routledge.
- Bryant, P., & Nunes, T. (2012). Children's understanding of probability: A literature review. Nuffield Foundation.
- Burgos, M., Castillo, M. J., Beltrán-Pellicer, P., Giacomone, B., & Godino, J. D. (2020). Análisis didáctico de una lección sobre proporcionalidad en un libro de texto de primaria con herramientas del enfoque ontosemiótico [Didactic analysis of a lesson on proportionality in a primary school textbook using tools from the ontosemiotic approach]. Bolema: Boletim de Educação Matemática, 34(66), 40-68. https://doi.org/10.1590/1980-4415v34n66a03
- Cañizares, M. J. (1997). Influencia del razonamiento proporcional y de las creencias subjetivas en las intuiciones probabilísticas primarias [Influence of proportional reasoning and subjective beliefs on primary probabilistic intuitions]. [Tesis de Doctorado, Universidad de Granada]. https://www.ugr.es/~batanero/pages/ARTICULOS/CANIZARE.pdf
- Castillo, M. J., & Burgos, M. (2022). Developing reflective competence in prospective mathematics teachers by analyzing textbooks lessons. EURASIA Journal of Mathematics, Science and Technology Education, 18(6), Article em2121. https://doi.org/10.29333/ejmste/12092
- Castillo, M. J., Burgos, M., & Godino, J. D. (2022a). Building a guide to analyse mathematics textbooks based on the didactical suitability theory. Educação e Pesquisa, 48, Article e238787. https://doi.org/10.1590/S1678-4634202248238787eng
- Castillo, M. J., Burgos, M., & Godino, J. D. (2022b). Guía de análisis de lecciones de libros de texto de Matemáticas en el tema de proporcionalidad [Mathematics textbook lesson analysis guide on proportionality]. Uniciencia, 36(1), Article e15399. https://doi.org/10.15359/ru.36-1.14
- Castillo, M. J., & Burgos, M. (2022). Developing reflective competence in prospective mathematics teachers by analyzing textbooks lessons. EURASIA Journal of Mathematics, Science and Technology Education, 18(6), em2121. https://doi.org/10.29333/ejmste/12092 Chernoff, E. J. (2008). The state of probability measurement in mathematics education: A first approximation. Philosophy of Mathematics Education Journal, 23, 1-23.
- Chernoff, E. J., & Russell, G. L. (2012). The fallacy of composition: Prospective mathematics teachers’ use of logical fallacies. Canadian Journal of Science, Mathematics and Technology Education, 12(3), 259-271. https://doi.org/10.1080/14926156.2012.704128
- Common Core State Standards Initiative (CCSSI). (2015). Common core state standards for mathematics. http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
- Cotrado, B., Burgos, M., & Beltrán-Pellicer, P. (2022). Idoneidad Didáctica de Materiales Curriculares Oficiales Peruanos de Educación Secundaria en Probabilidad. Bolema: Boletim de Educação Matemática, 36(73), 888-922. https://doi.org/10.1590/1980-4415v36n73a13
- Díaz-Levicoy, D., & Roa, R. (2014). Análisis de actividades sobre probabilidad en libros de texto para un curso de básica chilena [Analysis of probability activities in textbooks for a Chilean basic education course]. Revista Chilena de Educación Científica, 13(1), 9-19.
- Díaz-Levicoy, D., Batanero, C., Arteaga, P., & Gea, M. M. (2016). Gráficos estadísticos en libros de texto de educación primaria: Un estudio comparativo entre España y Chile [Statistical graphs in primary education textbooks: A comparative study between Spain and Chile]. Bolema: Boletim de Educação Matemática, 30(55), 713-737. https://doi.org/10.1590/1980-4415v30n55a20
- Fukuda, H., & Kamimoto, Y. (2018). Comparison between school types by textbook analysis of statistics education in Japan: From the viewpoint of context. JSSE Research Report, 33(3), 89-92.
- Gal, I. (2005). Towards “probability literacy” for all citizens: Building blocks and instructional dilemmas. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 39-63). Springer. https://doi.org/10.1007/0-387-24530-8_3
- Gal, I. (2012). Developing probability literacy: Needs and pressures steeming from frameworks of adult competencies and mathematics curricula. In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 1-7). Springer.
