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ABSTRACT 
Mathematical argumentation and proof has long been identified with algebraization. Much 
literature discusses the relationship between the two, but with little specificity on how particular 
semiotic features in argumentation relate to coordination in early algebra. Further, there is a 
particular lack of research on this topic in the elementary/primary years of schooling. The present 
study examines how children’s unit coordination in early algebra (particularly the concepts of 
equivalence and multiplicative reasoning) co-occurs with their coordination of grammatical 
information units. Coordination of information units was examined through reference use via the 
semiotic tool of detailing. Results suggest that second and third grade students who coordinate 
reference chains to support a mathematical claim in their argumentative writing tend to have 
higher multiplicative reasoning and conception of equivalence scores on several tasks. However, 
features of certain tasks may influence whether and how such unit coordination interacts with 
reference use. 
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INTRODUCTION 
Research examining the development of argumentation and proof in schooling has predominately focused 

on the relationship between generalization in argument and algebraic contexts for problem solving (e.g., 
Fosnot & Jacob, 2009; Morris, 2009; Tall et al., 2012). Findings from such research has generally found that 
when students are able to engage in more sophisticated forms of algebraization in elementary grades they are 
more likely to engage in clarifying claims and specifying justifications, and vice versa (Blanton & Kaput, 2011; 
Russell, Schifter, & Bastable, 2011). Despite such findings, the development of mathematical argument in the 
elementary grades is relatively undertheorized. Although various descriptions and models of how children 
engage in mathematical argumentation and/or proof have been proposed (Blanton & Kaput, 2011; 
Krummheuer, 2007; Morris, 2009; Tall et al., 2011), the vast majority of such descriptions focus exclusively on 
generalized arguments, particularly in the upper elementary and middle grades. This bias towards 
generalization is understandable, given the necessity of generalization in the desired development of proof 
processes in schooling. However, such focus has neglected aspects of children’s mathematical argumentation 
that may precede inference and generalization, particularly in early elementary grades. Furthermore, though 
much of the literature base provides evidence for a connection between early algebra tasks and mathematical 
argument in the elementary grades, there has been little to no focus on the specific semiotic features (such as 
language, signs, or diagrams) that interrelate with algebraization. 

The present study examines the relationship between researchers’ cognitive models for children’s algebraic 
reasoning and children’s enactments of mathematical argument. Specifically, we examined children’s 
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coordination of mathematical information through their use of reference, an action Kosko (2016) defined as 
detailing, and investigated how such actions related to their demonstrated multiplicative reasoning and 
understanding of equivalence. Thus, the purpose of the present study is to investigate whether children 
demonstrating certain early algebra actions are more likely to engage in detailing in their mathematical 
argumentative writing across multiple tasks. 

MATHEMATICAL & ARGUMENTATIVE WRITING 
Writing in mathematics has been advocated in elementary grades as early as the 1980s (Cockroft, 1982) 

and various studies it has a positive effect on students’ mathematical thinking and learning (Bicer, Perihan, 
& Lee, 2018). Research on more general argumentative writing suggests that students as young as five can 
make simple arguments (Macedo, 2011). Studying writing of elementary students, O’Halloran (2014) noted 
that “counter to claims that second graders are not capable of formulating Reasons, nearly half of the second 
graders in this study did so successfully” (pp. 225-226). Focusing on mathematical argumentation, Nordin and 
Boistrup (2018) observed that many grade 3-5 Swedish children were also able to incorporate reasons and 
rationales to support claims in whole class arguments. However, Knudson (1992) found that many students 
do not incorporate backings in general arguments. This is supported by evidence from Kosko & Zimmerman’s 
(in press) analysis of K-3 students in the United States. Specifically, Kosko & Zimmerman (in press) found 
that while some students did provide rationales as early as Kindergarten and first grade, this did not begin to 
show prominence until second and third grade. Knudson’s (1992) work suggests that it is still relatively 
uncommon in upper elementary grades. A central question, particularly in the realm of mathematical 
argument, is why such differences in argumentative writing emerges in elementary students, and why might 
it persist? The present study focuses on the first part of this question. 

THEORETICAL PERSPECTIVE 
There is a useful distinction between a mathematical argument as a product, mathematical argumentation 

as a process, and discursive objects that are mathematically argumentative in nature (Cirillo et al., 2015). The 
present study focuses specifically on discursive objects (in the form of children’s writing) that are 
mathematically argumentative, but which may not have all features of what some would refer to as a 
mathematical argument. Thus, mathematical argumentative writing (MAW), as described in the present 
study, includes students’ written language, mathematical symbols, diagrams, etc. that convey a mathematical 
claim. Children can use a number of semiotic resources to convey such a claim, and to warrant its validity. In 
prior work, we have discovered that variations in how mathematical claims are warranted in children’s MAW 
illustrate different levels of sophistication in how mathematical meaning is conveyed (Kosko, 2016; Kosko & 
Zimmerman, in press). 

Described in detail in the following sections, the observed variation in sophistication appears to center on 
how reference and operate with mathematical objects in a semiotic manner. At a surface level, this distinction 
can be easily dismissed as whether a child references certain numbers or not. However, there is a great deal 
of nuance in the coordination of mathematical reference akin to Steffe and colleagues’ (Hackenberg, 2010; 
Steffe, 1994; Steffe & Cobb, 1986) descriptions of unit coordination. Various theoretical perspectives and 
analytical tools have been introduced to study mathematical argumentation and proof including, but not 
limited to, Toulmin’s (1958/2003) scheme (Krummheuer, 2007), Halliday and Matthiessen’s (2004) Systemic 
Functional Linguistics (Morgan, 2006), and the Writing Across the Curriculum movement (Bossé & Faulconer, 
2008). Although research stemming from such perspectives has provided useful findings, these perspectives 
are limited in how they have thus far drawn connections between representations associated with linguistic 
signs and cognitive-situated actions. In the pages that follow, we articulate our theoretical perspective in 
detail. In doing so, we attempt to limit the theoretical jargon introduced to only those terms necessary. In 
various places, we refer to more specific terms for readers interested in drawing further connections, but do 
so without necessarily utilizing those more specified terms otherwise. 

