International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education Indexed in ESCI
Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students
APA
In-text citation: (Morales Carballo et al., 2022)
Reference: Morales Carballo, A., Damián Mojica, A., & Marmolejo Vega, J. E. (2022). Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students. International Electronic Journal of Mathematics Education, 17(2), em0678. https://doi.org/10.29333/iejme/11714
AMA
In-text citation: (1), (2), (3), etc.
Reference: Morales Carballo A, Damián Mojica A, Marmolejo Vega JE. Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students. INT ELECT J MATH ED. 2022;17(2), em0678. https://doi.org/10.29333/iejme/11714
Chicago
In-text citation: (Morales Carballo et al., 2022)
Reference: Morales Carballo, Armando, Angie Damián Mojica, and José Efrén Marmolejo Vega. "Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students". International Electronic Journal of Mathematics Education 2022 17 no. 2 (2022): em0678. https://doi.org/10.29333/iejme/11714
Harvard
In-text citation: (Morales Carballo et al., 2022)
Reference: Morales Carballo, A., Damián Mojica, A., and Marmolejo Vega, J. E. (2022). Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students. International Electronic Journal of Mathematics Education, 17(2), em0678. https://doi.org/10.29333/iejme/11714
MLA
In-text citation: (Morales Carballo et al., 2022)
Reference: Morales Carballo, Armando et al. "Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students". International Electronic Journal of Mathematics Education, vol. 17, no. 2, 2022, em0678. https://doi.org/10.29333/iejme/11714
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Morales Carballo A, Damián Mojica A, Marmolejo Vega JE. Hypothetical Learning Trajectory for Assimilating the Articulated Concepts of Quadratic Function and Equation Through Variational Ideas and the Use of GeoGebra in Pre-University Students. INT ELECT J MATH ED. 2022;17(2):em0678. https://doi.org/10.29333/iejme/11714

Abstract

A theoretical-didactic proposal based on variational ideas and the use of GeoGebra is described as a response to a local problem on the understanding of the concept of function and quadratic equation in pre-university students. The theoretical elements of this work are based on the understanding of concepts and the theory of semiotic registers and representations, while the methodological references were based on hypothetical learning trajectories and the use of dynamic software, considered as a heuristic resource.
The proposal was validated by means of expert criteria. This elaboration contributes with a proposal that breaks with the classical schemes of presentation and treatment of the content, which favors through the incorporation of variational ideas generated with the dynamic software GeoGebra the understanding of the articulated concepts of function and quadratic equation in pre-university students.

Disclosures

Declaration of Conflict of Interest: No conflict of interest is declared by author(s).

Data sharing statement: Data supporting the findings and conclusions are available upon request from the corresponding author(s).

