Understanding and strategies for comparing fractions among pre-service teachers: Between procedural rigidity and conceptual flexibility
Patrick Tchonang Youkap 1 2 * , Jean-Berky Nguala 1 2
More Detail
1 Laboratoire d’Informatique et de Mathématiques, Université de La Réunion, Réunion, FRANCE2 University of Mayotte, Mayotte, FRANCE* Corresponding Author

Abstract

This study explores the cognitive structures of pre-service primary teachers regarding fraction comparison, using Vinner’s concept-image framework to analyze how these pre-service teachers mobilize their knowledge to compare fractions. The mixed-methods approach, combining both quantitative and qualitative analyses (including a questionnaire), highlights significant cognitive challenges related to fraction comparison. The study, conducted with 160 participants, reveals a marked reliance on rigid procedures, with the systematic application of a single comparison procedure, regardless of contextual variations or task-specific demands. The observed errors appear to stem from limited procedural flexibility and underdeveloped pre-service teachers’ concept-images on fractions. Furthermore, a significant number of participants do not recognize fraction comparison as a valid mathematical model in problem-solving contexts, which limits their ability to teach this concept effectively. These findings underscore the need to reform teacher education by integrating targeted interventions aimed at increasing procedural diversity and enriching the conceptual understanding of fractions. Such initiatives would enable teachers to perceive fractions not only as static mathematical objects, but as dynamic, interconnected, and evolving entities. This study thus contributes to the enhancement of teacher preparation, particularly in managing foundational arithmetic concepts, to promote a more flexible and conceptually rich approach to teaching fractions in primary education.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article Type: Research Article

INT ELECT J MATH ED, Volume 20, Issue 4, November 2025, Article No: em0849

https://doi.org/10.29333/iejme/16834

Publication date: 01 Oct 2025

Online publication date: 29 Aug 2025

Article Views: 5

Article Downloads: 3

Open Access References How to cite this article