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ABSTRACT 
The article reports an empirical study on the introduction of elementary probabilistic concepts in 
school, focusing on tasks related to the psychological tradition of heuristics and biases. The 
concepts involved were studied using an extensional natural frequencies approach. We describe 
the school intervention conducted in an interaction across different school levels (5th and 9th 
grades) with the aim of promoting motivation and cooperation thereby strengthening learning. 
The different tests were assessed both qualitatively (based on argumentation analyses) and 
quantitatively. The results provide further evidence on the diversity of obstacles tied to 
probabilistic notions. More importantly, they exhibit an overall improvement in performance of 
students at both levels. This work confirms the efficacy of natural frequencies in eliciting the 
intended interpretation of probabilistic tasks and suggests that an appropriate interaction 
between different scholastic levels can be implemented as a fruitful learning arrangement. 
 
Keywords: probabilistic thinking, natural frequencies, conjunction fallacy, cooperative learning, 
learning through teaching 

 

INTRODUCTION 
According to the editors of the compendium Probabilistic Thinking: Presenting Plural Perspectives 

(Chernoff & Sriraman, 2014), research in mathematics education concerning probabilistic thought during the 
“Contemporary Period” (i.e., during the 1990s and 2000s) has been described as “investigating the teaching 
and learning of probability in classrooms and schools, which is due, in large part, to probability becoming a 
mainstream strand of worldwide curricula.” Stochastic literacy is in fact of paramount importance both for 
informed citizenship (decision theory, data management, risk evaluation, etc.) and a required tool in a variety 
of disciplines.  

Even so, educational research is still engaged with some open issues such as, for example, the discus-sion 
on the different interpretations of probability, the sources of obstacles and biases, and the possible strategies 
to be adopted in the teaching-learning process. These are main topics of interest in the “Assimilation Period” 
(Chernoff & Sriraman, 2014) which corresponds to the current phase. The present paper aims at contributing 
to these issues, focusing more specifically on two aspects: 

(1)  the analyses of obstacles that are responsible for deviations from standard norms, and  
(2)  the validation of didactic artifacts that can be implemented based on these analyses.  
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We base our work on the results of cognitive psychology on probabilistic thought. These are inherent to 
modern frameworks of rationality.  

A main reference in this field has been the heuristics and biases program (Tversky & Kahneman, 1974; 
Kahneman, 2011). The possible interpretations/explanations of its experimental results have been the subject 
of heated debates. Concerning the “conjunction fallacy”, for instance, there have been very different or even 
opposite accounts: from those based on our alleged incapacity to deal with it (the original position of Tversky 
and Kahneman), to the complete denial of its existence (e.g. in Hintikka, 2004). Another position identifies 
difficulties in the ambiguity of the terms involved, (Fiedler, 1988; Hertwig, 1995; Hertwig, et al., 2008; Hertwig 
& Gigerenzer, 1999) and propose information formats that elicit the intended interpretations. 

Let us now briefly describe the position adopted by mathematics educators regarding reasoning biases. 
This position influences the methodology used when fostering students’ probabilistic competencies. Two basic 
questions are: Do subjects’ patterns of response change across time? Can cognitive biases be overcome by 
means of adequate learning arrangements or representation formats?  

Here two lines of work from the developmental and the educational realms are fundamental:  
In the piagetian perspective (Inhelder & Piaget, 1958; Piaget & Inhelder, 1975) when reaching the formal 

operational stage children have the maturity to deal with core logical and probabilistic notions. This 
perspective was challenged, among others, by Fischbein’s research, conducted in the framework of his study 
on intuition. This research showed on the one hand, the presence of some skills and intuitions on probability 
even at an earlier stage, but also, on the other hand, reflected the presence of cognitive biases at different 
school levels, revealing that the incidence of some “misconceptions” is stable, and may even increase across 
different scholastic levels (Fischbein et al., 1997, see also Engel & Sedlmeier, 2005).  

Some of Fischbein’s findings may well be explained by those psychological analyses pointing at the 
ambiguity of the terms in the tasks themselves (here again, see Fiedler, 1988; Hertwig, 1995; Hertwig, et al., 
2008; Hertwig & Gigerenzer, 1999). Besides shedding light on the nature of the biases, they provide 
instruments and methodologies for improving students’ probabilistic performance. These instruments consist 
mainly of representation formats, i.e. specific semiotic registers in Duval’s (2017) sense, namely natural 
frequencies and icon arrays (Galesic et al., 2009).  

Along these lines our work investigates the components of adequate interventions for fostering 
probabilistic insight.  

The value of the interventions we propose can be estimated considering some recent university-level 
studies which show that performance in problems inducing cognitive biases can be poor in spite of formal 
knowledge acquisition in more traditional statistic courses (Diaz & De La Fuente, 2007; Diaz & Batanero, 
2009). From our perspective these results may be tied to traditional approaches to the subject.  

The approach based on interventions, materials and activities we adopt here follows the line of (Martignon 
& Krauss, 2009). Here the advantages of natural frequency formats are consistently explored in a learning 
arrangement based on the interaction between groups of students of different ages (5th graders and 9th 
graders). In this learning-arrangement we let older students design hands-on activities to be carried out by 
younger ones.  

The paper is organized as follows: first we introduce the theoretical background. After a general description 
of the design (2), we present the sequence of activities performed by the different groups. Then we report and 
analyze the results obtained. We conclude with a general discussion. 

PROBABILISTIC THOUGHT: SOME CONSIDERATIONS ON HEURISTIC APPROACHES, 
OBSTACLES AND STRATEGIES 

Representation Formats: The Natural Frequencies Approach 

By natural frequencies formats in probabilistic reasoning we mean frequencies obtained by natural 
sampling preserving base rate and sub-sample information. Thus, samples are not standardized and sub-
samples are not normalized at each step of reasoning. In a situation such as that of the mammography task 
(see subsection “Design/Materials” below), for instance, we do not talk about a probability of 1% of having the 
disease and a probability of 90% of having a positive test given that the patient is ill. Instead, we translate 
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this information into: “imagine 1000 women. Out of these 1000, 10 have the disease, and out of these 10, 9 
have a positive test.”  

Natural frequency formats for probabilistic reasoning were introduced in the ‘90s (Gigerenzer & Hoffrage, 
1995; Hertwig, 1995; Kleiter, 1994). They proved successful in eliciting normatively correct responses in 
probabilistic situations, notably in regard to Bayesian reasoning (Gigerenzer & Hoffrage, 1995) and 
probabilistic conjunctions (Hertwig, 1995). This success matches the premises of “ecological rationality” in the 
sense that humans’ reasoning is adapted to information formats similar to those available in natural 
environments.  

These results motivate an educational program which explores the possibility of improving students’ skills 
at probabilistic reasoning by matching pedagogical strategies to cognitive processes. We adopt such a program 
even for early years in education. 

We are also guided by Bruner’s EIS-principle in the choice of materials: en-active and visual materials 
should be used before symbolic presentations: such materials have proven to be successful when combined 
with natural formats. Materials like “tinker cubes” are successful for illustrating and comparing different 
proportions and to introduce chance and other probabilistic notions (Martignon and Krauss 2007, 2009; Kurz-
Milcke et al. 2008. See also other graphic and interactive devices at http://www.eeps.com/riskicon/). 

Engineering: from Psychology to Didactics 

The so-called “rationality debate” in psychology leads us to search for the contexts and presentations which 
favor probabilistic reasoning. According to Meder and Gigerenzer (2014), in fact: “Instead of emphasizing 
human errors, the focus is shifted to human engineering: What can (and need) be done to help people with 
probabilistic inferences?”  

