International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Tchonang Youkap P, Njomgang Ngansop J, Tieudjo D, Pedemonte B. The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook. INT ELECT J MATH ED. 2020;15(3), em0599. https://doi.org/10.29333/iejme/8404
APA 6th edition
In-text citation: (Tchonang Youkap et al., 2020)
Reference: Tchonang Youkap, P., Njomgang Ngansop, J., Tieudjo, D., & Pedemonte, B. (2020). The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook. International Electronic Journal of Mathematics Education, 15(3), em0599. https://doi.org/10.29333/iejme/8404
Chicago
In-text citation: (Tchonang Youkap et al., 2020)
Reference: Tchonang Youkap, Patrick, Judith Njomgang Ngansop, Daniel Tieudjo, and Bettina Pedemonte. "The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook". International Electronic Journal of Mathematics Education 2020 15 no. 3 (2020): em0599. https://doi.org/10.29333/iejme/8404
Harvard
In-text citation: (Tchonang Youkap et al., 2020)
Reference: Tchonang Youkap, P., Njomgang Ngansop, J., Tieudjo, D., and Pedemonte, B. (2020). The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook. International Electronic Journal of Mathematics Education, 15(3), em0599. https://doi.org/10.29333/iejme/8404
MLA
In-text citation: (Tchonang Youkap et al., 2020)
Reference: Tchonang Youkap, Patrick et al. "The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook". International Electronic Journal of Mathematics Education, vol. 15, no. 3, 2020, em0599. https://doi.org/10.29333/iejme/8404
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Tchonang Youkap P, Njomgang Ngansop J, Tieudjo D, Pedemonte B. The Introduction of Proof at the Secondary School in Cameroun: A First Approach trough the Study of Quadrilaterals and Triangles in the Textbook. INT ELECT J MATH ED. 2020;15(3):em0599. https://doi.org/10.29333/iejme/8404

Abstract

The purpose of this article is to better understand how proof is introduced into the study of quadrilaterals and triangles in high school. To do this, we designed a grid to analyse mathematics textbooks in Cameroon francophone subsystems (7th Grade and 8th Grade). The Anthropological Theory of Didactics and the paradigms in geometry served as a theoretical framework for our analyses. The results of our analysis indicate that problems in the lessons section correspond to guided problems. These kinds of problems do not develop students’ spirit of research and initiative. The authors of the textbook choose to teach the functioning of deductive reasoning in the 8th Grade. They choose to introduce proof in the commented exercise section rather than lessons section. The learning problems proposed in the textbooks contain drawings wish have informative function and representative function. The preponderance of drawings with a representative function that have the same shape and name observed in textbooks can contribute to the construction of constant visual models in students’ minds. This could lead to the superficial use of drawings in proof tasks.