Semiotics of Detailing References 

Peirce (1903/1998) defined argument as a sign that synthesizes various premises and includes inference 
towards some general claim. Although Peirce’s description of argument is a discursive object we would not 
expect to commonly see in children’s MAW, his conception of argument as a sign that abstracts various other 
signs is particularly useful. Specifically, Peirce (1908/1998) described a hierarchy of signs that can stand on 
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their own as a set of propositions or can be situated within other signs (such as an argument). This 
consideration of various propositions as conveying a singular sign is particularly useful, and one that is 
fundamental in mathematics. For example, a + b + c conveys three distinct elements in relation to another, 
but also conveys one expression. The abstraction of subsets of propositions metaphorically as another 
proposition is facilitated by various semiotic resources. In the aforementioned example, the addition signs are 
semiotic resources that convey a particular relationship between two different variables. However, the 
presence of multiple addition signs points to other conveyed meanings (commutative property, associative 
property, etc.) that signal that not only are there three variables, but a singular expression. 

Though various semiotic resources are operationalized by students in their mathematics, the present study 
focuses on the particular tool referred to as detailing. Kosko (2016) describes detailing as the 
operationalization of given information through the construction of a reference chain through the warranted 
propositions supporting a claim. According to Halliday and Matthiessen’s (2004) approach to SFL, reference 
serves the role of establishing cohesion for a text (or discourse). References may be exophoric, in which a 
nominal element (colloquially serving the role of noun) is introduced as new information. Once introduced, 
references are endophoric, since they are recoverable from within the text, and may be referenced 
anaphorically (i.e., using it to point to a more specified referent). In this manner, reference chains can be used 
in argumentative and factual texts to establish information units. Information units are semiotic units that 
connect given (endophoric) and new (exophoric) referents to convey information1. Thus, information units can 
be considered as a type of proposition2. We build off of Halliday and Matthiessen’s (2004) descriptions of 
information units and reference to define detailing. To summarize, detailing establishes reference chains 
between endophoric (given information within a text) and exophoric (new information to the text) references 
in two or more information units (i.e., a form of proposition) that allow for them to be conveyed holistically as 
a copulative proposition (Liszka,1996) – a set of propositions metaphorically serving the role of one proposition.  

Consider the example proof for the sum of two even integers is even. A completed proof may state that: 
Let 𝑛𝑛 and 𝑚𝑚 be even integers, such that 𝑛𝑛 = 2𝑥𝑥 and 𝑚𝑚 = 2𝑦𝑦. So, 2𝑥𝑥 + 2𝑦𝑦 = 2(𝑥𝑥 + 𝑦𝑦), which is 
divisible by 2. Thus, the sum of two consecutive even integers is even. 

The proof includes several information units. For example, 𝑛𝑛 and 𝑚𝑚 are provided initially as exophoric 
references and identified as even integers. According to Halliday and Matthiessen (2004), the inclusion of 
information units without endophoric references is common since “discourse has to start somewhere, so there 
can be discourse-initiating units consisting of a New element only” (p. 89). In the second information unit, 
expressions 2𝑥𝑥 and 2𝑦𝑦 also serve as exophoric references, and are conveyed in reference to the, now, endophric 
references of 𝒏𝒏 and 𝒎𝒎. Specifically, these exophoric references are transformations of 𝒏𝒏 and 𝒎𝒎, where 𝒏𝒏 and 
𝒎𝒎 were initially exophoric reference but, following its establishment within the proof are considered as 
endophoric for the remainder of the proof. Each subsequent information unit further operationalizes these 
referents in such a manner that allows for each information unit to connect with the other. For example, 
various propositions in the proof are connected with the referent 𝒏𝒏. Yet, 𝒏𝒏 is used as a singular referent only 
in the initial information unit. Every other incorporation of 𝒏𝒏 is done through an operationalization of 𝒏𝒏 such 
that the new reference is, technically, a different nominal object.  

The prior example may appear over-analyzed to some, as the transformation of 𝒏𝒏 and 𝒎𝒎 across the proof 
appears obvious to those with mathematical orientations. However, by distinguishing between references that 
are endophoric and exophoric, we are able to describe when and how mathematical meaning is conveyed 
differently. Detailing occurs when references across different information units are connected to 
metaphorically convey a singular proposition. However, we have observed that children may do much of the 
work to convey such a copulative proposition, but their detailing is incomplete (Kosko, 2016; Kosko & Singh, 
2016b). This is often due to the introduction of new information (an exophoric reference) that does not connect 
with any endophorically referenced information. Thus, by focusing not only on how students coordinate their 
mathematical references through the semiotic resource of detailing, we are able to see how certain propositions 
are synthesized, or why they are not. 

                                                           
1 The information unit is parallel to the clause as a grammatical unit. However, Halliday and Matthiessen (2004) note that 
“a single clause may be mapped into two or more information units; or a single information unit into two or more clauses” 
(p. 89), and therefore caution against identifying clauses and information units as identical.  
2 Halliday and Matthiessen (2004) define propositions as when clauses involve the exchange of information. However, 
information units are not always identifiable as clauses, and therefore the distinctions between clause and information units 
in regards to propositions is less clear. 
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Detailing may be more easily observable in the example proof just provided than in other forms of 
mathematical communication, simply due to the abstractions incorporated. As will be demonstrated in this 
paper, however, the examination of detailing is easily applied to children’s MAW. The examination of detailing 
originated with analysis of children’s MAW (Kosko, 2016; Kosko & Zimmerman, in press). As defined, detailing 
facilitates conveyance of reference chains which link together endophoric and exophoric references in two or 
more information units. Thus, detailed reference chains serve the role of synthesizing information units into 
a copulative proposition.  

Early Algebra and Colligation in Mathematical Argument 

Tall et al. (2011) suggest that as students explore various operations on mathematical objects, they observe 
patterns which eventually are described as rules of arithmetic. Describing and examining these rules is said 
to lead to the development of deductive reasoning and mathematical argument. Various studies have observed 
connections between generalizing involved in early algebra and improved precision in claims and conjectures 
(e.g., Blanton & Kaput, 2011). Specific facets of early algebra lead towards this generalizing, such as looking 
for and describing patterns and examining the structure involved in arithmetic operations. The latter includes, 
among other concepts, understanding of equivalence and multiplicative reasoning, of which the present study 
focuses particularly. As with other areas of early algebra, equivalence (Fosnot & Jacob, 2009) and 
multiplicative reasoning (Morris, 2009) have been observed to co-occur with more sophisticated 
argumentation. Specifically, various authors (Fosnot & Jacob, 2009; Morris, 2009) describe the importance of 
students examining the relationships between mathematical objects, or between two or more collections of 
such objects. In this paper, we argue that such a focus can be extended to explain the actions of students’ MAW 
in tandem with their demonstrating an ability to abstract other mathematical objects.  