- Garcés, W., Font, V., & Morales-Maure, L. (2021). Criteria that guide the professor’s practice to explain mathematics at basic sciences courses in engineering degrees in Perú: A case study. Acta Scientiae, 23(3). https://doi.org/10.17648/acta.scientiae.6389
- García, J. I., Medina, M., & Sánchez, E. (2014). Niveles de razonamiento de estudiantes de secundaria y bachillerato en una situación-problema de probabilidad [Reasoning levels of secondary and high school students in a probability problem situation]. Avances de Investigación en Educación Matemática, 6, 5-23.
- Gea, M. M., Pallauta, J. D., Batanero, C., & Valenzuela-Ruiz, S. M. (2022). Statistical tables in Spanish primary school textbooks. Mathematics, 10(15), Article 2809. https://doi.org/10.3390/math10152809
- Gea, M. M., Parraguez, R., & Batanero, C. (2017). Comprensión de la probabilidad clásica y frecuencial por futuros profesores [Understanding of classical and frequentist probability by prospective teachers]. In J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. Callejo, & J. Carrillo (Eds.), Investigación en educación matemática XXI (pp. 267-276). SEIEM.
- Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas [Indicators of the didactic suitability of mathematics teaching and learning processes]. Cuadernos de Investigación y Formación en Educación Matemática, 8(11), 111-132.
- Godino, J. D. (2024). Theory of didactic suitability based on OSA. In J. D. Godino (author), Ontosemiotic approach in mathematics education. Foundations, tools, and applications (Chapter 5, pp. 261-314). Universidad de Granada. https://hdl.handle.net/10481/93738
- Godino, J. D., Batanero, C., Burgos, M., & Gea, M. M. (2021). Una perspectiva ontosemiótica de los problemas y métodos de investigación en educación matemática [Una perspectiva ontosemiótica de los problemas y métodos de investigación en educación matemática]. Revemop, 3, Article e202107. https://doi.org/10.33532/revemop.e202107
- Godino, J. D., Batanero, C. & Burgos, M. (2023). Theory of didactical suitability: An enlarged view of the quality of mathematics instruction. EURASIA Journal of Mathematics, Science and Technology Education, 19(6), Article em2270. https://doi.org/10.29333/ejmste/13187
- Godino, J. D., Batanero, C. Font, V., Contreras, A. & Wilhelmi, M. R. (2016). The theory of didactical suitability: Networking a system of didactics principles for mathematics education form different theoretical perspectives. In 13th International Congress on Mathematical Education. Hamburg.
- Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
- Godino, J., Font, V., & Wilhelmi, M. (2006). Análisis ontosemiótico de la lección sobre la suma y la resta [Ontosemiotic analysis of the lesson on addition and subtraction]. Revista Latinoamericana de Investigación en Matemática, (9), 131-155.
- Godino, J., Rivas, H., & Arteaga, P. (2012). Inferencia de indicadores de idoneidad didáctica a partir de orientaciones curriculares [Inference of didactic suitability indicators from curricular guidelines]. Práxis Educativa, 7(2), 331-354. https://doi.org/10.5212/PraxEduc.v.7i2.0002
- Gómez-Torres, E., Batanero, C., & Contreras, J. M. (2014). Conocimiento matemático de futuros profesores para la enseñanza de la probabilidad desde el enfoque frecuencial [Mathematical knowledge of prospective teachers for teaching probability from the frequentist approach]. Bolema: Boletim de Educação Matemática, 28(48), 209-229. https://doi.org/10.1590/1980-4415v28n48a11
- Gómez-Torres, E., Ortiz, J. J., Batanero, C., & Contreras, J. M. (2013). El lenguaje de probabilidad en los libros de texto de educación primaria [The language of probability in primary education textbooks]. Unión. Revista Iberoamericana de Educación Matemática, 35, 75-91.
- Gómez-Torres, E., & Batanero, C. (2014). Procedimientos probabilísticos en libros de texto de matemáticas para educación primaria en España [Probabilistic procedures in mathematics textbooks for primary education in Spain]. Revista Epsilon, 31(87), 25-42.
- Gómez-Torres, E., Ortiz, J. J., & Gea, M. M. (2014). Conceptos y propiedades de probabilidad en libros de texto españoles de educación primaria [Probability concepts and properties in Spanish primary education textbooks]. Avances de Investigación en Educación Matemática, 5, 49-71. https://doi.org/10.35763/aiem.v1i5.63
- Han, S., Rosli, R., Capraro, M. R., & Capraro, M. M. (2011). The textbook analysis on probability: The case of Korea, Malaysia and U.S. textbooks. Research in Mathematical Education, 15(2), 127-140.
