International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education Indexed in ESCI
Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions
APA
In-text citation: (Prediger, 2008)
Reference: Prediger, S. (2008). Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions. International Electronic Journal of Mathematics Education, 3(3), 126-154. https://doi.org/10.29333/iejme/223
AMA
In-text citation: (1), (2), (3), etc.
Reference: Prediger S. Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions. INT ELECT J MATH ED. 2008;3(3), 126-154. https://doi.org/10.29333/iejme/223
Chicago
In-text citation: (Prediger, 2008)
Reference: Prediger, Susanne. "Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions". International Electronic Journal of Mathematics Education 2008 3 no. 3 (2008): 126-154. https://doi.org/10.29333/iejme/223
Harvard
In-text citation: (Prediger, 2008)
Reference: Prediger, S. (2008). Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions. International Electronic Journal of Mathematics Education, 3(3), pp. 126-154. https://doi.org/10.29333/iejme/223
MLA
In-text citation: (Prediger, 2008)
Reference: Prediger, Susanne "Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions". International Electronic Journal of Mathematics Education, vol. 3, no. 3, 2008, pp. 126-154. https://doi.org/10.29333/iejme/223
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Prediger S. Do You Want Me to Do It with Probability or with My Normal Thinking? Horizontal and Vertical Views on the Formation of Stochastic Conceptions. INT ELECT J MATH ED. 2008;3(3):126-54. https://doi.org/10.29333/iejme/223

Abstract

Probability classrooms often fail to develop sustainable conceptions of probability as strategic tools that can be activated for decisions in everyday random situations. The article starts from the assumption that one important reason might be the often empirically reconstructed divergence between individual conceptions of probabilistic phenomena and the normative conceptions taught in probability classrooms, especially concerning pattern in random. Since the process of dealing with these phenomena cannot sufficiently be explained by existing frameworks alone, an alternative – horizontal - view on conceptual change is proposed. Its use for research and development within the so-called Educational Reconstruction Program is presented. The empirical part of the paper is based on a qualitative study with 10 game interviews. Central results concern the oszillation between conceptions and cognitive layers and the situatedness of their activation. In particular, diverging perspectives seem to root in contrasting foci of attention, namely the mathematically suitable long-term perspective being in concurrence to the more natural short-term attention to single outcomes. The Educational Reconstruction Program offers an interesting possibility to specify roots of obstacles and to develop guidelines for designing learning environments which respect the horizontal view.