The present study posits a more specified view of the interplay between early algebraization and 
mathematical argumentative objects. Specifically, children’s detailing in the formation of copulative 
propositions points to an ability to abstract multiple meanings (i.e., information units) as one synthesized 
information unit. In a very similar fashion, children’s coordination of quantitative units in ways mathematics 
education researchers would consider as algebraic also points to an ability to abstract multiple meanings as 
one. Although these two types of coordination point to the same ability to abstract meaning via information 
units, they are not necessarily identical, but we conjecture that they are similar enough to co-occur. To help 
articulate this co-occurrence, we briefly describe such interplay for the context of multiplicative reasoning and 
conception of equivalence.  

Although various models of multiplicative reasoning populate the literature, we consider it from the 
perspective of scheme theory, with particular attention to unit coordination (Hackenberg, 2010; Steffe, 1994). 
Initial multiplicative unit coordination involves the coordination between two units, such as through skip 
counting. Thus, solving the task 19 x 3, a student could skip count 19 three times (or 3 nineteen times). As 
students begin to coordinate three levels of units, they begin disembedding numbers. Such a student solving 
the task 19 x 3 might recognize that 10 x 3 is 30, and then count-down-from 30 to 27 to add 27 and 30 together. 
Yet, a student with a more sophisticated coordination of three levels of units may solve 19 x 3 by recognizing 
two different math facts (10 x 3 and 9 x 3) and adding the products together.   

Like multiplicative reasoning, our view of equivalence also involves unit coordination. Specifically, 
students’ conception of equivalence, or their meaning of the equals sign, is typically described as either 
operational or relational (Byrd, McNeil, Chesney, & Matthews, 2015; Falkner, Levi, & Carpenter, 1999). An 
operational view of equivalence interprets the equals sign as a sign to add/subtraction or to produce the 
answer. A relational view of equivalence interprets the equals sign as identifying the “sameness” of two 
expressions on each side of the sign. An operational view of equivalence relies on additive reasoning, in which 
students consider one unit at a time. Yet, a relational view requires students to consider an expression, which 
can include multiple units as a unit itself. For example, the expression a + b includes the elements a and b as 
units in and of themselves, but the expression itself is also a unit that happens to contain other units. From 
an SFL perspective, this interpretation is described as nominalization, but from a neo-Piagetian perspective, 
it is described as the coordination of two levels of units. 

As previously described, detailing involves the coordination of multiple information units into what Pierce 
(1903/1998) refers to as a copulative proposition. Both multiplicative reasoning and relational conceptions of 
equivalence, at their initial levels, involve the coordination of two different units as if they are one. In the case 
of detailing, exophoric and endophoric references are linked together across information units in a detailed 
reference chain. Likewise, a child who has coordinated six 3s into a composite of 18 has referenced, through 
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their actions, the unit 3 endophorically upon each iteration to find the resultant 18 (3, 6 as two 3s, 9 as three 
3s, etc.). Building from this perspective, we argue further that such activity serves the role of unit coordination 
with quantity that is similar to detailing in a predominately linguistic context (i.e., writing). Further, we 
suggest that the ability to abstract in such ways in the quantitative and linguistic contexts may point to a 
more general ability to abstract meaning. 

RESEARCH QUESTIONS 
We hypothesize that a more sophisticated ability to coordinate units, often demonstrated via different 

aspects of early algebra, associate with an increased likelihood to engage in detailing, and vice versa. To test 
this hypothesis, we compared second and third grade students’ scores on two early algebra assessments 
(multiplicative reasoning and equivalence) with their demonstrated detailing on six argumentative tasks 
embedded in early algebra. Specifically, we asked the following research question: 

Do children who detail in mathematical argumentative writing have higher scores on early algebra 
assessments, particularly in regards to their ability to coordinate units multiplicatively and in regards 
to equivalence? 

METHODS 

Sample and Measures 

Data were collected from 168 second and third grade students in two suburban schools in a Midwestern 
U.S. state in May 2015. Second grade students were enrolled in four different teachers’ classrooms (n = 76) 
and third grade students were enrolled in three different teachers’ classrooms (n = 92). Further, 48.2% of 
students identified as female and 51.8% identified as male. No descriptive data regarding race, ethnicity or 
socio-economic status were collected. Participants completed two packets: one packet included two 
assessments for early algebra (multiplicative reasoning and conception of equivalence) and the other packet 
included six mathematical argumentative writing tasks3.  

Packet 1: Early Algebra Assessments 

The first packet was administered one week prior to the second packet and included items assessing 
equivalence and multiplicative reasoning. The equivalence portion included 15 items adapted from Fyfe, 
DeCaro, and Rittle-Johnson (2014) with eight missing value tasks (e.g., 3+4=+5) and seven true/false items. 
Nine of the 15 items were designated as requiring a relational interpretation of the equals sign (5+=6+2: 
True or False 67+86=68+85), with other items requiring a more operational interpretation (7=+3; True or 
False 7+6=0). Thus, higher scores on the assessment are interpreted as having a more relational interpretation 
of equivalence while lower scores are interpreted as having a more operational interpretation of equivalence. 
As with prior researchers’ application of the assessment, we found it to have sufficient internal reliability (α 
= .89). Descriptive statistics (M = 10.70, SD = 4.00) indicate that approximately half of students demonstrated 
a more relational interpretation of equivalence. However, half of students scored 12 or less, suggesting their 
interpretation of equivalence was not consistently relational.  

