International Electronic Journal of Mathematics Education

Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Vargas F, Benincasa T, Cian G, Martignon L. Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels. Int Elect J Math Ed. 2019;14(2), 303-330. https://doi.org/10.29333/iejme/5716
APA 6th edition
In-text citation: (Vargas et al., 2019)
Reference: Vargas, F., Benincasa, T., Cian, G., & Martignon, L. (2019). Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels. International Electronic Journal of Mathematics Education, 14(2), 303-330. https://doi.org/10.29333/iejme/5716
Chicago
In-text citation: (Vargas et al., 2019)
Reference: Vargas, Francisco, Tommaso Benincasa, Giuseppe Cian, and Laura Martignon. "Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels". International Electronic Journal of Mathematics Education 2019 14 no. 2 (2019): 303-330. https://doi.org/10.29333/iejme/5716
Harvard
In-text citation: (Vargas et al., 2019)
Reference: Vargas, F., Benincasa, T., Cian, G., and Martignon, L. (2019). Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels. International Electronic Journal of Mathematics Education, 14(2), pp. 303-330. https://doi.org/10.29333/iejme/5716
MLA
In-text citation: (Vargas et al., 2019)
Reference: Vargas, Francisco et al. "Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels". International Electronic Journal of Mathematics Education, vol. 14, no. 2, 2019, pp. 303-330. https://doi.org/10.29333/iejme/5716
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Vargas F, Benincasa T, Cian G, Martignon L. Fostering Probabilistic Reasoning Away from Fallacies: Natural Information Formats and Interaction between School Levels. Int Elect J Math Ed. 2019;14(2):303-0. https://doi.org/10.29333/iejme/5716

Abstract

The article reports an empirical study on the introduction of elementary probabilistic concepts in school, focusing on tasks related to the psychological tradition of heuristics and biases. The concepts involved were studied using an extensional natural frequencies approach. We describe the school intervention conducted in an interaction across different school levels (5th and 9th grades) with the aim of promoting motivation and cooperation thereby strengthening learning. The different tests were assessed both qualitatively (based on argumentation analyses) and quantitatively. The results provide further evidence on the diversity of obstacles tied to probabilistic notions. More importantly, they exhibit an overall improvement in performance of students at both levels. This work confirms the efficacy of natural frequencies in eliciting the intended interpretation of probabilistic tasks and suggests that an appropriate interaction between different scholastic levels can be implemented as a fruitful learning arrangement.

