International Electronic Journal of Mathematics Education

Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Sosa Moguel LE, Aparicio Landa E, Cabañas-Sánchez G. Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task. Int Elect J Math Ed. 2019;14(3), 563-581. https://doi.org/10.29333/iejme/5769
APA 6th edition
In-text citation: (Sosa Moguel et al., 2019)
Reference: Sosa Moguel, L. E., Aparicio Landa, E., & Cabañas-Sánchez, G. (2019). Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task. International Electronic Journal of Mathematics Education, 14(3), 563-581. https://doi.org/10.29333/iejme/5769
Chicago
In-text citation: (Sosa Moguel et al., 2019)
Reference: Sosa Moguel, Landy Elena, Eddie Aparicio Landa, and Guadalupe Cabañas-Sánchez. "Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task". International Electronic Journal of Mathematics Education 2019 14 no. 3 (2019): 563-581. https://doi.org/10.29333/iejme/5769
Harvard
In-text citation: (Sosa Moguel et al., 2019)
Reference: Sosa Moguel, L. E., Aparicio Landa, E., and Cabañas-Sánchez, G. (2019). Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task. International Electronic Journal of Mathematics Education, 14(3), pp. 563-581. https://doi.org/10.29333/iejme/5769
MLA
In-text citation: (Sosa Moguel et al., 2019)
Reference: Sosa Moguel, Landy Elena et al. "Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task". International Electronic Journal of Mathematics Education, vol. 14, no. 3, 2019, pp. 563-581. https://doi.org/10.29333/iejme/5769
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Sosa Moguel LE, Aparicio Landa E, Cabañas-Sánchez G. Characterization of Inductive Reasoning in Middle School Mathematics Teachers in a Generalization Task. Int Elect J Math Ed. 2019;14(3):563-81. https://doi.org/10.29333/iejme/5769

Abstract

This paper reports on the characterization of the inductive reasoning used by middle school mathematics teachers to solve a task of generalization of a quadratic pattern. The data was collected from individual interviews and the written answers to the generalization task. The analysis was based on the representations and justifications used to move from particular cases to the formulation of the general rule. Three processes characterize the inductive reasoning of the mathematics teachers to obtain a general rule: observation of regularities, establishment of a pattern and formulation of a generalization; while some teachers revealed problems in moving from the observation of regularities to the formulation of a generalization. Therefore, some difficulties in generalizing associated with these processes are also mentioned.