The assessment on multiplicative reasoning was developed by Kosko and Singh (2018), and is based on the 
notion that more abstracted unit coordination is representative of more sophisticated multiplicative reasoning 
(Hackenberg, 2010; Norton, Boyce, Ulrich, & Phillips, 2015). The 12-item assessment used length models to 
assess different aspects of unit coordination (see Figure 1 for examples with included student work). For 
example, two items on the assessment examined whether students could successfully coordinate two-levels of 
units by skip-counting non-1 units (i.e., given an iterable unit of 3, being able to determine a length of 18). 
Other items assessed iterating, partitioning, and disembedding of various units. Higher scores represent more 
sophisticated unit coordination (i.e., more sophisticated multiplicative reasoning). Our use of the assessment 
showed sufficient internal reliability (α=.79). Descriptive statistics of the assessment (M = 4.88, SD = 2.88) 
indicate that approximately half of participants could coordinate units to at least skip count, with third grade 
participants demonstrating this more frequently. 

                                                           
3 Preliminary analyses of the same data are reported in published conference proceedings (Kosko & Singh, 2016a, 2016b). 
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 Packet 2: Mathematical Argumentative Writing Tasks 

MAW tasks included six tasks with three incorporating length model representations involving 
quantitative comparisons (see Table 1) and three focusing on arithmetic involving relationships between 
equations and expressions (see Table 2). The order of tasks was varied so that half of participants completed 
tasks 1 through 6 in sequence and the other half completed them in reverse order. Participants were provided 
with Cuisenaire rods as a resource for completing the tasks. Cuisenaire rods are color coordinated length-
based models used to represent relationships between different numbers. Shown in Figure 2, each color 
represents a specific length in centimeters, but can be referenced mathematically as any number (e.g., 
referring to a yellow rod as ½). 

 
 

 
Figure 1. Example items from Kosko & Singh’s (2018) multiplicative reasoning assessment 

 
Figure 2. Cuisenaire rods are rods of color-coded lengths 

Table 1. Mathematical argumentative writing tasks focusing on numeric relationships 

Description Canonical Mathematical 
Equations(s) 

Task 1 If a red rod is 2 long, how long is a brown rod? 2+2+2+2=8 
4×2=8 

Task 2 Paul says 2 red rods make a yellow rod. This is impossible 
because… 

2+2≠5 
2×2≠5 

Task 3 If a red rod is 5 long, a yellow rod can’t be 9 because… 5+5≠10 
2×5≠10 
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The length model tasks focused on quantitative comparisons between different numbers. For example, 
students completing Task 1 are provided with the given information that a red rod is 2 long. This implicitly 
tasks the child with iterating four 2s (four red rods) to find the total length of a brown rod (8 long). The child 
could do this by adding all four 2s or multiplying 4 x 2. However, a child may also choose to use white rods 
(length 1) or some other combination to represent alternate relationships. Task 2 provides a similar context, 
but notes that the comparison is not possible and tasks the child to explain. Task 3 is nearly identical to Task 
2 in how the physical manipulatives could be manipulated, but designates that a red rod is now 5 long. Each 
of these tasks have been used in prior work with children’s MAW (Kosko, 2016; Kosko & Zimmerman, in 
press). Of particular note is analysis conducted by Kosko (2016) observing Task 3 solicited more detailing from 
students than Task 2. In examining clinical interview data with two students completing these tasks, Kosko 
(2016) observed that across tasks, how students considered the given information appeared to interact with 
their multiplicative reasoning on the tasks. 

Tasks 4 through 6 included more canonical representations of mathematics in the form of expressions and 
equations (see Table 2). The tasks focused on varying arithmetical relationships. For example, in Task 4, the 
fictional student Omar added 1 to each 19 and then subtracted them both at the end of their arithmetic. 
Similarly, Task 6 involves use of the decomposing 38 and 22 into 30 + 20 + 8 + 2 (a step not explicitly shown). 
Although these two tasks involved arithmetic manipulation through composing and decomposing numbers, 
prior work with a small group of second grade students on these tasks revealed a reliance on an understanding 
of equivalence. Specifically, those students who demonstrated an emerging relational interpretation could 
make sense and work with these tasks while students demonstrating an operational interpretation did not 
relate one expression with another. Thus, while Tasks 1 through 3 appeared to tacitly relate to multiplicative 
reasoning, Tasks 4 through 6 appeared to tacitly relate to conception of equivalence. However, we do not view 
these previously observed relationships as excluding other potential interactions with various mathematical 
concepts. 

Table 2. Mathematical argumentative writing tasks focusing on arithmetic relationships 
Tasks 

Task 4 

 

Task 5 

 

Task 6 
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Analysis 

The present study incorporated a data-transformation variant of convergent mixed methods design 
(Creswell & Plano Clark, 2011). A convergent mixed methods design uses both quantitative and qualitative 
methods during the same phase of the research process in order to triangulate the results of a single topic. 
The data-transformation variant emphasizes the quantitative strand of research by merging data through a 
transformation process. Specifically, Creswell and Plano Clark (2011) state that “after the initial analysis of 
the two data sets, the researcher uses procedures to quantify the qualitative findings” (p. 81). This allows for 
mixing of the design through quantification of qualitative findings. 

The qualitative strand in the current design included the use of SFL to examine students’ use of reference 
within their MAW for each task. This involved two facets of examination. First, both authors examined the 
tasks for mathematical referents conveyed and identified themes for how reference use was elicited from such 
tasks. We distinguished information units from each other to allow for a finer grain analysis before examining 
for the use of reference and information units in students’ MAW. We transformed these themes into codes, 
with example reference chains that appeared most common in independent analysis. Next, approximately 10% 
of the 168 participants’ writing samples, across tasks, were examined by both authors in an iterative process. 
Specifically, we co-examined a portion of writing samples in concert with our detailed reference chains coding 
scheme to look for trends in what information units emerged and in what ways. The four themes that emerged 
in regards to reference use are identified as categorical codes below: 

0. No reference to given(s) provided, and no parts of a reference chain conveyed. 
1. Simplistic reference: Given(s) are endophorically referenced, but no connections between references 

across information units is observed. 
2. Incomplete detailing: both endophoric and exophoric references are conveyed to establish a reference 

chain between information units. However, the reference chain either has missing connections between 
references or introduces extraneous exophoric references. 