References

  • Brousseau, G. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques, 1970–1990 (Vol. 19). Springer Science Business Media.
  • Bruner, J. S. (1966). Toward a theory of instruction, Cambridge, Mass.: Belkapp Press.
  • Chernoff, E., & Sriraman, B. (2014). Probabilistic thinking. AMC, 10, 12. https://doi.org/10.1007/978-94-007-7155-0
  • Chevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education. In Encyclopedia of mathematics education (pp. 170-174). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_48
  • D’Amore, B. (1999). Elementi di didattica della matematica. Bologna: Pitagora.
  • Diaz, C., & Batanero, C. (2009). University students’ knowledge and biases in conditional probability reasoning. International Electronic Journal of Mathematics Education, 4(3), 131-162.
  • Diaz, C., & De La Fuente, I. (2007). Assessing students’ difficulties with conditional probability and Bayesian reasoning. International Electronic Journal of Mathematics Education, 2(3), 128-148.
  • Duval, R. (2017). Understanding the Mathematical Way of Thinking–The Registers of Semiotic Representations. Springer International Publishing. https://doi.org/10.1007/978-3-319-56910-9
  • Engel, J., & Sedlmeier, P. (2005). On middle-school students’ comprehension of randomness and chance variability in data. ZDM, 37(3), 168-177.
  • Falk, R. (1986). Conditional probabilities: insights and difficulties. In Proceedings of the Second International Conference on Teaching Statistics (pp. 292-297).
  • Fiedler, K. (1988). The dependence of the conjunction fallacy on subtle linguistic factors. Psychological research, 50(2), 123-129. https://doi.org/10.1007/BF00309212
  • Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational studies in mathematics, 15(1), 1-24. https://doi.org/10.1007/BF00380436
  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for research in mathematics education, 96-105. https://doi.org/10.2307/749665
  • Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: overcoming low numeracy. Health Psychology, 28(2), 210. https://doi.org/10.1037/a0014474
  • Gigerenzer, G. (2008). Rationality for mortals: How people cope with uncertainty. Oxford University Press.
  • Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological review, 102(4), 684. https://doi.org/10.1037/0033-295X.102.4.684
  • Goldin, G. A., Epstein, Y. M., Schorr, R. Y., & Warner, L. B. (2011). Beliefs and engagement structures: Behind the affective dimension of mathematical learning. ZDM, 43(4), 547. https://doi.org/10.1007/s11858-011-0348-z
  • Gould, S. J. (1992). Bully for Brontosaurus: Reflections in natural history, New York: Norton.
  • Gras, R., & Totohasina, A. (1995). Conceptions d’élèves sur la notion de probabilité conditionnelle révélées par une méthode d’analyse des données: Implication-similarité-corrélation. Educational Studies in Mathematics, 28(4), 337-363. https://doi.org/10.1007/BF01274078
  • Grice, H. P. (1975). Logic and conversation, in Cole, P. and Morgan, J. L. (eds.), Syntax and Semantics 3: Speech acts (pp. 41-58), New York: Academic Press.
  • Harris, J. R. (2011). The nurture assumption: Why children turn out the way they do. Simon and Schuster.
  • Hertwig, R. (1995). Why Dr. Gould’s homunculus doesn’t think like Dr. Gould: The “conjunction fallacy” reconsidered. Konstanz: Hartung-Gorre.
  • Hertwig, R., & Gigerenzer, G. (1999). The ‘conjunction fallacy’ revisited: How intelligent inferences look like reasoning errors. Journal of behavioral decision making, 12(4), 275. https://doi.org/10.1002/(SICI)1099-0771(199912)12:4<275::AID-BDM323>3.0.CO;2-M
  • Hertwig, R., Benz, B., & Krauss, S. (2008). The conjunction fallacy and the many meanings of and. Cognition, 108(3), 740-753. https://doi.org/10.1016/j.cognition.2008.06.008
  • Hintikka, J. (2004). A fallacious fallacy? Synthese, 140, 25–35. https://doi.org/10.1023/B:SYNT.0000029938.17953.10
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. New York: Basic Books. https://doi.org/10.1037/10034-000
  • Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
  • Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgement under uncertainty: heuristics and biases. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511809477
  • Kleiter, G. D. (1994). Natural sampling: Rationality without base rates. In Contributions to mathematical psychology, psychometrics, and methodology (pp. 375-388). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4308-3_27
  • Kurz‐Milcke, E., Gigerenzer, G., & Martignon, L. (2008). Transparency in risk communication. Annals of the New York Academy of Sciences, 1128(1), 18-28. https://doi.org/10.1196/annals.1399.004
  • Martignon, L. (2014). Fostering children’s probabilistic reasoning and first elements of risk evaluation. In Probabilistic Thinking (pp. 149-160). Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-0_9
  • Martignon, L., & Krauss, S. (2009). Hands-on activities for fourth graders: A tool box for decision-making and reckoning with risk. International Electronic Journal of Mathematics Education, 227–258
  • Massini, J. (2018). How to foster the coordination of intensional and extensional reasoning in young children Analyzing the Conjunction Fallacy in 4th class., Master thesis im Masterstudiengang (M.A.): Paedagogischen Hochschule Ludwigsburg.
  • Meder, B., & Gigerenzer, G. (2014). Statistical thinking: no one left behind. Probabilistic Thinking (pp. 127-148). Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-0_8
  • Multmeier, J. (2012). Representations facilitate Bayesian reasoning: computational facilitation and ecological design revisited (Doctoral dissertation, Freie Universität Berlin).
  • Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. Norton.
  • Saldanha, L., & Liu, Y. (2014). Challenges of developing coherent probabilistic reasoning: rethinking randomness and probability from a stochastic perspective. In Probabilistic Thinking (pp. 367-396). Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-0_20
  • Slavin, R. E., Hurley, E. A., & Chamberlain, A. (2003). Cooperative learning and achievement: Theory and research. Handbook of psychology, 177-198. https://doi.org/10.1002/0471264385.wei0709
  • Stenning, K., & van Lambalgen, M. (2008). Human Reasoning and Cognitive Science. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/7964.001.0001
  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. science, 185(4157), 1124-1131.
  • Tversky, A., & Kahneman, D. (1983): Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Review, 90, 293-315. https://doi.org/10.1037/0033-295X.90.4.293
  • Wassner, C., Martignon, L., & Biehler, R. (2004). Bayesianisches Denken in der Schule. Unterrichtswissenschaft, 32(1), 58-96.
  • Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental computation. Cognition, 98(3), 287-308. https://doi.org/10.1016/j.cognition.2004.12.003

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.