- Hashmi, A., Hussain, T., & Shoaib, A. (2018). Alignment between mathematics curriculum and textbook of grade VIII in Punjab. Bulletin of Education and Research, 40(1), 57-76.
- Hernández-Solis, L. A., Batanero, C., Gea, M. M., & Álvarez-Arroyo, R. (2021a). Construcción de espacios muestrales asociados a distintos tipos de sucesos: Un estudio exploratorio con estudiantes de educación primaria [Construction of sample spaces associated with different types of events: An exploratory study with primary education students]. Educación Matemática, 33(1), 181-207. https://doi.org/10.24844/EM3301.07
- Hernández-Solis, L. A., Batanero, C., Gea, M. M., & Álvarez-Arroyo, R. (2021b). Resolución de tareas probabilísticas en contexto geométrico por estudiantes de educación primaria. Educação & Realidade, 46(3), Article e105401. https://doi.org/10.1590/2175-6236105401
- Horvath, J. K., & Lehrer, R. (1998). A model-based perspective on the development of children’s understanding of chance and uncertainty. In S. Lajoie (Ed.), Reflections on statistics: Learning, teaching, and assessment in grades K-12 (pp. 121-148). Routledge.
- Ishibashi, I. (2022). Analyzing experimental and theoretical probabilities in Japanese 7th and 8th grade textbooks. International Electronic Journal of Mathematics Education, 17(3), Article em0690. https://doi.org/10.29333/iejme/12061
- Jäder, J., Lithner, J., & Sidenvall, J. (2015). A cross-national textbook analysis with a focus on mathematical reasoning–The opportunities to learn. In J. Jäder (Ed.), Elevers möjligheter till lärande av matematiska resonemang [Licentiate thesis, Linköping University].
- Jones, G., & Thornton, C. (2005). An overview of research into the teaching and learning of probability. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 65-92). Kluwer Academic Publishers. https://doi.org/10.1007/0-387-24530-8_4
- Kazak, S., & Leavy, A. M. (2018). Emergent reasoning about uncertainty in primary school children with a focus on subjective probability. In A. M. Leavy, M. Meletiou-Mavrotheris, & E. Paparistodemou (Eds.), Statistics in early childhood and primary education. Supporting early statistical and probabilistic thinking (pp. 37-54). Springer. https://doi.org/10.1007/978-981-13-1044-7_3
- Konold, C. (1991). Understanding students’ beliefs about probability. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 139-156). Kluwer. https://doi.org/10.1007/0-306-47201-5_7
- Lamon, S. (2007). Rational number and proportional reasoning. Toward a theoretical framework for research. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-667). Information Age Pub Inc.
- Langrall, C., & Mooney, E. (2005). Characteristics of elementary school students’ probabilistic reasoning. In G. Jones (Ed.), Exploring probability in school (pp. 95-119). Springer. https://doi.org/10.1007/0-387-24530-8_5
- Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23, 557-568. https://doi.org/10.1007/BF00540060
- Martin, V., & Theis, L. (2016). L’articulation des perspectives fréquentielle et théorique dans l’enseignement des probabilités: Regard sur un changement de posture chez un enseignant du primaire [The articulation of frequentist and theoretical perspectives in probability teaching: A look at a posture change in a primary school teacher]. Canadian Journal of Science, Mathematics and Technology Education, 16(4), 345-358. https://doi.org/10.1080/14926156.2016.1235745
- Martínez, G., & Penalva, C. (2006). Proceso de simbolización del concepto de potencia: Análisis de libros de texto de secundaria [Symbolization process of the concept of power: Analysis of secondary school textbooks]. Enseñanza de las Ciencias, 24(2), 285-298. https://doi.org/10.5565/rev/ensciencias.3806
- Ministerio de Educación y Formación Profesional [MEFP]. (2022). Real Decreto 217/2022, de 29 de Marzo, porel que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria [Royal Decree 217/2022, of March 29, establishing the organization and minimum teachings of Compulsory Secondary Education]. Boletín Ofcial del Estado, 76, 41571-41789.
- Monje, Y., Seckel, M. J., & Breda, A. (2018). Tratamiento de la inecuación en el currículum y textos escolares chilenos [Treatment of inequalities in the Chilean curriculum and school textbooks]. Bolema: Boletim de Educação Matemática, 32(61), 480-502. https://doi.org/10.1590/1980-4415v32n61a09
- Monterrubio, M. C., & Ortga, T. (2012). Creación y aplicación de un modelo de valoración de textos escolares matemáticos en educación secundaria. Revista de Educación, 358, 471-496.