References

  • Abrahamson, D. & Wilensky, U. (2007). Learning axes and bridging tools in a technology-based design for statistics. International Journal of Computers for Mathematical Learning 12, 23-55.
  • Aspinwall, L. & Tarr, J. E. (2001). Middle school students' understanding of the role sample size plays in experimental probability. Journal of Mathematical Behavior 20, 1-17.
  • Borovcnik, M. & Peard, R. (1996). Probability. In: Bishop, A. J. et al. (eds.). International Handbook of Mathematics Education. Dordrecht: Kluwer, 239-288.
  • Borovcnik, M. (1991). A complimentarity between intuition and mathematics. In: D. Vere-Jones (Ed.). Proceedings of the third international conference on teaching statistics, Vol. 1. Voorburg: International Statistical Institute, 363-369.
  • Brousseau, G. (1997). The theory of didactical situations in mathematics. Dordrecht: Kluwer.
  • Buechter, A. , Hußmann, S., Leuders, T., & Prediger, S. (2005). Den Zufall im Griff? – Stochastische Vorstellungen fördern. Praxis der Mathematik in der Schule 47(4), 1–7.
  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher 32(1), 9-13.
  • Duit, R. & Treagust, David F. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
  • Duit, R. & von Rhöneck, C. (1996) (eds.). Lernen in den Naturwissenschaften. Kiel: Institut für Pädagogik der Naturwissenschaften an der Universität Kiel.
  • Duit, R., Gropengießer, H. , & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: the model of educational reconstruction. In: H. Fischer (ed.) Developing standards in research on science education. London: Taylor & Francis, 1-9.
  • Ernest, P. (1994). Constructivism: which form provides the most adequate theory of mathematics learning?. Journal für Mathematikdidaktik 15 (3-4), 327-342.
  • Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Reidel: Dordrecht.
  • Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics 3(2), 9-19.
  • Fischbein, E. et al. (1991). Factors affecting probabilistic judgements in children and adolescents. Educational Studies in Mathematics 22(6), 523–549.
  • Flick, U. (1999). Qualitative Forschung. Theorie, Methoden, Anwendung in Psychologie und Sozialwissenschaften. Frankfurt: Rowohlt Taschenbuch Verlag.
  • Freudenthal, H. (1974). Sinn und Bedeutung der Didaktik der Mathematik. Zentralblatt für Didaktik der Mathematik 8(6), 122–124.
  • Freudenthal, H. (1983). Didactical Phenomenology of mathematical structures. Kluwer: Dordrecht.
  • Gerstenmaier, J. & Mandl, H. (1995). Wissenserwerb unter konstruktivistischer Perspektive. Zeitschrift für Pädagogik 33, 867–888.
  • Green, D. R. (1983). School pupils probability concepts. Teaching Statistics 5(2), 34–42
  • Gropengießer, H. (2001). Didaktische Rekonstruktion des Sehens. Wissenschaftliche Theorien und die Sicht der Schüler in der Perspektive der Vermittlung. Oldenburg: Didaktisches Zentrum der Universität Oldenburg.
  • Hefendehl-Hebeker, L. (2003). Didaktik der Stochastik I: Wahrscheinlichkeitsrechnung. Manuscript, Universität Duisburg.
  • Hußmann, S. & Prediger, S. (2009, in press). Je größer die Wurfzahl, desto sicherer die Wette - Wettkönig. To appear in Praxis der Mathematik 51(25). [The larger the number of throws, the more secure the bet - ‘Betting King’]
  • Jones, G., Langrall, C., Thornton, C. and Mogill, A. (1997). A framework for assessing and nuturing young children’s thinking in probability. Educational Studies in Mathematics, 32, 101-125.
  • Kahneman, D. & Tversky, A. (1982). On the study of statistical intuitions. Cognition 11, 123-141.
  • Kaldrimidou, M. & Tzekaki, M. (2006). Theoretical issues of mathematics education: some consideration. In: M. Bosch (eds.). Proceedings of the 4th Congress of Research in Mathematics Education, Spain 2005, 1244- 1253.
  • Kapadia, R. (1988). Didactical Phenomenology of Probability. In R. Davidson & J. Swift (eds.). The Proceedings of the second International Conference on Teaching Statistics. Victoria, B.C.: University of Victoria.
  • Kattmann, U. & Gropengießer, H. (1996). Modellierung der didaktischen Rekonstruktion. In: Duit & von Rhöneck 1996, 180–204.
  • Kattmann, U. (2003). Vorwort. In: H. Gropengießer. Lebenswelten – Denkwelten – Sprechwelten. Wie man Vorstellungen der Lerner verstehen kann. Oldenburg: Didaktisches Zentrum der Universität Oldenburg, 7–8.
  • Klafki, W. (1969 / 1995). On the problem of teaching and learning contents from the standpoint of critical-constructive Didaktik. In S. Hopman, & K.Riquarts, (eds.)., Didaktik and/or Curriculum. Kiel, Germany: Leibniz-Institute for Science Education (IPN), 187-200. (originally 1969)
  • Knuth, R.A., & Cunningham, D. J. (1993). Tools for Constructivism. In T.M. Duffy, J. Lowyck, & D.H. Jonassen (eds.). Designing Environments for Constructive Learning. Berlin: Springer, 163-188.
  • Konold, C. (1989). Informal Conceptions on Probability. Cognition and Instruction 6(1), 59-98.
  • Konold, C. (1991). Understanding students’ beliefs about probability. In: E. von Glasersfeld (ed.). Radical Constructivism in Mathematics Education. Dordrecht: Kluwer, 139-156.
  • Lecoutre, M. P. (1985). Effect d’informations de nature combinatoire et de nature fréquentielle sur les judgements probabilistes. Recherches en Didactique des Mathématiques, 6, 193- 213.
  • Moore, D. S. (1990). Uncertainty. In: Steen, L. A. (ed.). On the shoulders of giants: New approaches to numeracy. Washington: National Academy press, 95-137.
  • Petri, J. & Niedderer, H. (2001). Kognitive Schichtenstrukturen nach einer UE Atomphysik (SII). Zeitschrift für Didaktik der Naturwissenschaften 7, 53-68.
  • Posner, G. et al. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66(2), 211–227.
  • Prediger, S. & Rolka, K. (2008). Betting as a pathway to the law of large numbers – Self-construction of strategies for initiating conceptual change. To appear in: M. Borovcnik & D. Pratt (eds.). Proceedings of ICME 11 Topic Study Group 13: Research and development in the teaching and learning of probability, Mexico 2008.
  • Prediger, S. (2004). Intercultural Perspectives on Mathematics Learning – Developing a Theoretical Framework. International Journal of Science and Mathematics Education 2 (3), 377-406.
  • Prediger, S. (2005). „Auch will ich Lernprozesse beobachten, um besser Mathematik zu verstehen.“ Didaktische Rekonstruktion als mathematikdidaktischer Forschungsansatz zur Restrukturierung von Mathematik. Mathematica Didactica 28 (2), 23-47.
  • Prediger, S. (2008). The relevance of didactic categories for analysing obstacles in conceptual change: Revisiting the case of multiplication of fractions. Learning and Instruction, 18 (1), 3-17.
  • Shaugnessy, J. M. (1992). Research in probability and statistics: reflections and directions. In: D. A. Grouws (ed.). Handbook of Research on Mathematics Teaching and Learning. Macmillan: New York, 465–494.
  • Sierpinska, A. & Lerman, S. (1996). Epistemologies of Mathematics and of Mathematics Education. In: Bishop, A. J. et al. (eds.). International Handbook of Mathematics Education. Dordrecht: Kluwer, 827-876.
  • Tversky, A. & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76, 105-110.
  • Tversky, A., Kahneman, D. (1973). Availability: a heuristic for judging frequency and probability. Cognitive Psychology 5, 207-32.
  • Tyson, L.M., Venville, G.J., Harrison, A.G., & Treagust, D.F. (1997). A multi-dimensional framework for interpreting conceptual change in the classroom. Science Education 81(4), 387-404.
  • Vosniadou, S. & Verschaffel, L. (2004) (eds.). The Conceptual Change Approach to Mathematics Learning and Teaching. Learning and instruction 14(5), 445–548.
  • Watson, J. (2005). Variation and Expectation as Foundations for the Chance and Data Curriculum. In Clarkson, P., Downton, A, Gronn, D. & Horne, M. (eds.). Building Connections: Theory, Research and Practice: Proceedings of the Twenty-eighth conference of the Mathematics Education Research Group of Australasia, Vol. 1, 35-42.
  • Wittmann, E. C. (1995). Mathematics education as a 'design science'. Educational Studies in Mathematics 29(4), 355- 374.
  • Wollring, B. (1994). Qualitative empirische Untersuchungen zum Wahrscheinlichkeitsverständnis bei Vor- und Grundschulkindern. Habilitation Thesis, Universität Münster.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.