International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education Indexed in ESCI
Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions
APA
In-text citation: (Eichler, 2007)
Reference: Eichler, A. (2007). Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions. International Electronic Journal of Mathematics Education, 2(3), 208-226. https://doi.org/10.29333/iejme/184
AMA
In-text citation: (1), (2), (3), etc.
Reference: Eichler A. Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions. INT ELECT J MATH ED. 2007;2(3), 208-226. https://doi.org/10.29333/iejme/184
Chicago
In-text citation: (Eichler, 2007)
Reference: Eichler, Andreas. "Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions". International Electronic Journal of Mathematics Education 2007 2 no. 3 (2007): 208-226. https://doi.org/10.29333/iejme/184
Harvard
In-text citation: (Eichler, 2007)
Reference: Eichler, A. (2007). Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions. International Electronic Journal of Mathematics Education, 2(3), pp. 208-226. https://doi.org/10.29333/iejme/184
MLA
In-text citation: (Eichler, 2007)
Reference: Eichler, Andreas "Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions". International Electronic Journal of Mathematics Education, vol. 2, no. 3, 2007, pp. 208-226. https://doi.org/10.29333/iejme/184
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Eichler A. Individual Curricula: Teachers’ Beliefs Concerning Stochastic Instructions. INT ELECT J MATH ED. 2007;2(3):208-26. https://doi.org/10.29333/iejme/184

Abstract

This report focuses on in-service teachers’ planning of stochastic education. The theoretical and methodological settings of the research will be outlined in-depth. The methodological settings will be illustrated by research results concerning one teacher. A further main focus is to present some results concerning the planning of stochastic education conducted by 13 teachers.

