International Electronic Journal of Mathematics Education

Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Kouki R, Griffiths BJ. Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach. INT ELECT J MATH ED. 2020;15(2), em0573. https://doi.org/10.29333/iejme/6293
APA 6th edition
In-text citation: (Kouki & Griffiths, 2020)
Reference: Kouki, R., & Griffiths, B. J. (2020). Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach. International Electronic Journal of Mathematics Education, 15(2), em0573. https://doi.org/10.29333/iejme/6293
Chicago
In-text citation: (Kouki and Griffiths, 2020)
Reference: Kouki, Rahim, and Barry J. Griffiths. "Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach". International Electronic Journal of Mathematics Education 2020 15 no. 2 (2020): em0573. https://doi.org/10.29333/iejme/6293
Harvard
In-text citation: (Kouki and Griffiths, 2020)
Reference: Kouki, R., and Griffiths, B. J. (2020). Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach. International Electronic Journal of Mathematics Education, 15(2), em0573. https://doi.org/10.29333/iejme/6293
MLA
In-text citation: (Kouki and Griffiths, 2020)
Reference: Kouki, Rahim et al. "Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach". International Electronic Journal of Mathematics Education, vol. 15, no. 2, 2020, em0573. https://doi.org/10.29333/iejme/6293
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Kouki R, Griffiths BJ. Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach. INT ELECT J MATH ED. 2020;15(2):em0573. https://doi.org/10.29333/iejme/6293

Abstract

In this article we present the results of a qualitative investigation into the teaching and learning of Taylor series and local approximations. In order to perform a comparative analysis, two investigations are conducted: the first is historical and epistemological, concerned with the pedagogical evolution of semantics, syntax and semiotics; the second is a contemporary institutional investigation, devoted to the results of a review of curricula, textbooks and course handouts in Tunisia and the United States.
Our results show that contemporary curricula emphasize the algebraic and analytic approaches to the theory but omit the graphical and numerical registers, which both played a large role in the historical development. We contend that by presenting a more historically accurate didactic approach, student learning can be enriched to give a deeper and more conceptually accurate understanding of the topic.

References

  • Allano-Chevalier, M., & Oudot, X. (2008). Maths MPSI 1e année. Paris, France: Hachette.
  • Artigue, M. (2004). Le défi de la transition secondaire/supérieur : Que peuvent nous apporter les recherches didactiques et les innovations développées dans ce domaine? First Franco-Canadian Mathematics Conference, July 2004, Toulouse.
  • Bloch I., & Gibel P. (2011). Un modèle d’analyse des raisonnements dans les situations didactiques : Étude des niveaux de preuves dans une situation d’enseignement de la notion de limite. Recherche en Didactique des Mathématiques, 31(2), 191-228.
  • Bourbaki, N. (1994). Elements of the history of mathematics. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-61693-8
  • Chevallard, Y. (1992). Concepts fondamentaux de la didactique : Perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73-112.
  • College Board. (2016). AP calculus AB and AP calculus BC course and exam description. Retrieved from https://apcentral.collegeboard.org/pdf/ap-calculus-ab-and-bc-course-and-exam-description.pdf
  • Dahan-Dalmédico, A., & Peiffer, J. (2010). History of Mathematics: Highways and Byways. Washington, DC: The Mathematical Association of America.
  • Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM–The International Journal on Mathematics Education, 40(3), 373-384. https://doi.org/10.1007/s11858-008-0098-8
  • Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149-172. https://doi.org/10.1007/s10649-005-5614-y
  • Gatti, M. (2004). Analyse II: Cours et 260 exercices corrigés. Tunis, Tunisia: Omega.
  • Institut préparatoire aux études d’ingénieurs de Tunis. (2016). Classes préparatoires MP: Programme de mathématiques première année. Retrieved from http://www.ipeit.rnu.tn/sites/default/files/Prog Maths MP 1ère année.pdf
  • Karoui, A. (2004). Analyse : Cours de mathématiques de première année. Tunis, Tunisia: Centre de Publication Universitaire.
  • Kouki, R. (2018). L’articulation des dimensions syntaxique et sémantique en algèbre du secondaire. Recherches en Didactique des Mathématiques, 38(1), 43-78.
  • Kouki, R., Belhaj Amor, F., & Hachaïchi, Y. (2016). Comparaison entre l’évolution historique ayant mené aux développements limités et leur pratique d’enseignement au début de l’université : Entre syntaxe et sémantique. In E. Nardi, C. Winslow & T. Hausberger (Eds.), Proceedings of the 1st Conference of the International Network for Didactic Research in University Mathematics (pp. 123-132). Montpellier: INDRUM.
  • McGee, D. & Martinez-Planell, R. (2014). A study of semiotic registers in the development of the definite integral of functions of two and three variables. International Journal of Science and Mathematics Education, 12(4), 883-916. https://doi.org/10.1007/s10763-013-9437-5
  • Monier, J.-M. (2003). Analyse MPSI : Cours et 1000 exercices corrigés. Paris, France: Dunod.
  • Stedall, J. (2008). Mathematics emerging: A sourcebook 1540–1900. Oxford, UK: Oxford University Press.
  • Stewart, J. (2016). Calculus. Boston, MA: Cengage.
  • Stillwell, J. (1989). Mathematics and its history. New York, NY: Springer. https://doi.org/10.1007/978-1-4899-0007-4
  • Thomas, G., Haas, J., Heil, C., & Weir, M. (2018). Thomas’ calculus. Boston, MA: Pearson.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.