3. Detailing conveyed via a complete detailed reference chain. 
Specific examples of each theme are provided in the description of results and findings. Themes are 

presented here to report on the inter-rater reliability following analysis of the remaining 90% of writing 
samples. Following co-analysis of an initial 10% of MAW artifacts, both authors independently analyzed the 
remaining 90% of writing samples, by task, for presence of different themes. Interrater reliability was assessed 
using the Kappa statistic (Landis & Koch, 1977), before both authors reconciled coding (see Table 3). Kappa 
statistics calculated for each task range from moderate to near perfect in size (Landis & Koch, 1977), 
suggesting that the analysis of themes has sufficient reliability. Additionally, the frequency of each theme 
observed by tasks is illustrated in Table 3. Descriptive statistics suggest that the themes emerged differently 
dependent by task, which is supportive of prior findings (Kosko, 2016; Kosko & Zimmerman, in press). 

The quantitative strand of the mixed methods analysis involved comparison of scores on early algebra 
assessments (i.e., conception of equivalence and multiplicative reasoning) in regards to children’s use of 
reference within their MAW. In order to examine how students’ use of reference was related to their early 
algebraic reasoning, we used Analysis of Variance (ANOVA) to examine the differences, by task, between 
students’ reference use and their scores on the equivalence and multiplicative reasoning assessments. This 
required a quantification of the themes (see Table 3) into nominal variables. However, given that the observed 
frequencies for simplistic reference were extremely small in certain tasks, no reference and simplistic 
reference were combined into a singular nominal variable (no or simplistic reference). Thus, three nominal 
variables were used and treated as groups for an ANOVA of each task: no or simple reference; incomplete 
detailing; detailing. 

Table 3. Descriptive Statistics for Coding Reference Use in Tasks 
 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 
Kappa .81 .43 .67 .90 .64 .76 
No Reference .28 .06 .31 .16 .16 .07 
Simplistic Reference .01 .01 .01 .19 .03 .38 
Incomplete Detailing .28 .41 .46 .27 .43 .34 
Detailing .43 .52 .22 .38 .39 .21 
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FINDINGS AND RESULTS 

Qualitative Findings 

Qualitative analysis revealed four distinct patterns in how children primarily operationalized 
mathematical references within their MAW: no reference used; simplistic reference used; incomplete detailing; 
detailing. For simplicity, we describe these themes in the context of Task 3, which prompted “if a red rod is 5, 
a yellow rod can’t be 9 because…”. No reference signified that a student did not refer to mathematically 
quantitative information provided within the text of the task. For example, student #212 wrote the claim that 
“the yellow is taller than the red” which does reference the rods provided in the task, but does not provide a 
reference to quantity (see Figure 3). To be clear, the child makes what Kosko & Zimmerman (in press) would 
refer to as a mathematical claim. However, the mathematics referenced is qualitative in nature. Students’ 
writing with in the no reference classification typically either provided only a mathematical claim or a 
qualitative recounting of what they did (i.e., stating they lined up the rods, but not conveying a manipulation 
of number). 

Simplistic reference signified that a student references mathematically quantitative information, but does 
not create reference chains between information units. Student #344 in Figure 3 provided a writing sample 
in this classification stating that “it can’t be 9 because if you see what I measured, the block on the left is 
maybe 2 or 1 more longer than the block on the right.” The student then drew an arrow to a drawing of one 
longer block aligned with two stacked blocks. Although it may be apparent to a classroom teacher how the 
child was reasoning through the task, there are several gaps in the mathematical information conveyed in 
their writing. The child conveys the claim that the yellow can’t be 9, but otherwise conveys a manipulation of 
the Cuisenaire rods, and not the numbers they signify. The information unit “the block on the left is maybe 2 
or 1 more longer than the block on the right” does convey a quantitative relationship between two rods aligned 
with the yellow. One can infer that the child is referencing a red rod (length 2) and a light green rod (length 
3), but this is not explicitly conveyed. As such, the reader must make their own connections between the 
various information units provided.  

The samples shown in Figure 3 demonstrate the lowest entry points to what is referred to here as MAW. 
As such, they are products of the way a child communicates mathematically, but may not tell us everything 
about the mathematical processes the child engages. What can be assessed from these artifacts is how the 
child conveys mathematical information in this particular instance. By not creating a reference chain that 
connects quantity in one proposition with quantity in another, the MAW samples in this classification convey 
mathematical elements, but do not convey what is done mathematically with these elements.  

No Reference 
 

 

Simplistic Reference 
 

 

 
“The yellow is taller than the red” (#212). “It can’t be 9 because if you see what I measured the 

block on the left is maybe 2 or 1 more longer than the 
block on the right.” (#344) 

Figure 3. Examples of No Reference and Simplistic Reference use on Task 3 
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Incomplete detailing occurred when students provided some form of reference chain to warrant a provided 
claim, but the reference chain was incomplete. Specifically, a complete detailed reference chain conveyed how 
given mathematical information (endophoric reference) was transformed to the point that a clear and complete 
connection was made to warrant the provided claim. Incomplete detailing typically took the form of a 
procedural description of the mathematics, with some misalignment of how reference was utilized (for a more 
complete description of this difference, see Kosko & Zimmerman, in press).  

Student #357 provides one useful example of incomplete detailing. The child makes the claim that a yellow 
cannot be 9 because “the three reds are 15” (see Example 1 in Figure 4). Although the child does not explicitly 
state that a red is 5, the given information is ellipsed. Specifically, the information unit “three reds are 15” 
endophorically references red as 5 by stating that three of them is 15. This information unit also conveys the 
transformation of 5 into 15. Although the child does an effective job conveying how they transformed 5 into 
15, their final information unit that the 15 is “taller than the yellow” does not connect the prior information 
to support the claim that a yellow can’t be 9. Essentially, the child conveys that 15 > 9. However, this 
information fails to establish that yellow cannot be 9 long. What is absent is an information unit conveying 
some sort of contradiction, which is a valid means of establishing why something cannot be. Thus, if the child 
had referenced 10, and not 15, for comparing to the yellow rod, they could have demonstrated the contradiction 
that 9 > 10. By choosing 15 as a comparison point, student #357 does convey certain mathematical information 
and processes, but not in a manner that fully supports their claim. 