The strategies followed in the ecological and bounded rationality traditions should be linked with the 
natural didactic aims of fostering the acquisition of mathematical competencies in students. The debates in 
psychology on the extent of biases and a different, more subtle treatment of “errors” or “mistakes”, can in fact 
be approached from the mathematical didactics side using the conceptual tools proposed in the “theory of 
obstacles” (Brousseau, 2006). This theory presents a taxonomy of obstacles frequent in learning processes of 
any mathematical subject. We point to the relevant aspects in our study:  

(1) Epistemological obstacles, those inherent to the concept itself. Probabilistic concepts, in fact, have been 
historically subject to foundational, conceptual and mathematical debates. This is reflected, for 
instance, in the different approaches to probability, whose very definition is far from straightforward.  

(2) Ontogenetic obstacles, determined by the lack of developmental competencies necessary for the 
acquisitions of concepts. In our case, for instance, a certain level of numeracy, in particular 
understanding proportions, is required even for elementary probabilistic tasks. Furthermore, an 
obstacle for probabilistic thinking is the early lack of categorization strategies, e.g. coordinating 
extensional and intensional reasoning, see (Hertwig, 1995, pg. 3) 1. Obviously, our conceptions of 
subjects’ resources at a given stage depend on the position adopted in the rationality debate. Our 
position, as stated before, is guided by the tenants of ecological rationality.  

(3) Didactical obstacles, which arise, for instance, in the communication between teacher and student, as 
is the case in typical misalignments between them. We focus not only on the already mentioned formats, 
registers and symbolisms tuned for a given purpose in a given moment, but also in the social roles 
established in the didactical situations proposed. In our study, students interact with each other 
adopting non-typical social roles (see 1.3).  

Summing up, we see the necessity of designing appropriate activities and presentations. These are even 
more fundamental for concepts (such as the probabilistic ones) which can be dealt with, even theoretically, 
from multiple radically different approaches, and which can be unintuitive or even counterintuitive. We have 
to deal here with the problem of didactic transposition (Chevallard & Bosch, 2014): the scholarly knowledge 

                                                           
1 The philosophical dichotomy “extensional-intensional” describes modes of defining collections, as proposed by the School 
of Port-Royal. Extensional refers to the (list of) members while intensional refers to the properties characterizing those 
elements. Gottlob Frege famously elaborated on the difference between the two approaches and, in his example, the 
intensional difference between “The evening star” and “the morning star”, is not extensionally present: they are the same 
element (the planet Venus). The dichotomy is also reflected in mathematics, where a same set can be expressed extensionally 
(e.g. as {2, 4, 6, 8, 10}) or intensionally ({x|x is an even natural number and 1 < x < 11}). 
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needs to be transposed into taught knowledge. Here, the proposed natural frequencies approach, is not entirely 
equivalent to the strictly probabilistic one. Yet, as it is claimed, it provides students (and humans in general) 
the possibility of handling probabilistic situations successfully and of capturing their meaning. 

Learning through Teaching: Interaction between Students of Different Levels 

Students’ active engagement, cooperative, team-based work has been extensively shown to be highly 
beneficial when appropriately implemented in learning environments (Slavin et al., 2003). Here we study an 
interaction between two levels, namely, 5th graders and 9th graders. This is conceived in order to benefit both 
scholarly levels. Part of the motivational expected success of the experience lay in the fact that probabilities 
were a marginal topic in their respective curricular trajectory, and that, being new at both levels, could be 
particularly appropriate for a “learning through teaching” design. In our case we analyze an interaction across 
levels in which both are approaching the subject at the same time, but, of course, with different tools/ 
constraints posed by their specific level.  

The condition for the selection of the scholastic level of the elementary school students was based on their 
mathematical skills and cognitive development. Following results from previous research in the same direction 
(Martignon & Krauss, 2009) and considering age and curricula, we selected 5th graders as an appropriate 
target group for the intervention. As for the older students we focused both on social and mathematical 
maturity. 

EXPERIMENTS/INTERVENTION DESIGN 
The study was based on the interactions of two levels: 5th graders and 9th graders 2. This took around 2 

months (except for point 7, below). As shown in Figure 1 the whole didactic sequence was developed according 
to the following stages:  

(1) 9th graders pre-test. It was conducted both in the target and the control groups. See next section.  
(2) Instruction. After presenting the pre-test the tasks were discussed and the relevant mathematical 

concepts were introduced by teachers. The tasks were selected not just to reveal some problems or 
misconceptions, but as a means to introduce probabilistic concepts for the first time. The “fallacies” 
involved and their posterior analysis were intended to produce an “aha-moment” and to trigger the 
curiosity about the topic. The approach was based on natural frequencies. 

(3) Activities design. Students were given 6 weeks to design activities which could be implemented in a 5th 
graders’ class. This design was conducted in groups (usually formed of 4 students each) in 2 phases: 
first, a written proposal which explained the activity and its conceptual background, second the actual 
elaboration or choice of enactive materials as well as the performative action they would realize in the 
actual lessons. This action was simulated and video recorded. At each step students received feedback 
by their teachers. 

(4) 5th graders pre-test. Applied to a control group in a between-subjects design. See Section “5th Graders 
Pretest and Posttest.” 

(5) Intervention. At this stage 9th graders guided 5th graders during the realization of the designed 
activities. We considered that the intervention should be implemented also with the control group, 
because of its instructional value. 

(6) 5th graders post-test. After the activities the test applied to the control group was applied to the target 
group. 

(7) 9th graders late post-test. During the following school year (5 months later) “conjunction-fallacy”-style 
questions in contexts and formats different from the original one were posed in order to evaluate both 
transfer and sustainability of the investigated strategies. This test also included a questionnaire for 
evaluating students’ reactions to and opinions on the experience. 

We will next examine the different activities and results obtained. 

                                                           
2 Students were members of Leonardo da Vinci School, a bi-cultural Colombian-Italian school at Bogotá, recognized by both 
Ministries of Education. Students are bilingual and mathematics is usually taught in Italian, the language we used in our 
tests. 
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9th GRADERS’ PRE-TEST 

Participants 

48 9th graders: 24 males and 24 females. They were from three different groups. Students had some 
knowledge of statistics but no explicit study of probability theory. In fact, the test was presented as a first step 
for studying this topic. 

Procedure 

Students were asked to answer a questionnaire during their mathematics class. Their time limit was the 
end of the class yet all of them finished in less than 25 minutes. Even if the questions were closed, students 
were invited to write any additional comment or justification they wanted. 

Design/Materials 

We worked with written tests with 3 questions which we describe next:  
(1) The classical Linda task (Tversky and Kahneman, 1983) with two options: 
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was 

deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear 
demonstrations. Which is more probable?  

[A] Linda is a bank teller. 
[B] Linda is a bank teller and is active in the feminist movement.  
(2) Mammography (mainly based on Gigerenzer, 2008, pg.16): participants were asked to choose between 

4 intervals of equal size. The exact phrasing of the question was as follows: 
Let’s consider a woman who has just got a positive result in a mammogram test. Knowing the result of the 

test, she asks the doctor: “Is it certain that I am ill?” The doctor answers, providing the following data on the 
spread of the disease and the reliability of the test:  

• The probability that a woman has the disease is 1%. 
• If a woman is ill, the probability of the test being positive is 90%.  
• If a woman isn’t ill, the probability that the test is positive is 9%. 
In your opinion, what is the probability that the woman has contracted the disease?  
Choose from the following four options:  
[A] 0–25% [B] 26–50% [C] 51–75% [D] 76–100%  

 
Figure 1. The didactic and experimental scheme 
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According to standard terminology, the first piece of information conveys the prevalence (the base rate) of 
the test, the second one its sensitivity, and the third one its false positives rate.  

We introduced a variant from typical literature: 24 of the subjects were presented the question without the 
3rd piece of information, i.e., the “specificity”. The other 24 were asked to answer the question with all 3 pieces 
of information. 

Our working hypothesis was: if the results of the two groups were roughly the same this would point to the 
view that the 3rd piece of information is not taken into account for the answer. In other words, besides the 
“base rate neglect”, there may be also a “false positives rate neglect” at play. This was confirmed by our results. 