References

  • Alajmi, A. H. (2016). Algebraic Generalization Strategies Used by Kuwaiti Pre-service Teachers. International Journal of Science and Mathematics Education, 14(8), 1517–1534. https://doi.org/10.1007/s10763-015-9657-y
  • Arslan, C., Göcmencelebi, S. I., & Tapan, M. S. (2009). Learning and reasoning styles of pre service teachers: inductive or deductive reasoning on science and mathematics related to their learning style. Procedia - Social and Behavioral Sciences, 1(1), 2460–2465. https://doi.org/10.1016/j.sbspro.2009.01.432
  • Bills, L., & Rowland, T. (1999). Examples, generalisation and proof. Advances in Mathematics Education, 1(1), 103-116. https://doi.org/10.1080/14794809909461549
  • Callejo, M. L., & Zapatera, A. (2017). Prospective primary teachers’ noticing of students’ understanding of pattern generalization. Journal of Mathematics Teacher Education, 20(4), 309-333. https://doi.org/10.1007/s10857-016-9343-1
  • Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67–78. https://doi.org/10.1227/01.NEU.0000032542.40308.65
  • Cañadas, M. C., Castro, E., & Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3° y 4° de educación secundaria obligatoria en el problema de las baldosas. PNA, 2(3), 137-151.
  • Cañadas, M. C., Castro, E., & Castro, E. (2009). Utilización de un modelo para describir el razonamiento inductivo de los estudiantes en la resolución de problemas. Electronic Journal of Research in Educational Psychology, 7(1), 261–278.
  • Castro, E., Cañadas, M., & Molina, M. (2010). El Razonamiento Inductivo como Generador de Conocimiento Matemático. UNO, 54, 55–67. https://doi.org/10.1017/CBO9781107415324.004
  • Christou, C., & Papageorgiou, E. (2007). A framework of mathematics inductive reasoning. Learning and Instruction, 17(1), 55–66. https://doi.org/10.1016/j.learninstruc.2006.11.009
  • Clements, D., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Erlbaum. https://doi.org/10.4324/9780203883389
  • Davydov, V. (1990). Type of generalization in instruction: Logical and psychological problems in the structuring of school curricula. In J. Kilpatrick (Ed.), Soviet studies in mathematics education (Vol. 2). Reston, VA: National Council of Teachers of Mathematics.
  • Davydov, V. (2008). Problems of developmental instruction: A theoretical and experimental psychological study. New York: Nova Science Publishers.
  • Dreyfus, T. (2002). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (pp. 25-41). New York: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_2
  • Dreyfus, T., Nardi, E., & Leikin, R. (2012). Forms of proof and proving. In Hanna, G. and Villiers, M. (Eds.), Proof and proving in mathematics education– The 19th international commission for mathematics instruction study (pp. 111–120). New York: Springer.
  • El Mouhayar, R. (2018). Exploring teachers’ attention to students’ responses in pattern generalization tasks. Journal of Mathematics Teacher Education. https://doi.org/10.1007/s10857-018-9406-6
  • El Mouhayar, R., & Jurdak, M. E. (2013). Teachers’ ability to identify and explain students’ actions in near and far figural pattern generalization tasks. Educational Studies in Mathematics, 82(3), 379–396. https://doi.org/10.1007/s10649-012-9434-6
  • Glaser, R., & Pellegrino, J. (1982). Improving the skills of learning. In D. K. Detterman & R. J. Sternberg (Eds.), How and how much can intelligence be increased (pp. 197-212). Norwood, NJ: Ablex.
  • Haverty, L., Koedinger, K., Klahr, D., & Alibali, M. (2000). Solving Inductive Reasoning Problems in Mathematics: Not-so-Trivial Pursuit. Cognitive Science, 24(2), 249–298. https://doi.org/10.1016/S0364-0213(00)00019-7
  • Hayes, B. K., Heit, E., & Swendsen, H. (2010). Inductive reasoning. Wiley interdisciplinary reviews: Cognitive science, 1(2), 278-292. https://doi.org/10.1002/wcs.44
  • Herbert, S., Vale, C., Bragg, L. A., Loong, E., & Widjaja, W. (2015). A framework for primary teachers’ perceptions of mathematical reasoning. International Journal of Educational Research, 74, 26-37. https://doi.org/10.1016/j.ijer.2015.09.005
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grows (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 65-97). New York: MacMillan.
  • Klauer, K. J. (1990). A process theory of inductive reasoning tested by the teaching of domain-specific thinking strategies. European Journal of Psychology of Education, 5(2), 191–206. https://doi.org/10.1007/BF03172682
  • Klauer, K. J. (1996). Teaching inductive reasoning: some theory and three experimental studies. Learning and Instruction, 6(1), 37–57. https://doi.org/10.1016/0959-4752(95)00015-1
  • Klauer, K. J., & Phye, G. D. (1994). Cognitive training for children. A developmental program of inductive reasoning and problem solving. Seattle: Hogrefe & Huber.
  • Klauer, K. J., & Phye, G. D. (2008). Inductive Reasoning: A Training Approach. Review of Educational Research, 78(1), 85–123. https://doi.org/10.3102/0034654307313402