References

  • Arsac, G., Germain, G., & Mante, M. (1988). Problème ouvert et situation-problème [Open problem and problem-situation]. IREM de Lyon.
  • Cabassut, R. (2005). Démonstration, raisonnement et validation dans l’enseignement secondaire des mathématiques en France et en Allemagne [Proof, Reasoning and Validation in Mathematics Secondary Schools in France and Germany] (Doctoral Dissertation). Université Paris Diderot, Paris VII. Retrieved from https://tel.archives-ouvertes.fr/tel-00009716/document
  • Cabassut, R. (2009). The double transposition in proving. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education (Vol. 1, pp. 124-129). Taipei: National Taiwan Normal University.
  • Chaachoua, H. (2010). La praxéologie comme modèle didactique pour la problématique EIAH. Etude de cas: la modélisation des connaissances des élèves [The praxeology as didactic model for the EIAH problem] (HDR dissertation). Université de Grenoble. Retrieved from https://tel.archives-ouvertes.fr/tel-00922383
  • Chevallard, Y. (2007). Readjusting didactics to a changing epistemiology. European Educational Research Journal, 6(2), 131-134. https://doi.org/10.2304/eerj.2007.6.2.131
  • Chevallard, Y., & Bosch, M. (2019). Anthropological Theory of the Didactic (ATD). In S. Lerman (ed.), Encyclopedia of Mathematics Education, (pp. 1-8). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-77487-9_100034-1
  • Coppé, S., Dorier, J.-L., & Moreau, V. (2005). Différents types de dessins dans les activités d’argumentation en classe de 5ème[Different types of drawings in 7th Grade argumentation activities] Petit X, (68), 8-37.
  • Duval, R. (1992). Argumenter, démontrer, expliquer: continuité ou rupture cognitive[Arguing, proving, explaining: Cognitive continuity or Guap], Petit X, 31, 37-61.
  • Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81-91. https://doi.org/10.1016/j.ijer.2013.09.014
  • Fujita, T., Jones, K., & Kunimune, S. (2009). The design of textbooks and their influence on students’ understanding of ‘proof’ in lower secondary school. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. de Villiers (Eds), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education (Vol. 1, pp. 172-177). Taipei, Taiwan: National Taiwan Normal University.
  • Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulty of proof. In A. Olivier and K. Newstead (Eds.), Proceedings of the 22th PME International Conference, (Vol. 2, pp. 345-352). Stellenbosch, South Africa.
  • Gobert, S. (2007). Conditions nécessaires à l’usage des dessins en géométrie déductive [Necessary conditions to use drawings in deductive geometry], Petit X, 47, 34-59.
  • González-Martín, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in secondary education: An institutional analysis of textbooks. Research in Mathematics Education, 15(3), 230-248. https://doi.org/10.1080/14794802.2013.803778
  • Gousseau-Coutat, S. (2006). Intégration de la géométrie dynamique dans l’enseignement de la géométrie pour favoriser la liaison école primaire collège: une ingénierie didactique au collège sur la notion de propriété [Integration of dynamic geometry in the teaching of geometry to promote the link between primary school and secondary school: didactic engineering in secondary school on the notion of property] (Doctoral Dissertation). Université Joseph Fourier, Grenoble. Retrieved from https://tel.archives-ouvertes.fr/tel-00110052/
  • Houdement, C., & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie [Geometric Paradigms and Geometry Teaching]. Annales de didactique et de sciences cognitives, 11, 175-193.
  • Kerboeuf, M.-P., & Houdebine, J. (2005). Les figures-cles: une idee pour l’apprentissage de la demonstration en 4e[Key-figures: an idea for learning how to prove it in 8th Grade.], Repère IREM, 59, 83-103.
  • Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1), 25-53. https://doi.org/10.1023/A:1012733122556
  • Miyakawa, T. (2012). Proof in geometry: A comparative analysis of French and Japanese textbooks. In T. Y. Tso (Ed.). Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 225-232). Taipei, Taiwan.
  • Njomgang Ngansop, J., & Tchonang Youkap, P. (2018). La ligne droite, un objet d’étude au début du secondaire: une analyse institutionnelle des manuels [The straight line, a subject of study at the beginning of secondary school: an institutional analysis of textbooks]. Revue de Mathématiques Pour l’Ecole, 230, 23-29.
  • Pedemonte, B. (2002). Étude didactique et cognitive des rapports entre argumentation et démonstration dans l’apprentissage des mathématiques [A didactic and cognitive study of the relationship between argumentation and proof in the learning of mathematics.] (Doctoral Dissertation). Université Joseph-Fourier-Grenoble I. Retrieved from https://tel.archives-ouvertes.fr/tel-00004579/
  • Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and Learning, 11, 258-288. https://doi.org/10.1080/10986060903253954
  • Tanguay, D., & Geeraerts, L. (2012). D’une géométrie du perceptible à une géométrie déductive : à la recherche du paradigme manquant [From a perceptible geometry to a deductive geometry: in search of the missing paradigm], Petit X, 88, 5-24.
  • Tchonang Youkap, P., Njomgang Ngansop, J., Tieudjo, D., & Nchia Ntam, L. (2019). Influence of Drawing and Figures on Secondary School Students' Argumentation and Proof: An Investigation on Parallelogram. Acta Didactica Napocensia, 12(2), 133-144. https://doi.org/10.24193/adn.12.2.10
  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305. https://doi.org/10.1080/0020739830140305
  • Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. In: Tall D. (eds) Advanced Mathematical Thinking. Mathematics education library, V11. Springer, Dordrecht. https://doi.org/10.1007/0-306-47203-1_5
  • Walter, A. (2001). Quelle géométrie pour l’enseignement en collège? [wath geometry for the teaching in secondery school], Petit X, 54, 31-49.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.