(3) A question which typically illustrates the phenomenon known as Falk’s effect: 
Giovanni and Marco receive two boxes, each one containing 2 white balls and 2 black balls. Giovanni 

extracts a ball from his box and finds it is white. Without putting it back in the box, he extracts a second ball. 
The probability that this second ball is also white is less, equal or greater than the probability of it being black? 
Marco extracts out a ball from his box and puts it aside without looking at it. Then he extracts a second ball 
and sees that it is white. The probability that the first ball extracted is white is less, equal, or greater than the 
probability of it being black  

Falk’s phenomenon is seen by Fischbein and Schnarch (1997) as showing the presence of the intuitive 
principle according to which “an event cannot act retroactively on its cause”.  

This question was included because it is interesting to compare the very different effects at play in question 
2 and question 3: in 2, P (C|E) and P (E|C) tend to be interchanged. In contrast, in question 3 the situation 
is completely asymmetrical for subjects: in P(E|C) E is dependent on C, whereas in P(C|E), C is judged as 
independent of E. In other words, causal intuitions are stronger than those represented by the formal rules of 
probability.  

Questions 1 and 3 have been studied with young students before (Fischbein & Schnarch, 1997). Question 
2 has been the subject of a number of tests with adult subjects and with young students in different contexts 
and formats, see e.g. (Wassner et al., 2004, Zhu & Gigerenzer 2006). 

RESULTS 

Question 1 

As expected, we obtained an overall prevalence of the B’s (violating the conjunction rule). There was also 
a remarkably high number of A’s. Can this be directly understood as a tendency to answer more correctly 
according to extensional, inclusion criteria? From the written comments that the participants added to their 
answers we can see that most of the A answers were not justified by set-theoretic inclusion reasoning, but by 
other reasons (see the corresponding analysis below).  

In any case, the results are as expected, according to the literature. Fischbein and Schnarch (1997), in 
particular, report an 80% of incidence of the conjunction fallacy for 9th graders. 

Question 2 

Separating the two conditions (including and not including the false positives rate of the test) we obtain 
the results shown in Table 3. According to the literature we are prone to neglect base rates. This is very 
dominant even among doctors and other specialists. A further question is: do participants provide the same 
amount of D-type answers with or without the explicit mention of the false positives rate? The present results 
not only show a similar high-D/low-A trend for both conditions, but that in the “without False Positives Rate” 
condition we have even a (small) increase in the A answers. 

Table 1. Answers to the Linda question 
 Type of group 

Type of response Treatment Control Total 
A 8 6 14 
B 25 9 34 
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Question 3 

The results in Table 4 confirm the robustness of Falk’s Phenomenon and its presence (for the same 
subjects) together with base rate bias, a phenomenon which apparently goes in the opposite direction. 

Table 2. Overall answers to the mammography question 
 Type of group 

Type of response Treatment Control Total 
A 8 4 12 
B 2 2 4 
C 4 3 7 
D 18 6 24 

NA 1 0 1 
 

 
Table 3. Endorsement frequencies for the mammography question including and not including the false 
positives rate (FPR) 

 Type of group 
Type of response With FPR Without FPR  

A 4 8  
B 2 2  
C 5 2  
D 13 11  

NA 0 1  
 

 
Figure 2. Endorsement rates for the mammography question with the false positives rate (FPR) not included 
and included 

Table 4. Compared frequencies of the answers in the the two cases (Giovanni’s and Marco’s) asked for in 
Question 3 

 Type of group 
 Treatment Control Total 
 Giovanni Marco Giovanni Marco Giovanni Marco 

Larger 5 1 2 1 7 2 
Equal 4 20 2 14 6 34 

Smaller 21 11 14 0 35 11 
NA 0 1 0 0 0 1 
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RESULTS: HIGH SCHOOL STUDENTS’ EXPLANATIONS 
Going beyond the quantitative results we just presented, students’ explanations, included in their answers, 

provide hunches about underlying processes at play. Explicitly externalized argumentation may not faithfully 
reflect these processes, yet it may provide some empirical indication about interpretation and reasoning 
mechanisms. This is relevant, as the same answer may be obtained by different students through entirely 
different processes, as we shall see. In what follows, we present a selection of explanations which strike us as 
interesting because they illustrate a diversity of interpretations. 

Question 1 

The analysis of explanations reveals phenomena mostly already reported in the literature for adults, e.g. 
in the “think aloud” protocols in Hertwig (1995).  

We present first some argumentations given by students in favor of their choice “B”, i.e., of answers 
violating the conjunction rule. They reflect, in general, the use of communicative attitudes and assumptions 
tuned to a collaborative (as opposed to adversarial) interpretation of the information given.  

This is present, in particular, in the use of pragmatic implicatures, in the sense of (Grice, 1975), that go 
beyond the strict (i.e., classical logical) consequences of the information given.  

We move then to the analysis of the “A” answers and do not find radically different types of explanation 
from those of the “B’s”. The same kind of phenomena will often appear. We therefore conclude that even if 
these answers are consistent with an “extensional” interpretation of the task, in reality the actual reasoning 
appears to be guided by principles different from an extensional representation of it.  

Some of the “B” answers must be seen, according to this, far from being just incorrect or fallacious. Instead 
of this, justifications show us in many cases some very reasonable ways to cope with the information given. 

The expected answers 

A very common justification for violation of the conjunction rule answers (B in our case) makes use of the 
the “typicality” judgment. This is an important case in how the term “probability” may be understood in many 
different senses. It has been shown (Hertwig, 1995), that when there is a disambiguation about probability 
and typicality judgments in the same task, violations of the conjunction rule decrease substantially. Examples 
of justifications like “B is more probable because of her interest in themes of social discrimination and her 
participation in antinuclear demonstrations” (Figure 3) can be understood from this perspective. 

It is difficult in some cases to discriminate the presence of tipicality judgments from other communication 
phenomena in action, with which it can be intertwined. Making explicit reference in argumentation to 
communicative pragmatic principles implies a higher level of discourse which goes beyond the information 
content, passing to the level of reasoning and communication principles involved. Even so, this meta-level of 
discourse is present in some of the justifications as we illustrate next.  

Among the Gricean conversational principles we find that the information given should not be superfluous: 
it must be relevant. As stated in one of Grice’s maxims: “Do not make your contribution more informative than 
is required”. In Figure 4 the student makes explicit use of this meta-discursive principle when he says: “It 
seems to me that the second possibility is more probable because if it were the other one, the given information 
about the interest in discrimination issues would be useless.” As seen in the figure, the student even underlines 
some of the information as if saying: “Why do you give me this information, if you don’t want me to use it?” 
This may even be stronger with traditional school tasks, where mathematical problems assigned usually do 
not provide useless information. 

 
Figure 3. “B is more probable because of her interest in themes of social discrimination and her participation 
in antinuclear demonstrations.” 
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On the other hand, in Figure 5 the student argues: “She is a woman who struggles for her ideals, therefore 
I don’t think that she limits herself to be just a bank-teller, but she attempts also to change society in some 
way, and this is so if she is active in the feminist movement.” We see another manifestation of the relevance 
principle: the “exclusion” implicature (see Hertwig 1995, p.45). According to this, the two options A and B are 
interpreted as exclusive events, as can be seen here by the opposition “but”, and by expressions as “she limits 
herself” and “just a bank-teller”. Based on this interpretation, the information provided about Linda would 
continue to be relevant, in contrast to the conjunction rule interpretation. 

Non fallacious but non-extensional 

In different accounts of the Conjunction Fallacy, the answer “A” is assumed to be the “correct” one according 
to the inclusion A ∩ B ⊆ A and the monotonicity of the probability operator. In this sense, “A” answers are 
assumed to indicate an extensional interpretation of the situation.  

Nevertheless, a completely different view emerges from the analyses of students’ justifications of this 
choice. In fact, in our group, even if 29 % (14 students) of our participants made the “A” choice, none of them 
made an argument along these lines. In contrast our participants made reference to other kinds of 
argumentations using the information given in Linda’s profile (which, according to the extensional 
interpretation, turns out to be superfluous).  