References

  • Arias-Rueda, J, H., Arias-Rueda, C. A., & Burgos Hernández, C. A. (2020). Procesos aplicados por los estudiantes en la resolución de problemas matemáticos: Caso de estudio sobre la función cuadrática [Processes applied by students in solving mathematical problems: Case study on the quadratic function]. Góndola, Enseñanza y Aprendizaje de las Ciencias [Gondola, Science Teaching and Learning], 15(1), 284-302. https://doi.org/10.14483/23464712.14614
  • Arteaga, E., Díaz, A., García, F., & del Sol, J. L. (2009). Alternativas metodológicas para la formación y fijación de conceptos geométricos en la geometría plana [Methodological alternatives for the formation and fixation of geometric concepts in plane geometry]. Quaderns Digitals: Revista de Nuevas Tecnologías y Sociedad [Quaderns Digitals: Magazine of New Technologies and Society], 60, 1-25.
  • Ballester, S. (1992). Metodología de la enseñanza de la matemática I [Mathematics teaching methodology I]. Editorial Pueblo y Educación [Editorial People and Education].
  • Cetina, M., Cabañas, G., & Villa- Ochoa, J. (2016). La función cuadrática y su proceso de matematización [The quadratic function and its mathematization process]. Investigación e Innovación en Matemática Educativa [Research and Innovation in Educational Mathematics], 1(1), 41-48.
  • Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée [Registers of semiotic representation and cognitive functioning of thought]. Annales de Didactique et de Sciences Cognitives, IREM de Strasbourg, Francia [Annals of Didactics and Cognitive Sciences, IREM of Strasbourg, France], 5(1), 37-65.
  • Duval, R. (2004). Semiosis y pensamiento humano: Registros semióticos y aprendizajes intelectuales [Semiosis and human thought: Semiotic registers and intellectual learning]. Universidad del Vale, Instituto de Educación y Pedagogía [Universidad del Valle, Institute of Education and Pedagogy].
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131. https://doi.org/10.1007/s10649-006-0400-z
  • Duval, R. (2016). Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas [A cognitive analysis of comprehension problems in mathematics learning]. In R. Duval, & A. Sáenz-Ludlow (Eds.), Comprensión y aprendizaje en matemáticas: Perspectivas semióticas seleccionadas énfasis [Understanding and learning in mathematics: Selected semiotic perspectives emphasis] (pp.61-94). Universidad Distrital Francisco José de Caldas [University Francisco Jose de Calda].
  • Genicio, M., Lazarte, G., Porcinito, S., & Hernández, C. (2005). Ecuación cuadrática: Una ingeniería didáctica para su enseñanza [Quadratic equation: A didactic engineering for its teaching]. In J. Lezama, M. Sánchez, & J. Molina (Eds.), Acta Latino Americana de matemática educativa 18 [Latin American educational mathematics act 18] (pp. 93-99). Comité Latinoamericano de Matemática Educativa [Latin American Committee for Educational Mathematics].
  • Gómez, P., & Lupiáñez, J. L. (2007). Trayectorias hipotéticas de aprendizaje en la formación inicial de profesores de matemáticas de secundaria [Hypothetical learning trajectories in the initial training of high school mathematics teachers]. PNA, 1(2), 79-98.
  • Gustin, J., & Avirama, L. M. (2014). Una propuesta para la enseñanza de la ecuación cuadrática en la escuela a través de la integración del material manipulativo [A proposal for the teaching of the quadratic equation in school through the integration of manipulative material] [Undergraduate thesis, Universidad del Valle-Valley University].
  • Haruna, M. (2015). Analysis of problem-solving difficulties with quadratic equations among senior secondary school students in Zaria, Nigeria. Journal of Science, Technology & Education, 3(3), 1-10.
  • Hau-Yon, F., & Zapata, M. (2019). Conocimiento didáctico del contenido de la función cuadrática en estudiantes para profesor de matemáticas [Didactic knowledge of the content of the quadratic function in students for a mathematics teacher]. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano, & A. Alsina (Eds.), Investigación en educación matemática XXIII [Research in mathematics education XXIII] (pp. 383-392). Universidad de Valladolid [University of Valladolid].
  • León, O. L., Díaz, F., & Guilombo, M. (2014). Diseños didácticos y trayectorias de aprendizaje de la geometría de estudiantes sordos, en los primeros grados de escolaridad [Didactic designs and geometry learning trajectories of deaf students, in the first grades of schooling]. Revista Latinoamericana de Etnomatemática [Latin American Journal of Ethnomathematics], 7(2), 9-28.
  • Manrique, J., Gallo, A., & Gallardo, H. (2017). Estado del arte alrededor del concepto de función [State of the art around the concept of function]. In R. Prada-Núñez, P. Ramírez, C. Hernández, H. Gallardo, S. Mendoza, & G. Rincón (Eds.), Encuentro internacional en educación matemática [International meeting on mathematics education] (pp. 157-164). Universidad Francisco de Paula Santander [Francisco de Paula Santander University].
  • Morales, A. (2016). Propuesta didáctica para la enseñanza de la traslación de coordenadas y su uso en la graficación de curvas [Didactic proposal for teaching coordinate translation and its use in graphing curves]. Premisa [Premise], 18(71), 3-16.
  • Morales, A., & Damián, A. (in press). Estrategia didáctica fundamentada en el uso de GeoGebra para mejorar la comprensión del concepto de semejanza de triángulos [Didactic strategy based on the use of GeoGebra to improve the understanding of the concept of similarity of triangles]. Innovación Educativa [Educational Innovation].
  • Morales, A., Marmolejo, J. E., & Locia, E. (2014). El software GeogGebra: Un recurso heurístico en la resolución de problemas geométricos [GeogGebra software: A heuristic resource for solving geometric problems]. Premisa [Premise], 16(63), 20-28.
  • Mosquera, M. C., & Uzuriaga, V. L. (2018). Aprendizaje basado en problemas en didáctica de la matemática, caso: Solución de ecuaciones cuadráticas por el método de aplicación de áreas, mediado por cabri géometre II plus [Problem-based learning in mathematics education, case: Solution of quadratic equations by the area application method, mediated by cabri géometre II plus]. Acta Latinoamericana de Matemática Educativa [Latin American Act of Educational Mathematics], 31(2).
  • Natsai, L. H., Tendere, J., & Chagwiza, C. J. (2020). Exploring the conceptual understanding of the quadratic function concept in teachers’ colleges Zimbawe. EURASIA Journal of Mathematics, Science and Technology Education, 16(2), em1817. https://doi.org/10.29333/ejmste/112617
  • Ortiz, E., Vergel, M., & Villamizar, F. Y. (2020). Experiencia didáctica para la introducción de la función cuadrática en el nivel secundaria a partir de la modelación de un fenómeno físico con las tecnologías digitales [Didactic experience for the introduction of the quadratic function at the secondary level from the modeling of a physical phenomenon with digital technologies]. El Cálculo y su Enseñanza, Enseñanza de las Ciencias y la Matemática [Calculus and its Teaching, Science and Mathematics Teaching], 15, 21-33.
  • Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical task in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91-104. https://doi.org/10.1207/s15327833mtl0602_2
  • Torres, P. (2013). La instrucción heurística en la formación de profesores de matemáticas [Heuristic instruction in the training of mathematics teachers]. In C. Dolores, M. García, J. A. Hernández, & L. Sosa (Eds.), Matemática educativa: La formación de profesores [Educational mathematics: Teacher training] (pp. 205-221). Díaz de Santos.
  • Vega, A. (2016). Enseñanza del álgebra a través de la formalización progresiva [Teaching algebra through progressive formalization] [Undergraduate thesis].
  • Wilkie, K. J. (2022). Generalization of quadratic figural patterns: Schifts in student noticing. Journal of Mathematical Behavior, 65, 1-19. https://doi.org/10.1016/j.jmathb.2021.100917
  • Zakaria, E., Ibrahim, & Maat, S. M. (2010). Analysis of students’ error in learning of quadratic equations. International Education Studies, 3(3), 105-110. https://doi.org/10.5539/ies.v3n3p105

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.