- Nakawa, N. (2020). Mathematics textbook analysis among the International Baccalaureate Middle Year Programme and Mathematics I: Focusing on statistics. Journal of Research into IB Education, 4, 51-60.
- Nakawa, N., & Kimura, (2021). Analysis of secondary mathematics textbooks and teaching material on probability in Japan and in the International Baccalaureate Diploma Programme. The Journal of Research into IB Education, 5, 55-74.
- National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. The National Council of Teachers of Mathematics.
- Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84-106. https://doi.org/10.1080/00461520.2011.558816
- Observatório Nacional de Textos Escolares (OBNATE). (02 mayo 2023). Matriz de indicadores de calidad para la evaluación de textos escolares [Quality indicator matrix for the evaluation of school textbooks]. https://obnate.minedu.gob.pe/Criterios/FormCriterioConsulta.aspx
- Ortiz, J. J., Batanero, C., & Contreras, J. M. (2012). Conocimiento de futuros profesores sobre la idea de juego equitativo [Prospective teachers’ knowledge about the idea of fair game]. Revista Latinoamericana de Investigación en Matemática Educativa, 15(1), 63-91.
- Pérez Echeverría, M. P., Carretero, M., & Pozo. J. I. (1986). Los adolescentes ante las matemáticas: Proporción y probabilidad [Adolescents facing mathematics: Proportion and probability]. Cuadernos de Pedagogía, 133, 9-13.
- Reuter, F. (2023). Explorative mathematical argumentation: a theoretical framework for identifying and analysing argumentation processes in early mathematics learning. Educational Studies in Mathematics, 112(1), 415-435. https://doi.org/10.1007/s10649-022-10199-5
- Rezat, S., Fan, L., & Pepin, B. (2021). Mathematics textbooks and curriculum resources as instruments for change. ZDM–Mathematics Education, 53, 1189-1206. https://doi.org/10.1007/s11858-021-01309-3
- Rodríguez-Muñiz, L. J., Díaz, P., & Muñiz-Rodríguez, L. (2019). Statistics and probability in the Spanish baccalaureate: Intended curriculum and implementation in textbooks. In Y. Shimizu, & R. Vithal (Eds.), ICMI Study 24. Conference Proceedings. School Mathematics Curriculum Reforms: Challenges, Changes and Opportunities (pp. 413-420). ICMI & University of Tsukuba.
- Rodríguez-Muñiz, L. J., Rodríguez-Suárez, L., & Muñiz-Rodríguez, L. (2022). Subjective probability in use: Reasoning about a chess game. Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), Bozen-Bolzano.
- Sánchez, E. (2009). La probabilidad en el programa de estudio de matemáticas de la secundaria en México [Probability in the secondary school mathematics curriculum in Mexico]. Educación Matemática, 21(2), 39-77.
- Sánchez, E., & Valdez, J. (2017). Las ideas fundamentales de probabilidad en el razonamiento de estudiantes de bachillerato [The fundamental ideas of probability in high school students’ reasoning]. Avances de Investigación en Educación Matemática, 11, 127-143. https://doi.org/10.35763/aiem.v1i11.180
- Santaolalla, E. (2014). Análisis de los elementos didácticos en los libros de texto de matemáticas [Analysis of didactic elements in mathematics textbooks] [Doctoral Thesis, Universidad de Pontificia Comillas]. https://dialnet.unirioja.es/servlet/tesis?codigo=72231
- Schubring, G., & Fan, L. (2018). Recent advances in mathematics textbook research and development: An overview. ZDM, 50(5), 765-771. https://doi.org/10.1007/s11858-018-0979-4
- Stylianides, G. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and Learning, 11(4), 258-288. https://doi.org/10.1080/10986060903253954
- Trelles-Zambrano, C., Toalongo-Guamba, X. P., & Alsina-Pastells, A. (2022). La presencia de la modelización matemática en tareas de estadística y probabilidad de libros de texto ecuatorianos [The presence of mathematical modeling in statistics and probability tasks in Ecuadorian textbooks]. INNOVA Research Journal, 7(2), 97-116. https://doi.org/10.33890/innova.v7.n2.2022.2076
- Tversky, A., & Kahneman, D. (1974). Judgement under uncertainity: Heurístics and biases. Science, 185, 1124-1131. https://doi.org/10.1126/science.185.4157.1124
- Tversky, A., & Kahneman, D. (1982). Judgments of and by representativeness. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgement under uncertainty: Heuristics and biases (pp. 117-128). Cambridge University Press.