The more predominant line of reasoning (it is present in 9 of the students) is based on the observation that 
in Linda’s profile, her being a feminist is neither explicitly stated, nor a consequence of the information 
provided (Figure 6). 

We do not consider this rationale to be extensional because the inclusion A∩B ⊆ A is in fact independent 
of B being or not being mentioned/implied. Even so, this line of argumentation is radically different from the 

 
Figure 4. Grice collaborative relevance maxim exemplified 

 
Figure 5. A and B interpreted as exclusive events 

 
Figure 6. “Because her being a feminist is not mentioned in any place; even if she is very interested in social 
justice this doesn’t mean she is an activist.” 
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ones discussed above because participants present here a skeptical, critical position with respect to the link 
between the information given and the hypothesis “Linda bank teller”.  

Among our students, only one exhibited “pseudo-extensional reasoning” (Hertwig, 1995), i.e., based on the 
fact that “Linda bank teller” (BT) and “Linda feminist” (F) are taken as incompatible. 

In other words, BT is assumed to be in contradiction to F, hence the choice A is the only option, as for the 
student in Figure 7: “A, because the stereotype of a bank teller is not that of taking part of demonstrations…” 

Curiously, option A answers admit argumentations both based on stereotypes, as with the previous one, 
but also others justifying the choice against stereotypes (Figure 8): “Why should a leftish woman obligatorily 
be a feminist? Or, why if a woman doesn’t follow the the mass media’s ideals about what she is supposed to do 
when 30, is she necessarily a feminist? This is definitely a stereotype.” 

Question 2 

As a first step here we consider the information explicitly integrated in the justifications. We recall that 
there are three pieces of information involved:  

• The base rate (BR) or prevalence: the prior probability that a woman has the disease, 1% in our 
question.  

• The sensitivity of the test (S): the probability that the test is positive given that a woman has the 
disease, here 90%.  

• The false positives rate (FPR): the probability that the test is positive even if a woman does not have 
the disease (9%).  

Results in Table 5 show that the most frequently invoked piece of information is sensitivity: 12 out of 19 
in the first condition (against 7 and 10 for BR and FPR respectively) and 13 out of 21 in the second one (against 
11 for BR). This is consistent with results in Table 3 which are higher for answer D.  

We also observe, that only 2 out of 19 students make reference to all three pieces of information, as Bayes’ 
rule would require.  

In the following we illustrate four salient misconceptions apparent in our students’ argumentations. 

 
Figure 7. “Pseudo-extensional” justification 

 
Figure 8. Arguing against stereotypes 

Table 5. Frequencies of participants invoking pieces of information and their combination with BR = base 
rate, S = sensitivity and FPR= false positives rate. We separate participants in the standard condition 
(including the three pieces of information) and the condition with only BR and S (no FPR) 

 Type of response 
 BR+S+FPR BR+FPR S+FPR BR+S BR S NONE TOTAL 

STANDARD 2 2 6 2 1 2 4 19 
NO FPR 0 0 0 7 4 6 4 21 
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Interchanging conditional probabilities 

As mentioned above a prominent phenomenon when dealing with conditional probabilities is interchanging 
P(X|Y) with P(Y|X). This appears in our results which show a great amount of high probability (D) answers. 
This “fallacy of the transposed conditional” (Falk, 1986) is even manifested explicitly by some students, as in 
Figure 9: “The doctor said that the probability of having the disease with the positive test is of 90%, and she 
received a positive test.” This conveys the precise converse of the information given: “If a woman has the 
disease, the probability that the test is positive is 90%.” 

Others go even further and look at the sensitivity and the false positive rate and see these as making up a 
whole which actually makes up the positive tests. They are mistaking sensitivity with positive diagnosticity 
and at the same time, the false positive rate with the probability of not having the disease testing positive. 6 
out of our 19 students presented this kind of answer. In Figure 10: “76-100%, because if the test is positive 
there is a 90% (probability) that she has the disease, and 9% that she doesn’t.” 

Deterministic attitudes under uncertainty 

Again, as for Question 1, the uncertainty inherent in the notion of probability is difficult to grasp. In some 
of the answers the explanations exhibit a denial of uncertainty per se, and provide deterministic factual 
answers. In Figure 11, for instance, the student says that the probability is “100% because she had a positive 
result, and therefore has the disease” (our emphasis). 

The interference between single case probabilities and statistical information is another problematic issue: 
Student in Figure 12 answers “A” without conviction arguing that “they are not giving us enough data: in 
fact they are giving us data about women in general, not about this woman in particular.” In an analogous 
way, the student in Figure 13, after providing support for his choice “D”, concludes: “Anyway, if the doctor 
reports these statistics, the probability that the woman has the disease is a different one.” 
 

 
Figure 9. “Pseudo-extensional” justification 

 
Figure 10. Sensitivity and false positive rate as alternative possibilities 

 
Figure 11. Deterministic understanding of an uncertainty situation 

 
Figure 12. Single case probability 
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The didactic contract in play 

In some of the previous cases we can see students trying to overcome the need to operate and giving an 
apparently formal procedure with the given numbers. This is part of the established didactic contract 
(Brousseau, 2006). According to this author, in fact, students try to give “an explanation that the teacher 
wanted to hear.” In many cases “the subjects produce the answer least incompatible with their knowledge, 
even when they see very well that it is false: the obligation of answering is stronger than that of answering 
correctly” (Brousseau, 2006, see also the “clause of the formal proxy” in D’Amore, 1999). If our students knew 
Bayes’ formula they would probably try to apply it in a formal way. Not having this tool, they struggle to 
provide some calculation that helps them come up with “the correct” answer, no matter how nonsensical the 
operations are. We see this, e.g., in Figure 14 where the student probably tried to remember something about 
how he used to deal with percentages. 

Yet another example is given in Figure 15: there are three numbers given, so in order to find the answer 
he finds the mean value: “26-50% because the mean is 33.3%.” This is even more salient here because the 
student first selected the intuitive option 76-100% and only later provided his final formal answer. 

Base rate acknowledged and yet wrong answers 

The base rate neglect may occur not just as an unconscious phenomenon. Base rate may be acknowledged 
and yet considered useless. The student in Figure 16 even crosses out this part of information in saying: “This 
datum seems to me superfluous, the important thing is the test reliability.” 

 
Figure 13. Statistics vs. single case probability 

 
Figure 14. Trying to operate the numbers given 

 
Figure 15. Mean value 

 
Figure 16. Explicit base neglect 
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Furthermore, as seen before (Table 5), almost half of our students invoked the base rate (prevalence) in 
their justifications. However, in two cases the low base rate information (1%) was not taken as an argument 
against a high probability of the woman having the disease given a positive test (as is really the case) but as 
an argument in favor of that high probability: “...therefore the woman has a big possibility of being ill, because, 
given that the disease is so rare, almost inevitably the test must be correct” (Figure 17). 

Another student argues: “(She) has a probability of 75-100% because there are few cases of women with 
cancer, so the test has less margin to be wrong.” 

Question 3 

“Time axis fallacy” 

Some of the justifications make it very explicit that the two situations are completely asymmetrical 
exhibiting chronologist and causalist conceptions of conditional probabilities (Gras & Totohasina, 1995).  

In Figure 18 this is persuasively explained: the surrounding line frame establishes how the situation in 
fact is before the extraction of the ball for Marco and Giovanni. This apparent factual reality prevents the 
student from incorporating the (apparently irrelevant) information about the second extraction, which is in 
fact represented in the crossing of the white ball. 