Student #383 provides a useful example of incomplete detailing where exophoric references are introduced 
without appropriate connection to the references endophoric to the task (see Example 2 in Figure 4). The 
child makes the claim that a yellow can’t be 9 by stating the given endophoric reference that “1 red is 5.” The 
next information unit “if you get one again it would be 10” endophorically references a red as 5 with “one” and 
transforms it through an iteration of “again” to convey two reds as “10.” In such a manner, the student has 
provided evidence towards a reference chain that transforms given information towards warranting their 
claim. However, the child’s next information unit introduces an exophoric reference that is misaligned with 
the text, “a white that is worth 1” (i.e., for the current task, a white is half of a red 5, or 2.5 long). Since this 
particular exophoric reference does not connect with or represent a transformation of any endophoric reference 
provided in the given task, such reference of a white rod as 1 establishes an incomplete detailed reference 
chain. Phrased another way, by claiming that a yellow rod is not 9 because it actually is 11 long conveys a 
false claim established partially with an extraneous exophoric reference. Such instances of incomplete 
detailing can be referred to as provide examples of getting the right answer for the wrong reasons.  

Evidence of detailing included complete detailed reference chains, but also included two distinct forms of 
reference chains. Figure 5 provides two examples that reflect each form of detailing observed for Task 3. The 
first form of detailing, illustrated by example 1, represented the overwhelming majority of detailing (nearly 
all examples). Specifically, student 319 references the given information unit by endophorically referencing “1 
red one is 5.” The next information unit includes multiple clauses to convey that by placing another 5 it 
produces a length of 10. These two information units were common across all detailing observed, and is even 
presented diagrammatically in example 2 in Figure 5. However, the final information unit provided by 
student 319 provides a necessary justification for why such information warrants the claim provided. The child 
states that “it’s smaller than the yellow” which conveys an observation that would be written as canonically 

Incomplete Detailing Example #1 

 

Incomplete Detailing Example #2 

  
“The yellow can’t be 9, because the three reds 
are 15 and are taller than the yellow” (#357). 

“A yellow rod can’t be 9 because 1 red is 5 and if you 
get one again it would be 10 and you would need a 
white that is worth 1 to make the yellow 11” (#383). 

Figure 4. Examples of two students’ incomplete detailing on Task 3 
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as 9 > 10. The information conveyed is a contradiction, which is a valid means of establishing why something 
cannot be (i.e., a yellow rod cannot be 9). 

The second example in Figure 5 illustrates a similar reference chain with a key distinction regarding one 
information unit. Student 343 includes a diagram that represents two reds and a half of a red. This diagram 
is referenced within the written description as 2½ red blocks. The given information is endophorically 
referenced in the information unit that transforms 2½ red blocks to “make 12½.” Thus, the key information 
unit for student 343 is that 9 ≠ 12½. As with the key information unit conveyed in example 1 in Figure 5, this 
information unit also conveys a contradiction. Given that participants included second and third grade 
students, it is not surprising that this second form of detailing was less common for Task 3. However, what 
the two examples in Figure 5 help illustrate is that, across tasks, detailing was evidenced with similar 
reference chains. Key differences in the manner in which detailing was observed tended to rely on a single 
information unit that justified prior warrants in particular ways to connect them with the claim. 

Quantitative Results 

Following the qualitative analysis of MAW samples, demonstrated reference use was quantified into a 
nominal variable for each task (0 = no or simple reference use; 1 = incomplete detailing; 2 = detailing). Next, 
ANOVA was conducted for each task with both assessments as the dependent variable (i.e., conception of 
equivalence & multiplicative reasoning). This resulted in 12 different F-statistics (6 tasks × 2 assessments), 
since the tasks were considered individually. Therefore, we adjusted the p-values in order to avoid a Type I 
error (false positive). Although the Bonferroni correction is commonly used, we used Simes’ (1986) adjustment 
to avoid a Type II error (false negative) which the Bonferroni correction is prone. The Simes (1986) correction 
is robust, maintaining its power when the calculated statistics are not independent (Sarkar & Chang, 1997). 
Therefore, the Simes (1986) correction is reported for all F-statistics presented in Table 4 and Table 5. 

Detailing Example #1 

 

 

Detailing Example #2 

 

 

“The yellow rod can’t be 9 because 1 red one is 5 
and that does not take it all up so you put another 
5 and it’s still not big enough but it basically 10 

and it’s smaller than the yellow so the yellow can’t 
be 9” (#319). 

“The yellow block can’t be nine because 2½ red 
blocks make 12½” (#343). 

Figure 5. Examples of two students detailing in Task 3 
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In addition to the Simes (1986) correction to p-values, we tested for homogeneity of variance for each 
ANOVA using the Levene statistic (reported in Table 4 and Table 5). In several comparisons, the Levene 
statistic was statistically significant suggesting that initial ANOVAs violated the assumption of homogeneity 
of variance and normality. In these particular comparisons, we used Welch’s ANOVA to account for this 
violation (Lix, Keselman, & Keselman, 1996; Welch, 1951). Specifically, Welch’s ANOVA is less affected by 
skewness in data and does not assume homogeneity of variance for unequal group sizes with at least 10 
observations (Lix et al., 1996). In the case of customary ANOVA, we used Tukey’s post hoc to compare 
differences in groups. In the case of Welch’s ANOVA, we used Games-Howell’s post hoc as it assumes unequal 
variance between groups. Distinctions between which statistics are reported is provided in Table 4 and 
Table 5. Otherwise, we report on the findings in text with an effort on providing parsimonious descriptions. 

Comparisons for conception of equilvalence 

Results for the Welch’s ANOVAs comparing conception of equivalence scores for students’ reference use 
are reported in Table 4. We found a statistically significant difference in scores across all tasks. Findings from 
Games-Howell post hoc analysis suggests that the relationship between equivalence scores and differences in 
reference use varied by task. Notably, for each task, mean scores for the equivalence assessment illustrate a 
trend from lower to higher across the MAW classifications for that task, and the associated variance tended 
to decrease. One possible explanation for this is that students with more sophisticated reasoning may have 
written in a manner below their capabilities. Given that language is choice (Halliday & Matthiessen, 2004), 
this is not surprising. In examining findings from the post hoc analysis, it is useful to consider this general 
trend with attention to where significant differences indicate specific points of departure. These points of 
departure likely signify a level of reasoning where the nature of the task required a certain level of explanation 
from students (a phenomenon observed by Kosko, 2016). These points of departure are highlighted in the 
following paragraph. 