- Vásquez, C., & Alsina, Á. (2019). Diseño, construcción y validación de una pauta de observación de los significados de la probabilidad en el aula de educación primaria [Design, construction, and validation of an observation rubric for probability meanings in the primary education classroom]. REVEMAT: Revista Eletrônica de Educação Matemática, 14. https://doi.org/10.5007/1981-1322.2019.e62434
- Vásquez, C., & Alsina, Á. (2015a). El conocimiento del profesorado para enseñar probabilidad: Un análisis global desde el modelo del conocimiento didáctico-matemático [Teachers’ knowledge for teaching probability: A global analysis from the mathematical-didactic knowledge model]. Avances de Investigación en Educación Matemática, 7, 27-48. https://doi.org/10.35763/aiem.v1i7.104
- Vásquez, C., & Alsina, Á. (2015b). Un modelo para el análisis de objetos matemáticos en libros de texto chilenos: Situaciones problemáticas, lenguaje y conceptos sobre probabilidad [A model for the analysis of mathematical objects in Chilean textbooks: Problem situations, language, and concepts about probability]. Revista de Currículum y Formación de Profesorado, 19(2), 441-462.
- Vásquez, C., & Alsina, Á. (2017a). Aproximación al conocimiento común del contenido para enseñar probabilidad desde el modelo del conocimiento didáctico-matemático [Approach to common content knowledge for teaching probability from the Mathematical-Didactic Knowledge model]. Revista Educación Matemática, 29, 79-108. https://doi.org/10.24844/em2903.03
- Vásquez, C., & Alsina, Á. (2017b). Proposiciones, procedimientos y argumentos sobre probabilidad en libros de texto chilenos de educación primaria [Propositions, procedures, and arguments about probability in Chilean primary education textbooks]. Profesorado, Revista de Currículum y Formación del Profesorado, 21(1), 433-457. https://doi.org/10.30827/profesorado.v21i1.10373
- Vásquez, C., Coronata, C., & Rivas, H. (2021). Enseñanza de la estadística y la probabilidad de los 4 a los 8 años de edad: Una aproximación desde los procesos matemáticos en libros de texto Chilenos [Teaching statistics and probability from ages 4 to 8: An approach based on mathematical processes in Chilean textbooks]. PNA, 15(4), 339-365. https://doi.org/10.30827/pna.v15i4.22512
- Vila, A., & Callejo, M. L. (2004). Matemáticas para aprender a pensar: El papel de las creencias en la resolución de problemas [Mathematics for learning to think: The role of beliefs in problem solving]. Narcea.
- Yang, K. L., & Liu, X. Y. (2019). Exploratory study on Taiwanese secondary teachers’ critiques of mathematics textbooks. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), Artilce em1655. https://doi.org/10.29333/ejmste/99515
How to cite this article
APA
Burgos, M., Beltrán-Pellicer, P., & Cotrado, B. (2025). A guide to the analysis of didactic suitability of probability textbook lessons. International Electronic Journal of Mathematics Education, 20(4), em0858. https://doi.org/10.29333/iejme/17183
Vancouver
Burgos M, Beltrán-Pellicer P, Cotrado B. A guide to the analysis of didactic suitability of probability textbook lessons. INT ELECT J MATH ED. 2025;20(4):em0858. https://doi.org/10.29333/iejme/17183
AMA
Burgos M, Beltrán-Pellicer P, Cotrado B. A guide to the analysis of didactic suitability of probability textbook lessons. INT ELECT J MATH ED. 2025;20(4), em0858. https://doi.org/10.29333/iejme/17183
Chicago
Burgos, María, Pablo Beltrán-Pellicer, and Bethzabe Cotrado. "A guide to the analysis of didactic suitability of probability textbook lessons". International Electronic Journal of Mathematics Education 2025 20 no. 4 (2025): em0858. https://doi.org/10.29333/iejme/17183
Harvard
Burgos, M., Beltrán-Pellicer, P., and Cotrado, B. (2025). A guide to the analysis of didactic suitability of probability textbook lessons. International Electronic Journal of Mathematics Education, 20(4), em0858. https://doi.org/10.29333/iejme/17183
MLA
Burgos, María et al. "A guide to the analysis of didactic suitability of probability textbook lessons". International Electronic Journal of Mathematics Education, vol. 20, no. 4, 2025, em0858. https://doi.org/10.29333/iejme/17183