 
Figure 17. Base rate: contrary effect 

 
Figure 18. “Giovanni: The possibility that it is white is less than before because there are two black ones and 
one white one. Marco: It’s equal because when the first ball has been extracted we still had two black and two 
white ones.” 
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Formality vs. intuition 

In the answer given in Figure 19 the student struggles between the previous position and taking into 
account the information given about the second extraction in Marco’s question. She feels the conflict between 
what she supposes to be the correct, formal answer (which is in fact precisely the “fallacy” here) and the 
intuitions given by her “instinct”: “...The extraction of a white ball in the second turn doesn’t change the initial 
possibilities, even if instinct may lead you to think that the first one was a black one.” 

Uncertainty and probability 

As for the previous questions, some of the difficulties for our students were not about conditional 
probabilities themselves and the conflict with time or causality. In some cases students argue using a reason 
analogous to the laplacian “principle of indifference”: in view of uncertainty the possibilities are equally likely. 
For the student in Figure 20, “For Giovanni (the probability) is equal because it is unknown where he put his 
hand extracting the ball, and the same is true for Marco.” 

Here, degrees of uncertainty are not considered: if we don’t know “where the hand was” extracting the ball, 
we are in the condition of total indifference.  

The student in Figure 21, makes use of this same “principle”, but, incorporating the information acquired, 
makes use of a notion of probability as transferable: “In the case of Giovanni, after extracting the first white 
ball, he has a probability of 1/3 of extracting a white ball another time, but the probability of this ball is of 
50% and not of 33.3%, as could be thought, because when we had the 4 balls ...each of them had the 25% of 
being extracted. But when a white one is extracted, the 25% of this unites with the 25% of the other white one, 
and for this reason it is more probable to extract another white one...”  

Here probability is conceived as something objectively existing in the balls themselves which can be 
transferred from one of them to another becoming “united”. 

Observations 

Concluding, we have analyzed students’ explanations and observed that simply classifying their choices as 
right or wrong is insufficient. The next step will be to show how these students prepared and implemented 

 
Figure 19. Conflict between (alleged) formality and (correct) intuitions 

 
Figure 20. Uncertainty 

 
Figure 21. Transferable probability 
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interventions for 5th graders and how they changed their mental models through this process. Our next section 
describes the principles on which the intervention was based. 

THE INTERVENTION 
9th graders were asked to work in a team collaborative setting. They had to prepare materials and 

activities designed to foster children’s intuitions about probabilities. These activities were required to conform 
to the following guidelines:  

• Introduce the expressions “more probable”/ “less probable” based on proportion comparisons.  
• Use situations in which properties can be combined to form conjunctions and their conjoined 

probabilities can be assessed.  
• Use proportions like “m out of n” when referring to favorable out of possible cases.  
• Avoid using conjunction fallacy-type tasks, that is, of the Linda kind. 
We introduced this last requirement because the conjunction fallacy is an important component of of the 

test used (see below). We wanted to avoid training effects: we did not want 5th graders to learn how to answer 
such specific questions, but to acquire an extensional training with conjunctions which could trigger an 
extensional treatment even for conjunctions of events described intentionally.  

There were also some methodological requirements:  
• The materials used should have enactive or iconic character (Bruner, 1966) facilitating interaction and 

visualization.  
• All the members of each team should engage in an active role during the activities.  
• Activities should to be guided by a Socratic interaction between 9th graders and 5th graders.  
• Each activity was expected to last 10-15 minutes. 
During the activities, 5th graders were divided into groups of 5-8 in different locations of the classroom, 

and 9th graders rotated around them. Teachers, both of the 5th and the 9th level, were inside the classroom 
as observers. Some of the activities were video recorded. We will briefly outline them next. Since we had two 
9th grade classes, each of these groups intervened in one of the two 5th grade classes. For this reason only 
half of the following activities were performed in each of them 3. 

We acknowledge that letting elementary school students be taught by their higher level and older 
companions is not something exempt from risks, possible perplexities or even mistakes (either conceptual or 
didactic). Here we tried to minimize these factors: (1) by proposing activities about a very specific topic and 
presented/represented with a number of constraints, as explained above, (2) by asking to 9th graders to write 
down an explicit rationale for the choices made and to simulate in advance the activities (video recordings) (3) 
from this, giving them feedback and preventing possible inadequate or incorrect features in their proposals. 
This is clearly organizationally demanding for their teachers and in traditional schools it is difficult to 
systematically repeat interventions like this one 4. 

5th GRADERS’ PRE-TEST AND POST-TEST 

Participants 

84 5th graders, Ages between 10 and 12 years. Mean age=10.52 years 42 males, 42 females. They had no 
knowledge of probability theory. In fact, the intervention was a first approximation to the topic. 

Procedure 

The 5th grade students were asked to answer a 4 page written questionnaire during their math class. All 
of them finished in less than 20 minutes. 40 of the participants took the questionnaire before the intervention 
and the other 44 after a 1 hour intervention. 

                                                           
3 A detailed description of the activities is offered as an Appendix. 
4 Nevertheless, the pay-offs of this kind of designed interaction may make it worth exploring in connection with other 
mathematical subjects as well, especially if they are faced with a problem-solving approach, something to be done perhaps 
in interactions more extended in time than the one presented here. 
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Design/Materials 

The 5th grade students were asked to answer a 4 pages written questionnaire during their math class. All 
of them finished in less than 20 minutes. Tests with 5 tasks each. 

The tasks of the test are inspired by experiments in (Multmeier 2012; Massini, 2018). Here the tasks were 
slightly modified and adapted. The most salient feature in all of them is the use of natural frequency formats 
and therefore an extensional representation of the situations. This includes, in particular, an interpretation 
of the conjunction in accordance with set theoretic intersection.  

For example:  
Thirty men live in a small village, you can see them represented in the figure (Figure 22) 
Look at all the men in the village: are there more men with moustaches who are wearing a hat or more men 

with moustaches who are wearing a hat?  
Your answer:  
• more men with a moustache wearing a hat 
• more men with a moustache who are not wearing a hat  
Note: In the following questions, you always must write the total number of men on the right side!  
“How many men are wearing a hat?” Your answer: ......... out of ........  
“How many men have a moustache? Your answer: ........ out of ........  
If you randomly choose a man in the village, is it more likely that he is wearing a hat or that he has a 

moustache and is wearing a hat?  
Your answer:  
A crucial question in the test is an adapted version of the Linda problem. 
Marco lives in Bogota and is a 7th grade student. He likes to solve sudokus and play chess in the 

championships of his city. If you have to make a bet, what would you choose?  
Marco is good at basketball 
Marco is good at basketball and at math. 

Results 

Here we focus on a comparison between the two groups. The percentage of correct answers for each of the 
questions is represented in the graph. 

 
Figure 22.  
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We can see a general improvement in the performance on the test. Comparing the means, we see a change 
from the 52 % to the 68% percent.  

Nevertheless, the really crucial questions, from the logical and probabilistic point of view, are considered 
separately in Figure 23. It is in these answers, in fact, that we can see a shift in the interpretation of the 
conjunction towards the intended one.  
 

As we can observe, there is a consistent improvement in all the answers. The mean score almost doubles 
from 23% to 39.5%. Question D5, in particular, passes from being not answered “correctly” by any of the 
participants to a percentage of 11% (5 participants). This shows a transfer effect in this problem, even after a 
very short intervention, as in this case. 

 
Figure 23. Pre-test/Post-test comparison in 5 questions about frequencies involving conjunction of 
characteristics 

 
Figure 24. Mean performance in the 5 conjunction questions (total score=5) 
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9th GRADERS’ POST-TEST 

Participants 

The same 9th grade students that participated in the pre-test (in Section “9th Graders Pretest”). The post-
test was conducted 5 months later than the intervention, so actually the students were at this point at grade 
10. For this reason, the same 3 classes participated but some of the students were no longer in the groups. For 
reasons that we explain next, the number of subjects who participated in the pre-test and that provided 
complete answers was 22 in the treatment group, and 10 in the control group. 

