International Electronic Journal of Mathematics Education

Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Kosko KW, Singh R. Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing. Int Elect J Math Ed. 2019;14(2), 275-291. https://doi.org/10.29333/iejme/5714
APA 6th edition
In-text citation: (Kosko & Singh, 2019)
Reference: Kosko, K. W., & Singh, R. (2019). Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing. International Electronic Journal of Mathematics Education, 14(2), 275-291. https://doi.org/10.29333/iejme/5714
Chicago
In-text citation: (Kosko and Singh, 2019)
Reference: Kosko, Karl Wesley, and Rashmi Singh. "Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing". International Electronic Journal of Mathematics Education 2019 14 no. 2 (2019): 275-291. https://doi.org/10.29333/iejme/5714
Harvard
In-text citation: (Kosko and Singh, 2019)
Reference: Kosko, K. W., and Singh, R. (2019). Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing. International Electronic Journal of Mathematics Education, 14(2), pp. 275-291. https://doi.org/10.29333/iejme/5714
MLA
In-text citation: (Kosko and Singh, 2019)
Reference: Kosko, Karl Wesley et al. "Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing". International Electronic Journal of Mathematics Education, vol. 14, no. 2, 2019, pp. 275-291. https://doi.org/10.29333/iejme/5714
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Kosko KW, Singh R. Children’s Coordination of Linguistic and Numeric Units in Mathematical Argumentative Writing. Int Elect J Math Ed. 2019;14(2):275-91. https://doi.org/10.29333/iejme/5714

Abstract

Mathematical argumentation and proof has long been identified with algebraization. Much literature discusses the relationship between the two, but with little specificity on how particular semiotic features in argumentation relate to coordination in early algebra. Further, there is a particular lack of research on this topic in the elementary/primary years of schooling. The present study examines how children’s unit coordination in early algebra (particularly the concepts of equivalence and multiplicative reasoning) co-occurs with their coordination of grammatical information units. Coordination of information units was examined through reference use via the semiotic tool of detailing. Results suggest that second and third grade students who coordinate reference chains to support a mathematical claim in their argumentative writing tend to have higher multiplicative reasoning and conception of equivalence scores on several tasks. However, features of certain tasks may influence whether and how such unit coordination interacts with reference use.