Table 4. Results for Independent t-test for Conception of Equivalence and Detailing 

 No or Simplistic 
Reference 

Incomplete 
Detailing Detailing F p-valuea Levene 

Statistic 

Task 1 M = 8.94 
SD = .81 

M = 10.24 
SD = .66 

M = 12.22 
SD = .36 10.45b .000 13.88*** 

Task 2 M = 9.38 
SD = 1.91 

M = 9.46 
SD = .55 

M = 12.21 
SD = .36 10.77b .000 11.76*** 

Task 3 M = 8.80 
SD = .65 

M = 11.14 
SD = .45 

M = 13.33 
SD = .39 21.63b .000 15.58*** 

Task 4 M = 8.64 
SD = .67 

M = 11.30 
SD = .54 

M = 12.38 
SD = .40 13.05b .000 10.76*** 

Task 5 M = 8.68 
SD = .91 

M = 9.88 
SD = .53 

M = 12.96 
SD = .31 18.391b .000 23.41*** 

Task 6 M = 9.82 
SD = .55 

M = 11.52 
SD = .51 

M = 11.93 
SD = .65 4.10b .027 3.31* 

*p < .05, **p < .01, ***p < .001, aSimes Adjusted p-value, bWelches F-Statistic. 
 
Table 5. Results for ANOVA for Multiplicative Reasoning and Reference Use 

 No or Simplistic 
Reference 

Incomplete 
Detailing Detailing F p-valuea Levene 

Statistic 

Task 1 M = 4.16 
SD = .47 

M = 3.88 
SD = .36 

M = 4.45 
SD = .30 .83 .438 1.20 

Task 2 M = 4.38 
SD = 1.07 

M = 3.76 
SD = .33 

M = 4.56 
SD = .28 1.24 .338 .40 

Task 3 M = 3.02 
SD = .29 

M = 4.34 
SD = .29 

M = 5.67 
SD = .48 11.93b .000 3.02* 

Task 4 M = 3.04 
SD = .27 

M = 4.00 
SD = .39 

M = 5.29 
SD = .34 15.08b .000 4.76** 

Task 5 M = 3.72 
SD = .52 

M = 3.85 
SD = .28 

M = 4.83 
SD = .36 2.41 .112 2.04 

Task 6 M = 3.68 
SD = .28 

M = 4.23 
SD = .36 

M = 5.23 
SD = .48 4.59 .018 2.15 

*p < .05, **p < .01, ***p < .001, aSimes Adjusted p-value, bWelches F-Statistic. 
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For Tasks 1 and 5, students who engaged in detailing had statistically significant higher scores than 
students who engaged in incomplete detailing or used no or simplistic reference. However, the latter two 
groups were statistically similar in regards to score. This indicates that although a hierarchical trend is 
apparent in students’ conceptions of equivalence, there is a clear distinction between students’ scores when 
engaging in detailing. Task 5 presents Tom’s false claim that two mathematical expressions are equivalent, 
when they are not. Thus, it seems apparent that a relational conception of equivalence may be necessary to 
provide a detailed description for why Tom is incorrect. Task 1 tasks students with describing how long a 
brown rod is, given that a red rod is 2 long. Students engaging in detailing typically referred to this context 
either through repeatedly adding 2 or multiplying 2 four times. In either case, these representations were 
typically conveyed as identical to the brown (length 8) either linguistically or diagrammatically. For Tasks 4 
and 6, students who engaged in incomplete detailing and detailing had statistically similar scores, but both 
had scores that were statistically significantly higher than students who used no or simplistic reference. Both 
Tasks 4 and 6 include application of the associative property, which requires considering expressions as units 
in their own right. Therefore, these results indicate that a relational understanding may be more critical in 
engaging in attempting to describe these tasks procedurally (i.e., incomplete detailing). For Task 3, students 
who engaged in no or simplistic reference use had statistically significant lower scores than both incomplete 
and complete detailing groups, and students who engaged in detailing had statistically significant higher 
scores than both other groups (i.e., no/simplistic reference < incomplete detailing < detailing). Similar to 
interpretations for findings on Tasks 4 and 6, it appears that to engage in each form of MAW classification, a 
different level of understanding equivalence may be necessary. 

For Task 2, students who engaged in detailing had statistically significant higher scores than students 
engaged in incomplete detailing, but were statistically similar to students who engaged in no or simplistic 
reference use. At face-value, these findings appears to contrast those relationships already identified and 
discussed. However, it when considering the variance associated with scores in the no or simple reference 
classification (see Table 4), a more likely interpretation is that several students with higher demonstrated 
conceptions of equivalence wrote in very simplistic ways. In other words, the task may not have pressed them 
enough to provide more information.  

These findings provide support for the hypothesis in this paper that a more sophisticated ability to 
coordinate units associates with an increased likelihood to detail. Given that the descriptive statistics across 
tasks illustrate a hierarchical trend (see Table 4), the post hoc analysis suggests that there was higher 
variance in scores for certain tasks and not others. Specifically, students’ reference use varied across tasks. 
Recall that language is choice (Halliday & Matthiessen, 2004) and students chose to convey meaning in certain 
ways, consciously or not, in some tasks and did so differently in other tasks. Findings presented in Table 4 
suggest that one influence in such reference use may stem from the nature of the task and another influence 
may stem from students’ mathematical reasoning. This may not seem particularly surprising to some. 
However, the findings and results here provide evidence that such distinctions can be observed empirically 
and in a manner that can be replicated to apply across fairly different tasks.  