  • Klauer, K. J., Willmes, K., & Phye, G. D. (2002). Inducing Inductive Reasoning: Does It Transfer to Fluid Intelligence? Contemporary Educational Psychology, 27(1), 1–25. https://doi.org/10.1006/ceps.2001.1079
  • Küchemann, D., & Hoyles, C. (2009). From empirical to structural reasoning in mathematics: tacking changes over time. In D. Stylianou, M. Blanton & E. Knuth (Eds.), Teaching and learning of proofs across the grades (pp. 171-190). New York: Routledge. https://doi.org/10.4324/9780203882009-10
  • Leighton, J., & Sternberg, R. (2004). The Nature of Reasoning. New York: Cambridge University Press.
  • Manfreda, V., Slapar, M., & Hodnik, T. (2012). Comparison of competences in inductive reasoning between primary teachers’ students and mathematics teachers’ students. In B. Maj-Tatsis & K. Tatsis (Eds.), Generalization in mathematics at all educational levels. Rzeszów: Wydawnictwo Uniwersytetu Rzeszowskiego.
  • Melhuish, K., Thanheiser, E., & Guyot, L. (2018). Elementary school teachers’ noticing of essential mathematical reasoning forms: justification and generalization. Journal of Mathematics Teacher Education. https://doi.org/10.1007/s10857-018-9408-4
  • Molnár, G. (2011). Playful fostering of 6-to 8-year-old students’ inductive reasoning. Thinking skills and Creativity, 6(2), 91-99. https://doi.org/10.1016/j.tsc.2011.05.002
  • Molnár, G., Greiff, S., & Csapó, B. (2013). Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking skills and Creativity, 9, 35-45. https://doi.org/10.1016/j.tsc.2013.03.002
  • Mousa, M. (2017). The Influence of Inductive Reasoning Thinking Skill on Enhancing Performance. International Humanities Studies, 4(3), 37–48.
  • Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544
  • Murawska, J. M., & Zollman, A. (2015). Taking it to the next level: Students using inductive reasoning. Mathematics Teaching in the Middle School, 20(7), 416–422. https://doi.org/10.5951/mathteacmiddscho.20.7.0416
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Neubert, G. A., & Binko, J. B. (1992). Inductive reasoning in the secondary classroom. Washington DC: National Education Association.
  • Papageorgiou, E. (2009). Towards a Teaching Approach for Improving Mathematics Inductive Reasoning Problem Solving. In Tzekaki, M., Kaldrimidou, M. and Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (pp. 313–320). Thessaloniki, Greece: PME.
  • Pólya, G. (1957). How to solve it. A new aspect of mathematical method. New York: Doubleday and Company, Inc.
  • Pólya, G. (1967). Le découverte des mathématiques. Paris: DUNOD.
  • Reid, D. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 33(1), 5-29. https://doi.org/10.2307/749867
  • Reid, D., & Knipping, C. (2010). Proof in Mathematics Education. Research, Learning and Teaching. Rotterdam: Sense Publishers.
  • Rivera, F. D. (2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73(3), 297–328. https://doi.org/10.1007/s10649-009-9222-0
  • Rivera, F. D., & Becker, J. R. (2003). The Effects of Numerical and Figural Cues on the Induction Processes of Preservice Elementary Teachers. In Pateman, N., Dougherty, B. and Zilliox, J. (Eds.). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education Held Jointly with the 25th PME-NA Conference (pp. 63–70). Honolulu, HI.
  • Rivera, F. D., & Becker, J. R. (2007). Abduction-induction (generalization) processes of elementary majors on figural patterns in algebra. Journal of Mathematical Behavior, 26(2), 140–155. https://doi.org/10.1016/j.jmathb.2007.05.001
  • Rivera, F. D., & Becker, J. R. (2016). Middle school students’ patterning performance on semi-free generalization tasks. Journal of Mathematical Behavior, 43, 53–69. https://doi.org/10.1016/j.jmathb.2016.05.002
  • Secretaría de Educación Pública (2011). Programas de estudio 2011. Guía para el maestro. Educación básica secundaria. México: SEP.
  • Sriraman, B., & Adrian, H. (2004). The Pedagogical Value and the Interdisciplinary Nature of Inductive Processes in Forming Generalizations : Reflections from the Classroom. Interchange, 35(4), 407–422. https://doi.org/10.1007/BF02698891
  • Stylianides, G. J., Stylianides, A. J., & Shilling-Traina, L. N. (2013). Prospective teachers’ challenges in teaching reasoning-and-proving. International Journal of Science and Mathematics Education, 11(6), 1463-1490. https://doi.org/10.1007/s10763-013-9409-9
  • Tomic, W. (1995). Training in Inductive Reasoning and Problem Solving. Contemporary Educational Psychology, 20(4), 483–490. https://doi.org/10.1006/ceps.1995.1036
  • Yeşildere, S., & Akkoç, H. (2010). Algebraic generalization strategies of number patterns used by pre-service elementary mathematics teachers. Procedia - Social and Behavioral Sciences, 2(2), 1142–1147. https://doi.org/10.1016/j.sbspro.2010.03.162

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.