References

  • Bicer, A., Perihan, C., & Lee, Y. (2018). The impact of writing practices on students’ mathematical attainment. International Electronic Journal of Mathematics Education, 13(3), 305-313. https://doi.org/10.12973/iejme/3922
  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 5-23). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_2
  • Bossé, M. J., & Faulconer, J. (2008). Learning and assessing mathematics through reading and writing. School Science and Mathematics, 108(1), 8-19. https://doi.org/10.1111/j.1949-8594.2008.tb17935.x
  • Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des mathématiques 1970-1990. (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds.and Trans.). Dordrecht, The Netherlands: Kluwer.
  • Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children’s learning of early algebra. Learning and Individual Differences, 38, 61-67. https://doi.org/10.1016/j.lindif.2015.01.001
  • Cirillo, M., Kosko, K. W., Newton, J., Staples, M., Weber, K., Bieda, K., …, Strachota, R. (2016). White paper: Conceptions and consequences of what we call argumentation, justification, and proof. PME-NA Working Group.
  • Cockcroft, W. H. (1982). Mathematics counts. London: Her Majesty’s Stationary Office.
  • Common Core State Standards Initiative [CCSSI]. (2010). Common core state standards for mathematics. Retrieved from Common Core Standards Initiative website http://corestandards.org/assets/CCSSI_Math%20Standards.pdf
  • Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research (2nd Ed.). Los Angeles: Sage Publications, Inc.
  • Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6(4), 232.
  • Fosnot, C. T., & Dolk, M. L. A. M. (2009). Young mathematicians at work: The role of contexts and models in the emergence of proof. In D. A. Stylianou, M. L. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 102-119). New York: Routledge.
  • Fyfe, E. R., DeCaro, M. S., & Rittle-Johnson, B. (2014). An alternative time for telling: When conceptual instruction prior to problem solving improves mathematical knowledge. British Journal of Educational Psychology, 84(3), 502-519. https://doi.org/10.1111/bjep.12035
  • Hackenberg, A. J. (2010). Students’ reasoning with reversible multiplicative relationships. Cognition and Instruction, 28(4), 383-432. https://doi.org/10.1080/07370008.2010.511565
  • Halliday, M. A. K., & Matthiessen, C. M. I. M. (2004). An introduction to functional grammar (3rd Ed.). London: Hodder Education.
  • Knudson, R. E. (1992). The development of written argumentation: An analysis and comparison of argumentative writing at four grade levels. Child Study Journal, 22, 167-181.
  • Kosko, K. W. (2016). Making use of what’s given: Children’s detailing in mathematical argumentative writing. Journal of Mathematical Behavior, 40, 68-86. https://doi.org/10.1016/j.jmathb.2015.11.002
  • Kosko, K. W., & Norton, A. (2012). Relationships between the process standards: Process elicited through letter writing between preservice teachers and high school mathematics students. School Science and Mathematics, 112(6), 340-348. https://doi.org/10.1111/j.1949-8594.2012.00151.x
  • Kosko, K. W., & Singh, R. (2016a). Children’s linguistic and numeric unit coordination. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the North American Chapter for the Psychology of Mathematics Education (p. 605-612). Tucson, AZ: The University of Arizona.
  • Kosko, K. W., & Singh, R. (2016b). Colligation and unit coordination in mathematical argumentative writing. In K. V. Adolphson, & T. M. Olson (Eds.), Proceedings of the 43rd annual meeting of the Research Council of Mathematics Learning (pp. 18-25), Orlando, FL: RCML.
  • Kosko, K. W., & Singh, R. (2018). Elementary children’s multiplicative reasoning: Initial validation of a written assessment. The Mathematics Educator, 27(1), 3-22.
  • Kosko, K. W., & Zimmerman, B. (in press). Emergence of argument in children’s mathematical writing. Journal of Early Childhood Literacy. https://doi.org/10.1177/1468798417712065
  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26, 60-82. https://doi.org/10.1016/j.jmathb.2007.02.001
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. https://doi.org/10.2307/2529310
  • Liszka, J. J. (1996). A general introduction to the semeiotic of Charles Sanders Peirce. Indiana University Press: Bloomington, IN.
  • Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisted: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66(4), 579-619. https://doi.org/10.3102/00346543066004579
  • Macedo, A. P. (2011). The development of children’s argument skills (Doctoral Dissertation). London: Royal Holloway University of London.
  • Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43(3), 316-350. https://doi.org/10.5951/jresematheduc.43.3.0316
  • Morgan, C. (2006). What does social semiotics have to offer mathematics education research? Educational Studies in Mathematics, 61(1-2), 219-245. https://doi.org/10.1007/s10649-006-5477-x
  • Morris, A. K. (2009). Representations that enable children to engage in deductive argument. In D. A. Stylianou, M. L. Blanton, & E. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 perspective (pp. 87-101). New York: Routledge.
  • Nordin, A-K., & Boistrup, L. B. (2018). A framework for identifying mathematical arguments as supported claims created in day-to-day classroom interactions. Journal of Mathematical Behavior, 51, 15-27. https://doi.org/10.1016/j.jmathb.2018.06.005
  • Norton, A., Boyce, S., Ulrich, C., & Phillips, N. (2015). Students’ units coordination activity: A cross-sectional analysis. Journal of Mathematical Behavior, 39, 51-66. https://doi.org/10.1016/j.jmathb.2015.05.001
  • O’Halloran, C. L. (2014). Supporting elementary English language learners’ argumentative writing through a functional grammar approach (doctoral dissertation). Ann Arbor, MI: University of Michigan.
  • Peirce (1998). Nomenclature and divisions of triadic relations, as far as they are determined. In N. Houser, A. De Tienne, J. R. Eller, C. L. Clark, A. C. Lewis, & D. B. Davis (Eds.), The essential Peirce: Selected philosophical writings (Vol. 2; pp.289-299). Bloomington, IN: Indiana University Press (written originally in 1903).
  • Russell, S. J., Schifter, D., & Bastable, V. (2011). Developing algebraic thinking in the context of arithmetic. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 43-69). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_4
  • Sarkar, S. K., & Chang, C. K. (1997). The Simes method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association, 92(44), 1601-1608. https://doi.org/10.1080/01621459.1997.10473682
  • Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73(3), 751-754. https://doi.org/10.1093/biomet/73.3.751
  • Singh, R., & Kosko, K. W. (2016). Elementary students’ understanding of equivalence and multiplicative reasoning. In M. B. Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the North American Chapter for the Psychology of Mathematics Education (p. 212). Tucson, AZ: The University of Arizona.
  • Steffe, L. P. (1994). Children’s multiplying schemes. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 3-39). Albany, NY: State University of New York.
  • Steffe, L. P., & Cobb, P. (1986). Construction of arithmetical meaning and strategies. New York: Springer-Verlag.
  • Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10, 313-340. https://doi.org/10.1080/10986060802229675
  • Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva, M., & Cheng, Y-H. (2011). Cognitive development of proof. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education (pp. 13-49). New York: Springer. https://doi.org/10.1007/978-94-007-2129-6_2
  • Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38(3/4), 330-336. https://doi.org/10.2307/2332579

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.