Procedure 

At the beginning of grade 10, students presented a diagnostic proof about the mathematical contents of the 
previous grade, among them some questions on probabilities (which made up our post-test). Our purpose was 
to assess the assimilation of the concepts and techniques described above. We did not want to let students take 
an ad hoc post-test on biases. We chose to ask them to solve tasks included among others on different 
mathematical topics in a regular setting. Given that some of the participants concentrated on other questions, 
there was an important decrease in the number of answers provided to our tasks. 

Design/Materials 

We presented in the test two “conjunction fallacy” questions, analogous to some of those included in 
(Tverski & Kahneman, 1983)  

It would have been too obvious if we presented a Linda-style question, so we presented 2 questions in a 
different setting and with no explicit use of the word “and”. 

Question 1  
Next November 12, there will be a football match between Lichtenstein and Italy for qualifying for the World 

Cup. Sort the following results from the least likely to the most likely:  
a) Italy wins the match 
b) Italy loses the first half of the match 
c) Italy loses the first half but wins the match  
d) Italy wins the first half but loses the match  
Question 2  
Consider a regular 6-sided die with 4 green faces and 2 red faces. Which of the following sequences is most 

likely to come out when rolled? Why?  
1) RGRRR  
2)  GRGRRR  
3)  GRRRRR  
4)  RRRRRR  

Results 

Students were not able to make the transfer of the concepts studied in the setting of the second question. 
Here the misuse of proportional thinking and interference with the concept of randomness were so strong that 
all the answers given were for option 2.  

As for the first question, many of the students succeeded in answering it respecting the conjunction rule. 
Here actually, there were two cases in which it had to be applied:  

Event a) is more probable than the conjunction c)  
Event b) is more probable than the conjunction c)  
These were the only restrictions that we considered for classifying an answer as respecting the conjunction 

rule. The second is really the harder one, for according to typicality criteria c) is designed to be more appealing 
than b). 
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Pre-test vs. post-test comparison 

The conjunction fallacy question of the pre-test and this question of the post-test are not directly 
comparable even if they focus on the same phenomenon. This is so because of format reasons: in the pre-test 
we had only 2 options, whereas in Question 1 here, there are 4!=24 possible orderings for the 4 events 
described. Out of these, only 8 respect consistently the conjunction rule. This factor represents an increase of 
difficulty in the question posed.  

We obtained the results reported in the Table 6. According to these, 11 out of the 22 subjects who answered 
these questions in both tests, moved from a choice violating the conjunction rule in the pre-test, to an answer 
consistent with it. 

Treatment vs. Control Comparison 

Performance in the two groups is shown in Figure 25. We applied Fisher’s exact test which indicates that 
the difference is significant (two-sided Fisher’s exact test; p = 0.049; Cramer’s V = 0.40). This indicates that, 
the odds of answering the question correctly was 6.22 times higher in the treatment group than in the control 
group. 

These results suggest that the whole process of design and intervention with activities did have an effect 
in triggering an extensional treatment of conjunction fallacy tasks. This effect cannot be attributed only to the 
correction and explanation after the initial pre-test, which was provided also to the control group. 

Table 6. Pre-test/Post-test comparison of answers presenting conjunction rule violations (CRV), or respecting 
the conjunction rule (CR) 
 Type of response 
 CRV (Post-test) CR (Post-test) TOTAL 
CRV (Pre-test) 6 11 15 
CR (Pre-test) 0 5 5 
TOTAL 6 16 22 

 

 
Figure 25. Treatment vs. control comparison 
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A SURVEY 
Beyond the previous results, we were interested in evaluating 9th graders’ own perception of different 

aspects of the didactic experience. We assessed their perceptions by means of a survey (Figure 26). 
The survey considered three main dimensions:  
• Cognitive and metacognitive. In question A we focused on the use of the pre-test instrument in order to 

elicit students’ understanding of their starting point. Question B and E focused on the cognitive 
byproducts of having to prepare a topic in order to teach it, and in the suitability of the activities 
themselves.  

• Motivation/engagement. This aspect was one of the aims of the whole design. We assessed it from the 
point of view of the 9th graders’ attitude towards their own curiosity, motivation and effort (questions 
C and F), from their point of view of 5th graders’ attitude towards their own curiosity and motivation 
(question D), and of the possibility of repeating similar experiences in the future (question H). 

• Didactic awareness. We finally focused on the benefits of having better insights into the different 
obstacles faced by themselves and the younger students. This is inquired into, as mentioned, by 
question A; in question G we assessed the students’ view on their “learning by teaching”. 

In all of these aspects, the students’ perception was positive, as can be seen in the table in Figure 26. All 
the evaluations were in mean either 4 or above in a scale from 1 to 5. This is relevant, since many of the 
participants did not usually have a very positive perception and attitude towards mathematics, in general. 

GENERAL DISCUSSION 
We summarize here the main achievements of our study covering three aspects: (1) the relevance of 

analysing students’ argumentations which provide insights on their reasoning; (2) the advantages of working 
with natural frequency formats like “... out of ...” for fostering children’s competencies in probabilistic thinking 
and for triggering extensional reasoning in conjunction tasks; (3) the success of “learning by teaching” and 
“learning from peers” procedures in school levels interactions. 

 
Figure 26. Questions of the survey, evaluated on a scale from 1 to 5 
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Argumentation analysis and the psychology of reasoning 

It is clear, from our analyses of Section “Results High School Students’ Explanations”, that multiple choice 
questionnaires are not enough for understanding the reasoning processes that lead to some of the answers or 
to classify a given option as a “bias”, as if it were a well-determined phenomenon. The three questions 
examined show that a wide spectrum of reasoning processes may lead to the same choice.  

Similarly, the notion of “error” in math education, may turn out to be a simplistic one, and may predispose 
us to ignore common sense or reasonable principles, which may be appropriate in habitual circumstances. Our 
aim was to substantiate the thesis that the tasks analysed are heavily dependent on interpretational issues. 
Interpretation and reasoning are in fact two processes intimately connected and what we see in practice is a 
continuous back and forth between these two stances (“reasoning to an interpretation” and “reasoning from 
an interpretation”, in (Stenning & van Lambalgen, 2008) terminology.  

In this context, the notion of “obstacle” seems to be more neutral than those of “bias” and “error” and leads 
us to the design/engineering problem of endowing our non-idealized students, with adequate representation 
tools which can help them cope with counter-intuitive notions. We also highlight that among the obstacles 
found, the understanding of the very notion of probability is a remarkable one: already Piaget considered the 
crucial passage from not being able to distinguish necessary from chance phenomena, to developing the 
concept of chance (Piaget & Inhelder, 1975). This transition would occur during the formal operational stage, 
yet we still see remnants of its lack, for example in Figure 11 and Figure 20. 

We also observe in the examples provided other conflicts regarding the concept of probability: it may be 
understood as something objectively in the world or something dependent on the information available, it may 
depend on the statistics of a whole population or refer just to single cases…  

These examples support the fact that the term “probable” does not have a unique meaning as shown by 
(Hertwig, 1995). 

Ecological Rationality and Math Education 

In general terms, the results obtained here confirm the existent literature, on the facilitating effects of 
natural frequencies for probabilistic reasoning at different developmental stages. This may be reinforced by 
pictorial/enactive representations and interactive/socially engaging activities. Here we place ourselves in the 
tradition of ecological rationality: probabilities are not per-se inaccessible to our minds, but they can be 
grasped if translated into appropriate representation formats (here, natural frequencies). This suitability is a 
consequence of how information was available in the environments that shaped our cognition. 