Comparisons for multiplicative reasoning 

ANOVA and Welch’s ANOVA statistics were calculated for comparisons between reference use and 
multiplicative reasoning scores (see Table 5). Findings from post hoc analysis indicate that scores were 
statistically significantly and different between reference use for three tasks (3, 4, 6), and statistically similar 
for the other three tasks (1, 2, 5). Phrased differently, it appears that Tasks 1, 2, and 5 may not have required 
as much multiplicative reasoning for students to engage in detailing, but Tasks 3, 4, and 6 did. Tasks 1, 2, and 
5 essentially required that students demonstrate a capacity to perform basic arithmetic. While Task 5 does 
draw upon a relational conception of equivalence, there are varying degrees of relational understanding with 
some including multiplicative reasoning and others not (Singh & Kosko, 2016). For Task 3, the relationship 
with multiplicative reasoning seems apparent, given that students must consider a red rod as a composite unit 
that cannot be divided into 1s, and that they must operate within the task. For Tasks 4 and 6, findings from 
Singh & Kosko (2016) may be useful in explaining this observed relationship. Specifically, Singh & Kosko 
(2016) found that students capable of composing and decomposing expressions within expressions or equations 
also demonstrated higher multiplicative reasoning. In Tasks 4 and 6, students must engage in this process in 
order to relate the different expressions to one another. Thus, it may be that students need a certain level of 
multiplicative reasoning to engage in detailing. 
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DISCUSSION 
The present study sought to examine whether second and third grade students’ reference use to form 

copulative propositions, as demonstrated via their use of detailing, was related with their unit coordination 
involved in early algebra contexts in the context of equivalence and multiplicative reasoning. Findings support 
this hypothesis, but with specific caveats. First, statistically significant relationships were found across all 
tasks with conception of equivalence scores, but for only half the tasks for multiplicative reasoning scores. In 
addition to results of the post hoc analyses, these findings suggest that the manner in which students 
coordinate mathematical information in argumentative writing does interact with their early algebraic 
reasoning. However, the content knowledge solicited by the task is a key determinant of whether certain 
interactions may occur.  

Although prior research on mathematical and argumentative writing suggests it is beneficial to students 
(Bicer et al., 2018), and that elementary students can and should engage in writing mathematically (Knudson, 
1992; Kosko & Zimmerman, in press; Macedo, 2011), there has been little evidence in primary grades to 
explain the nuance in such relationships. Rather, while research has described how primary grades students 
engage in mathematical argumentation (Krummheuer, 2007; Nordin & Boistrup, 2018), alignment between 
their discursive and mathematical actions has not received much attention. The present study provides initial 
evidence towards establishing an empirical relationship between students’ linguistic and mathematical 
actions. This is done by characterizing students’ discourse moves through the context of linguistic unit 
coordination, and provides the field with a novel approach to examining argumentation.  

Prior research on students’ mathematics indicates that the nature of the task matters when soliciting 
mathematical descriptions (e.g., Kosko & Norton, 2012; Stein, Engle, Smith, & Hughes, 2008). Although 
confirmation of prior research is a necessary part of educational research, such a finding in and of itself is not 
particularly surprising. What is significant about the finding presented here is the manner in which it was 
examined. By considering mathematical argumentation as being composed of information units that can be 
synthesized or decomposed into other information units, the analyses presented here illustrate how these 
information units can be associated with unit coordination in particular mathematical contexts. This allows 
for a much finer grained analysis than what is generally used in studying the relationship between different 
kinds of students’ mathematical actions.  

Consider the first student’s example of detailing in Figure 5. On the assessments, the child demonstrated 
a relational conception of equivalence (Score = 11 out of 15) and was capable of skip counting in multiplicative 
tasks (Score = 6 out of 12). Thus, she demonstrated an ability to coordinate and relate composites of units in 
different ways (within equations and multiplicatively). When examining her MAW in Figure 5, the same child 
demonstrates a similar ability with information units by conveying a detailed reference chain. Although there 
is no explicit application of equivalence in Task 3, a comparison of two red rods (length 10) as being less than 
a yellow rod (length 9) points towards the same sort of coordination that a relational understanding of 
equivalence does. The approach to analyzing students’ MAW demonstrated in this paper allows for aligning 
information units in children’s writing with their actions on other mathematical tasks not requiring 
argumentative writing. Such evidence supports our conjecture that children’s detailing in MAW points to an 
ability to abstract multiple meanings also present in their children’s algebraic coordination of quantitative 
units. However, the approach to analysis also allows for distinguishing how MAW tasks affected students’ 
level of writing; a relationship also observed by Kosko (2016). The analytical approach of using information 
units to examine interactions and relationships with other mathematical actions is an important contribution 
of the present study, and one that can be applied to contexts in both written and spoken forms of mathematical 
argumentation.  

Although the present study lends support to the claim that early algebraic reasoning is related to 
mathematical argumentation, and provides specific methodological means of further examining this 
connection, there are many areas in need of future study. Particularly, findings from the present study suggest 
that the role of the task children use to engage in MAW is critical, and certain features embedded in tasks 
may solicit certain aspects of children’s content knowledge in ways that reflect in their MAW. Thus, future 
study is needed to study how mathematical meaning is conveyed from and solicited by such tasks. The present 
study included tasks with several differences, albeit with common content, and it may be worthwhile for future 
investigation to constrain the differences between tasks in order to better understand how particular 
differences affect students’ argumentation.  
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The present study also extends the findings of others (Fosnot & Jacob, 2009; Morris, 2009) who suggest 
relationships between students’ deductive reasoning and their application of equivalence and multiplicative 
relationships. Although prior research has suggested a connection between early algebra and mathematical 
argumentation, there has been little analysis regarding specific linguistic features evidence this connection. 
The results presented here provide much needed evidence regarding this connection.  

The findings reported here are significant because for two primary reasons. First, it is still common for 
many educational researchers to consider the mathematical writing of young children as unsophisticated. 
However, the analysis presented here suggests there is a great deal of coordination and mathematics involved 
in second and third grade students’ MAW. Second, while various researchers cite relationships between early 
algebra and argumentation, the connections cited are often at too large a grain size for certain types of 
analysis. Specifically, the presence of particular information units was consistently related to students’ 
engagement with key early algebraic concepts. The present study presents both evidence and a theory-situated 
methodology for examining the fundamental relationship between early algebra and mathematical argument. 
However, this study represents only one particular approach. Although aspects of the methodology reported 
here may be useful to other researchers studying students’ mathematical argument, we encourage researchers 
to integrate with novel techniques to further the field’s understanding of how students engage in mathematical 
argumentation. The present study represents one such contribution. 
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