References

  • Batanero, C., Garfield, J. B., Ottaviani, M. G., & Truran, J. (2000). Research in statistical education: Some priority questions. Statistics Education Research Newsletter, 1(2), 2-6. Online: http://www.stat.auckland.ac.nz/~iase.
  • Batanero, C., Albert, A. Ben-Zvi, D., Burrill, G., Connor, D., Engel, J., Garfield, J., Hodgon, B., Li, J., PereiraMendoza, L., Ottaviani, M. G., Pfannkuch, M., Polaki, V. Rossman, A., & Reading, C. (2006). Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Discussion Document. International Commission on Mathematical Instruction & International Association for Statistical Education. Online: http://www.ugr.es/~icmi/iase_study.
  • Biehler, R. (1997). Auf Entdeckungsreise in Daten (Discoveries in the data land). Mathematiklehren, 97, 4-5.
  • Borovcnik, M. (1996). Trends und Perspektiven in der Stochastikdidaktik (Trends and perspectives concerning stochastics education). In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider. (Eds.), Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik, Universität Klagenfurt (Vol. 23, pp. 39-60) Wien: Hölder-Pichler-Tempsky.
  • Burgess, T. (2002). Investigating the ‘data sense’ of preservice teachers. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Calderhead, J. (1996). Teachers: beliefs and knowledge. In D. C. Berliner (Ed.), Handbook of education (pp. 709-725). New York: MacMillan.
  • Chapman, O. (2001). Understanding high school mathematics teacher growth. In Heuvel-Panhuizen, M. (Ed.), Proceeding of the 25th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 233-240). Utrecht: International Group for the Psychology of Mathematics Education.
  • Charmaz, K. (2000). Grounded theory. In N. J. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 508-535). London: Sage.
  • Cooney, T. J., Shealy, B. E., & Arvold, B. (1998). Conceptualizing belief structures of preservice secondary mathematics teachers. Journal for Research in Mathematics Education, 29(3), 306-333.
  • Cai, J., & Gorowara, C. C. (2002). Teachers’ conceptions and constructions of pedagogical representations in teaching arithmetic average. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Danner, H. (1998). Methoden geisteswissenschaftlicher Pädagogik (Practices in the humanistic pedagogy). Tübingen: Mohr.
  • Eichler, A. (2004). The impact of individual curricula on teaching stochastics. In M. J. Høines, & A. B. Fuglestad (Eds.), Proceeding of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp.319-326). Bergen, Norway: International Group for the Psychology of Mathematics Education.
  • Eichler, A. (2005). Individuelle Stochastikcurricula von Lehrerinnen und Lehrern (Teachers’ individual curricula). Hildesheim: Franzbecker.
  • Eichler, A. (2006). Individual curricula – beliefs behind teachers’ beliefs. In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Eichler, A. (2007). The impact of a typical classroom practice on students’ statistical knowledge. Paper presented at the 5th Conference on the European Society for Research in Mathematics Education (CERME). Larnaca, Cyprus.
  • Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 119-161). New York: Macmillan.
  • Gadamer, H. G. (1986). Hermeneutik I, Wahrheit und Methode (Hermeneutics I, truth and method). Tübingen: Mohr.
  • Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern (Attitudes of mathematics teachers towards mathematics). Journal für Mathematikdidaktik 19(1), 3-45.
  • Groeben, N., Wahl, D., Scheele, B., & Schlee, J. (1988). Forschungsprogramm Subjektive Theorien (Research program subjective theories). Tübingen: Franke.
  • Helmke, A. (2007). Unterrichtsqualität (Quality in classroom practice). Seelze: Kallmeyer.
  • Hill, H., Rowen, B., & Ball, D. (2005). Effects on teachers’ mathematical knowledge for teaching on students achievement. American Educational Research Journal, 42(2), 371-406.
  • Kelle, U., & Kluge, S. (1999). Vom Einzelfall zum Typus (From individual cases to types). Opladen: Leske & Buderich.
  • König, E. (1975). Theorie der Erziehungswissenschaft (Theory of educational science). München: Wilhelm Fink Verlag.
  • Lopes, C. E. (2006). Stochastics and the professional knowledge of teachers. In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Makar, K. & Confrey, J. (2004). Secondary teachers’statistical reasoning in comparing two groups. In D. Ben-Zvi, & J. B. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 353-373). Dordrecht: Kluwer.
  • Mickelson, W. T. & Heaton, R. M. (2004). Primary teachers’ statistical reasoning about data. In D. Ben-Zvi, & J. B. Garfield, (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 327-352). Dordrecht: Kluwer.
  • Monteiro, C., & Ainley, J. (2006). Student teachers interpreting media graphs In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Pajares, F. M. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research 62(3), 307-332.
  • Paparistodemou, E., Potari, D., & Pitta, D. (2006). Prospective teachers’ awareness of young children’s stochastic activities. In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Pfannkuch, M. (2006). Comparing box plot distributions: A teacher’s reasoning. Statistics Education Research Journal 5(2), 27-45. Online: http://www.stat.auckland.ac.nz/~iase.
  • Sanchez, E. S. (2002). Teachers’ beliefs about usefulness of simulation with the educational software fathom for developing probability concepts in statistics classroom. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Schwandt, T.A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism. In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 189-214). London: Sage.
  • Serrado, A., & Azcarate, P. (2006). Analyzing teacher resistance to teaching probability in compulsory education. In A. Rossman, & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics, Salvador, Brazil. International Statistical Institute and International Association for Statistical Education. Online: http://www.stat.auckland.ac.nz/~iase.
  • Shaugnessy, M. (1992). Research in probability and statistics: Reflections and directions. In Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning (pp. 465-494). New York: Macmillan.
  • Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
  • Stake, R.E. (2000). Case studies. In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435- 508). London: Sage.
  • Vollstädt, W., Tillmann, K. J., Rauin, U., Höhmann, K., & Terbrügge, A. (1999). Lehrpläne im Schulalltag (Curriculum and classroom practice). Opladen: Leske & Budrich.
  • Wickmann, D. (2001). Der Theorieeneintopf ist zu beseitigen (Cleaning up the clutter of theories). In M. Borovcnik, J. Engel, & D. Wickmann (Eds.). Anregungen zum Stochastikunterricht (pp. 123-132) (Suggestions concerning stochastics teaching). Hildesheim: Franzbecker.
  • Wilson, M. C., & Cooney, T. (2002). Mathematics teacher change and development. In G. C. Leder, E. Pehkonen, & Törner, G. (Eds.), Beliefs: a hidden variable in mathematics education? (pp. 127-147). Dordrecht: Kluwer.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.