Social Aspects, Engagement and Meta-cognition 

Sociocultural aspects connected to mathematics learning and teaching are known to be anything but minor 
factors in the didactic process. In the activities and interactions which we described above these were central 
in at least two instances:  

(1)  in the interaction between members of the teams formed by 9th graders in order to design, prepare 
and perform the activities, and  

(2) in the interaction between 5th graders and 9th graders. 
In the first instance, students had to cooperate with each other. Their teachers noticed that many of them 

were more committed than usual, possibly due to their common purpose. This can also be seen in their video 
recordings. Each of them had a specific role in the team. More importantly, they also had to play, as a team, 
the new “game” or role of having to teach somebody else. This made them approach the subject matter in a 
different way that was “fun” and worth exploring. In fact, several students expressed that they would like to 
repeat the experience (see question H of the survey). This goes in line with the perspective of the “engagement 
structures” (Goldin et al., 2011) in action. Even if here the situation was not spontaneously generated in the 
interior of the classroom, what 9th graders did and how they did it was certainly in accordance with the “Let 
Me Teach You” structure described by Goldin and his collegues.  

Furthermore, the expected benefits for 5th graders were inspired by the possibility of a partial suspension 
of the constraints inherent in the didactic contract (Brousseau). Observing their engaged older school-friends 
and the games these prepared for them was appealing and inspirational. These practices can become a 
valuable complement to traditional teaching as suggested, e.g., by Vigotsky’s Sociocultural Theory. As J. 
Harrys claims in her theory on “the nurture assumption”, children’s behavior is not shaped primarily by that 
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of their parents or teachers, but by that of their peers: “Children identify with a group of others like themselves 
and take on the norms of the group” (Harris, 2011). 

ACKNOWLEDGEMENTS 
We thank Lars Uhlig for his statistical support and Dr. Peter Dines for reading and improving linguistic 

aspects of this paper. 

Disclosure statement 
No potential conflict of interest was reported by the authors. 

Notes on contributors 
Francisco Vargas – Universidad el Bosque, Colombia and Ludwigsburg University of Education, 

Germany. 
Tommaso Benincasa – Universidad el Bosque, Colombia and Leonardo da Vinci School, Colombia. 
Giuseppe Cian – Leonardo da Vinci School, Colombia. 
Laura Martignon – Ludwigsburg University of Education, Germany. 

REFERENCES 
Brousseau, G. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques, 1970–

1990 (Vol. 19). Springer Science Business Media.  
Bruner, J. S. (1966). Toward a theory of instruction, Cambridge, Mass.: Belkapp Press.  
Chernoff, E., & Sriraman, B. (2014). Probabilistic thinking. AMC, 10, 12. https://doi.org/10.1007/978-94-007-

7155-0 
Chevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education. In Encyclopedia of 

mathematics education (pp. 170-174). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-
8_48 

D’Amore, B. (1999). Elementi di didattica della matematica. Bologna: Pitagora.  
Diaz, C., & Batanero, C. (2009). University students’ knowledge and biases in conditional probability 

reasoning. International Electronic Journal of Mathematics Education, 4(3), 131-162.  
Diaz, C., & De La Fuente, I. (2007). Assessing students’ difficulties with conditional probability and Bayesian 

reasoning. International Electronic Journal of Mathematics Education, 2(3), 128-148.  
Duval, R. (2017). Understanding the Mathematical Way of Thinking–The Registers of Semiotic 

Representations. Springer International Publishing. https://doi.org/10.1007/978-3-319-56910-9 
Engel, J., & Sedlmeier, P. (2005). On middle-school students’ comprehension of randomness and chance 

variability in data. ZDM, 37(3), 168-177.  
Falk, R. (1986). Conditional probabilities: insights and difficulties. In Proceedings of the Second International 

Conference on Teaching Statistics (pp. 292-297).  
Fiedler, K. (1988). The dependence of the conjunction fallacy on subtle linguistic factors. Psychological 

research, 50(2), 123-129. https://doi.org/10.1007/BF00309212 
Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? 

Educational studies in mathematics, 15(1), 1-24. https://doi.org/10.1007/BF00380436 
Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. 

Journal for research in mathematics education, 96-105. https://doi.org/10.2307/749665 
Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: 

overcoming low numeracy. Health Psychology, 28(2), 210. https://doi.org/10.1037/a0014474 
Gigerenzer, G. (2008). Rationality for mortals: How people cope with uncertainty. Oxford University Press.  
Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency 

formats. Psychological review, 102(4), 684. https://doi.org/10.1037/0033-295X.102.4.684 

http://www.iejme.com/
https://doi.org/10.1007/978-94-007-7155-0
https://doi.org/10.1007/978-94-007-7155-0
https://doi.org/10.1007/978-94-007-4978-8_48
https://doi.org/10.1007/978-94-007-4978-8_48
https://doi.org/10.1007/978-3-319-56910-9
https://doi.org/10.1007/BF00309212
https://doi.org/10.1007/BF00380436
https://doi.org/10.2307/749665
https://doi.org/10.1037/a0014474
https://doi.org/10.1037/0033-295X.102.4.684


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   325 
 
 
 

Goldin, G. A., Epstein, Y. M., Schorr, R. Y., & Warner, L. B. (2011). Beliefs and engagement structures: Behind 
the affective dimension of mathematical learning. ZDM, 43(4), 547. https://doi.org/10.1007/s11858-011-
0348-z 

Gould, S. J. (1992). Bully for Brontosaurus: Reflections in natural history, New York: Norton.  
Gras, R., & Totohasina, A. (1995). Conceptions d’élèves sur la notion de probabilité conditionnelle révélées par 

une méthode d’analyse des données: Implication-similarité-corrélation. Educational Studies in 
Mathematics, 28(4), 337-363. https://doi.org/10.1007/BF01274078 

Grice, H. P. (1975). Logic and conversation, in Cole, P. and Morgan, J. L. (eds.), Syntax and Semantics 3: 
Speech acts (pp. 41-58), New York: Academic Press.  

Harris, J. R. (2011). The nurture assumption: Why children turn out the way they do. Simon and Schuster.  
Hertwig, R. (1995). Why Dr. Gould’s homunculus doesn’t think like Dr. Gould: The “conjunction fallacy” 

reconsidered. Konstanz: Hartung-Gorre.  
Hertwig, R., & Gigerenzer, G. (1999). The ‘conjunction fallacy’ revisited: How intelligent inferences look like 

reasoning errors. Journal of behavioral decision making, 12(4), 275. https://doi.org/10.1002/(SICI)1099-
0771(199912)12:4<275::AID-BDM323>3.0.CO;2-M 

Hertwig, R., Benz, B., & Krauss, S. (2008). The conjunction fallacy and the many meanings of and. Cognition, 
108(3), 740-753. https://doi.org/10.1016/j.cognition.2008.06.008 

Hintikka, J. (2004). A fallacious fallacy? Synthese, 140, 25–35. 
https://doi.org/10.1023/B:SYNT.0000029938.17953.10 

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the 
construction of formal operational structures. New York: Basic Books. https://doi.org/10.1037/10034-000 

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.  
Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgement under uncertainty: heuristics and biases. 

Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511809477 
Kleiter, G. D. (1994). Natural sampling: Rationality without base rates. In Contributions to mathematical 

psychology, psychometrics, and methodology (pp. 375-388). Springer, New York, NY. 
https://doi.org/10.1007/978-1-4612-4308-3_27 

Kurz‐Milcke, E., Gigerenzer, G., & Martignon, L. (2008). Transparency in risk communication. Annals of the 
New York Academy of Sciences, 1128(1), 18-28. https://doi.org/10.1196/annals.1399.004 

Martignon, L. (2014). Fostering children’s probabilistic reasoning and first elements of risk evaluation. In 
Probabilistic Thinking (pp. 149-160). Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-
0_9 

Martignon, L., & Krauss, S. (2009). Hands-on activities for fourth graders: A tool box for decision-making and 
reckoning with risk. International Electronic Journal of Mathematics Education, 227–258  

Massini, J. (2018). How to foster the coordination of intensional and extensional reasoning in young children 
Analyzing the Conjunction Fallacy in 4th class., Master thesis im Masterstudiengang (M.A.): 
Paedagogischen Hochschule Ludwigsburg.  

