International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
The development of students’ algebraic proficiency
APA
In-text citation: (Stiphout et al., 2013)
Reference: Stiphout, I. V., Drijvers, P., & Gravemeijer, K. (2013). The development of students’ algebraic proficiency. International Electronic Journal of Mathematics Education, 8(2-3), 62-80. https://doi.org/10.29333/iejme/274
AMA
In-text citation: (1), (2), (3), etc.
Reference: Stiphout IV, Drijvers P, Gravemeijer K. The development of students’ algebraic proficiency. INT ELECT J MATH ED. 2013;8(2-3), 62-80. https://doi.org/10.29333/iejme/274
Chicago
In-text citation: (Stiphout et al., 2013)
Reference: Stiphout, Irene van, Paul Drijvers, and Koeno Gravemeijer. "The development of students’ algebraic proficiency". International Electronic Journal of Mathematics Education 2013 8 no. 2-3 (2013): 62-80. https://doi.org/10.29333/iejme/274
Harvard
In-text citation: (Stiphout et al., 2013)
Reference: Stiphout, I. V., Drijvers, P., and Gravemeijer, K. (2013). The development of students’ algebraic proficiency. International Electronic Journal of Mathematics Education, 8(2-3), pp. 62-80. https://doi.org/10.29333/iejme/274
MLA
In-text citation: (Stiphout et al., 2013)
Reference: Stiphout, Irene van et al. "The development of students’ algebraic proficiency". International Electronic Journal of Mathematics Education, vol. 8, no. 2-3, 2013, pp. 62-80. https://doi.org/10.29333/iejme/274
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Stiphout IV, Drijvers P, Gravemeijer K. The development of students’ algebraic proficiency. INT ELECT J MATH ED. 2013;8(2-3):62-80. https://doi.org/10.29333/iejme/274

Abstract

Students’ algebraic proficiency is debated worldwide. To investigate the development of algebraic proficiency in Dutch secondary education, we set up a study, in which 1020 students in grades 8 – 12 took four algebra tests over a period of one year. Rasch analysis of the results shows that the students do make progress throughout the assessment, but that this progress is small. A qualitative analysis of test items that invite structure sense reveals that students’ lack of structure sense may explain the results: the majority of the students were not able to deal flexibly with the mathematical structure of expressions and equations. More attention to structure sense in algebra education is recommended.

References

  • Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24-35.
  • Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 42-47.
  • Bond, T.G., & Fox, C.M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (Second Edition). Mahwah, NJ: Lawrence Erlbaum.
  • Brousseau, G. (1990). Le contrat didactique: le milieu. [The didactical contract: The setting]. Recherches en didactique des mathématiques, 9(3), 309-336.
  • Ctwo. (2009). Rapport tussenevaluatie van de 2007-programma’s wiskunde havo/vwo. [Report on the intermediate evaluation of the 2007 programs mathematics havo/vwo]. Retrieved 15 December 2013 from http://www.ctwo.nl/.
  • Drijvers, P. (2003). Learning algebra in a computer environment: Design research on the understanding of the concept of parameter (Doctoral dissertation). University of Utrecht, The Netherlands.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum.
  • Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effect of brackets. Paper presented at the 28th Conference of the International Group for the Psychology of Mathematics Education. Bergen, Norway: PME.
  • Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected result. Paper presented at the 30th Conference of the International Group for the Psychology of Mathematics Education. Prague, Czech Republic: PME.
  • Janvier, C. (1996). Modeling and the initiation into algebra. In N. Bednarz et al. (Ed.) Approaches to algebra (pp. 225-236). Dordrecht: Kluwer Academic Publishers.
  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up. Washington, D.C: National Academy Press.
  • Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for Research in Mathematics Education, 35(4), 224-257.
  • Linacre, J. M. (2009). A user's guide to Winsteps. Retrieved August 31, 2012, from http://www.winsteps.com/winsteps.htm
  • Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173-196.
  • Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman, & J. Brown (Eds.), Intelligent Tutoring Systems (pp. 25-50). London: Academic Press.
  • McCallum, W. (2010). Restoring and balancing. In Z. Usiskin, K. Andersen, & N. Zotto (Eds.), Future curricular trends in school algebra and geometry: Proceedings of a conference (pp. 277-286). Charlotte, NC: Information Age Publishing Inc.
  • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the national mathematics advisory panel. Washington, D.C.: U.S. Department of Education.
  • Novotná, J., & Hoch, M. (2008). How structure sense for algebraic expressions or equations is related to structure sense for abstract algebra. Mathematics Education Research Journal, 20(2), 93-104.
  • Rasch, G. (1980). Probalistic models for some intelligence and attainment tests. Chicago: University of Chicago Press.
  • Rosnick, P. (1981). Some misconceptions concerning the concept of variable. Mathematics Teacher, 74(6), 418-420.
  • Schoenfeld, A., & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81(6), 420-427.
  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36.
  • Sfard, A., & Linchevski, L. (1994). The gains and pitfalls of reification: The case of algebra. Educational Studies in Mathematics, 26(2-3), 191-228.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 1-7.
  • Trigueros, M., & Ursini, S. (1999). Does the understanding of variable evolve through schooling? Paper presented at the 23rd Conference of the International Group for the Psychology of Mathematics Education. Haifa, Israel: Technion.
  • Ursini, S., & Trigueros, M. (2001). A model for the use of variable in elementary algebra. Paper presented at the 25th Conference of the International Group for the Psychology of Mathematics Education. Utrecht: Freudental Institute.
  • Van Gastel, L., Cuypers, H., Jonker, V., Van de Vrie, E., & Van der Zanden, P. (2007). Eindrapport nationale kennisbank basisvaardigheden wiskunde. Amsterdam: Consortium NKBW.
  • Van Gastel, L., Cuypers, H., Grift, Y., Kaper, W., Van der Kooij, H., Tempelaar, D. et al. (2010). Aansluitmonitor Wiskunde VO-HO. Amsterdam: Consortium NKBW.
  • Van Stiphout, I. M. (2011). The development of algebraic proficiency (Doctoral dissertation). Eindhoven School of Education, Eindhoven, The Netherlands.
  • Van Stiphout, I. M., Drijvers, P. & Gravemeijer, K. (2013). The implementation of contexts in Dutch textbook series: a double didactical track? In Lindmeier, A.M. & Heinze, A. (Eds.). Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 337-344. Kiel, Germany: PME.
  • Wagner, S. (1983). What are these things called variables? Mathematics Teacher, 76, 474- 479.
  • Wenger, R. (1987). Cognitive science and algebra learning. In A. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 217-251). Hillsdale, NJ: Lawrence Erlbaum.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.