Meder, B., & Gigerenzer, G. (2014). Statistical thinking: no one left behind. Probabilistic Thinking (pp. 127-
148). Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-0_8 

Multmeier, J. (2012). Representations facilitate Bayesian reasoning: computational facilitation and ecological 
design revisited (Doctoral dissertation, Freie Universität Berlin). 

Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. Norton.  
Saldanha, L., & Liu, Y. (2014). Challenges of developing coherent probabilistic reasoning: rethinking 

randomness and probability from a stochastic perspective. In Probabilistic Thinking (pp. 367-396). 
Springer Netherlands. https://doi.org/10.1007/978-94-007-7155-0_20 

Slavin, R. E., Hurley, E. A., & Chamberlain, A. (2003). Cooperative learning and achievement: Theory and 
research. Handbook of psychology, 177-198. https://doi.org/10.1002/0471264385.wei0709 

Stenning, K., & van Lambalgen, M. (2008). Human Reasoning and Cognitive Science. Cambridge, MA: MIT 
Press. https://doi.org/10.7551/mitpress/7964.001.0001 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. science, 185(4157), 
1124-1131.  

http://www.iejme.com/
https://doi.org/10.1007/s11858-011-0348-z
https://doi.org/10.1007/s11858-011-0348-z
https://doi.org/10.1007/BF01274078
https://doi.org/10.1002/(SICI)1099-0771(199912)12:4%3C275::AID-BDM323%3E3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-0771(199912)12:4%3C275::AID-BDM323%3E3.0.CO;2-M
https://doi.org/10.1016/j.cognition.2008.06.008
https://doi.org/10.1023/B:SYNT.0000029938.17953.10
https://doi.org/10.1037/10034-000
https://doi.org/10.1017/CBO9780511809477
https://doi.org/10.1007/978-1-4612-4308-3_27
https://doi.org/10.1196/annals.1399.004
https://doi.org/10.1007/978-94-007-7155-0_9
https://doi.org/10.1007/978-94-007-7155-0_9
https://doi.org/10.1007/978-94-007-7155-0_8
https://doi.org/10.1007/978-94-007-7155-0_20
https://doi.org/10.1002/0471264385.wei0709
https://doi.org/10.7551/mitpress/7964.001.0001


 
 
Vargas et al. 
 

 
326  http://www.iejme.com  
 
 
 

Tversky, A., & Kahneman, D. (1983): Extensional versus intuitive reasoning: the conjunction fallacy in 
probability judgment. Psychological Review, 90, 293-315. https://doi.org/10.1037/0033-295X.90.4.293 

Wassner, C., Martignon, L., & Biehler, R. (2004). Bayesianisches Denken in der Schule. 
Unterrichtswissenschaft, 32(1), 58-96.  

Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental 
computation. Cognition, 98(3), 287-308. https://doi.org/10.1016/j.cognition.2004.12.003 

 
 

APPENDIX: DESCRIPTION OF THE ACTIVITIES 

The Die 

9th graders built a 20-faced die, whose faces had numbers from 1 to 20. The faces could be colored either 
blue or orange. The idea was to have, for example, a different number of even faces colored with blue and with 
orange. 9th graders could interview their younger schoolmates asking questions like: “How many orange faces 
do the die have?”, “How many orange faces have even numbers?” “How many blue faces have even numbers?” 
or “If you bet by rolling the dice, what would you bet: will an even and blue number come out or an even and 
orange one?”. 

 
Figure 27. The die 

The Stadium and the Monopoly Game-board 

The students built a polystyrene football stadium. The idea was to simulate the distribution of fans in the 
stands during a football match between two football teams. They distributed thumbtacks to 5th graders 
representing the supporters of the two teams, either blue or red. They asked the students to identify in the 
model of the stadium the different grandstands. Next, they placed the thumbtacks on them. Here the 
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conjunction was obtained taking into consideration which team the fans supported and where they were 
placed.  

The activity with the Monopoly game-board was similar. 9th graders let their younger asked schoolmates 
to place some house and hotels over the different properties. The conjunction of events has been achieved by 
considering two different colors properties and on the number of houses and hotels over them. 

 
Figure 28. A student taking notes 

 

 
Figure 29. The stadium 
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Playing Cards 

Among the games prepared by 9th graders, three made use of cards: two of them with French playing cards 
and the other one with pokemon playing cards. 9th graders prepared an easy game to start the activities. 
Using the French playing cards they selected, from the whole deck, a ten card subset, which was composed of 
nine black cards and a red one. The game consisted of several rounds: 5th graders were challenged to find a 
black card without seeing the deck. At the end of each stage, the selected card was discarded and the next 
round began with one card less. Students were also asked to stop the game whenever they found it to be too 
risky. After few turns students learned that it was easier to lose the game when the set of cards became 
smaller, since the likelihood of choosing the red card grew steadily. In the other activity the students had to 
consider whether the card was a figure or number, and if it was of clubs or hearts. In the pokemon card case 
the students had some fire or water pokemon cards with a power higher or lower than 100 PV. 

 
Figure 30. Pokemon cards 

The Simpsons 

9th graders printed more than twenty images representing the faces of the characters of “The Simpsons” 
and hung them on the white-board. Younger students sat in front of them and were asked to play a game like 
‘Who am I?’. Older students simulated a TV quiz, choosing a character and challenging younger schoolmates 
to guess who he was. They started to ask several questions while presenters removed the figures that had to 
be discarded. Older students used Euler diagrams in order to represents sets discarded and remaining after 
each question thus emphasizing, among other aspects, the inclusion relation and the effects of conjunctions 
and negations. 
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Figure 31. The Simpsons 

The Lego Bricks and Football Clubs T-shirts 

This activity was composed of two successive stages. At first, 9th graders, assuming the teacher’s role, 
asked their 5th graders to divide themselves into two groups (boys and girls), to count the number of members 
of each group and to make a note of the results. They then created three other groups; in this case, the 
characteristic to take into account was the hair color (blond, brown, red), also in this case the students made 
a note of the number of elements of each set. Finally the conjunction of events was introduced making students 
reflect on the number of girls with blond hair and girls with brown hair in the classroom by comparing the 
results to the total number of girls and students with blond or brown hair.  

In a second stage, 9th graders took some different colored Lego bricks (blue, pink, brown, yellow and red). 
They represented the boys in the class with blue bricks, the girls with pink ones, brown for students with 
brown hair etc. Then 5th graders counted the blocks of different colors. In order to represent the status of the 
class using conjunctions, 9th graders joined the bricks (a blue and a brown block to represent a boy with brown 
hair, a pink and yellow one to represent a blond girl etc.). Again, the students made a note of the results of the 
various counts and 9th graders asked questions to make younger students reflect on the conjunction of events:  

“Taking by chance a student in your class, what would you bet: that she is a girl or she is a girl with blond 
hair?”  

At the end, 9th graders stressed that in the Lego bricks task the students obtained the same results as 
with real boys and girls.  

Another activity that took advantage of the division between boys and girls in the class was achieved by 
using the football preferences of 5th grade students. In fact, the 9th grade students have brought T-shirts of 
two popular football clubs. They handed out T-shirts among 5th grade students depending on their football 
preferences. In this case, the event was the conjunction between being a boy or a girl and cheer one or another 
of the teams. 
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Popcorns and Sweets 

Another simple game was prepared by 9th grade students: they cooked different kinds of popcorns, each 
one with a different color and taste: sweet ones (1/3) and two salted ones: normal (1/3) and with cheese (1/3). 
9th graders put an equal number of each type in a little bag and asked the younger ones some questions like: 
“If you had to, would you bet that you would randomly choose a salted one or a sweet one?” or “Would you bet 
that in a random choice, you would select a salted one or one with cheese?” (having in this last question a set 
inclusion).  

A similar activity was performed with candy bars. In this case 9th graders bought biscuits and chocolates, 
the other feature to consider was if the candy bars had a vanilla or cocoa taste.  

Random selections were actually done mixing the candy bars in a bag. 

 
Figure 32. Sweets 
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