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ABSTRACT. Probability classrooms often fail to develop sustainable conceptions of probability as strategic 

tools that can be activated for decisions in everyday random situations. The article starts from the assumption 

that one important reason might be the often empirically reconstructed divergence between individual 

conceptions of probabilistic phenomena and the normative conceptions taught in probability classrooms, 

especially concerning pattern in random. Since the process of dealing with these phenomena cannot 

sufficiently be explained by existing frameworks alone, an alternative – horizontal - view on conceptual 

change is proposed. Its use for research and development within the so-called Educational Reconstruction 

Program is presented. The empirical part of the paper is based on a qualitative study with 10 game interviews. 

Central results concern the oszillation between conceptions and cognitive layers and the situatedness of their 

activation. In particular, diverging perspectives seem to root in contrasting foci of attention, namely the 

mathematically suitable long-term perspective being in concurrence to the more natural short-term attention 

to single outcomes. The Educational Reconstruction Program offers an interesting possibility to specify roots 

of obstacles and to develop guidelines for designing learning environments which respect the horizontal view. 
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INTRODUCTION 

The problem  

“Do you want me to do it with probability or with my normal thinking?” 

This question, posed by Anne, an eleven-year old student in the author`s probability 

class, was one important starting point for the individual research interest underlying this article. 

While solving probability tasks, Anne perceived a strong gap between the conceptions demanded 

http://www.iejme.com


Prediger 127 

in probability classrooms and her individual conceptions. This article is based on the assumption 

that this (felt) gap is one (not the only) major reason for limited success of many probability 

classrooms.  

Limited success has been attested to probability classrooms by many researchers who 

found eminent learning difficulties and persistent misconceptions in their empirical studies 

(Kahneman & Tversky, 1982 or Fischbein et al., 1991, for two of the most prominent examples). 

The large body of insightful research literature on misconceptions and difficulties has often been 

resumed andneed not be reviewed here again (see the good surveys Shaughnessy, 1992; 

Borovcnik & Peard, 1996, Watson, 2005).  

An even more striking instance of limited success of probability classrooms is the 

phenomenon that people who mastered probability successfully in school often refuse to use it in 

their everyday life like in playing situations. This phenomenon has been described, for example, 

by Shaughnessy:  

“What fascinates me [...] was that the subjects in those studies could have used 

elementary probability and statistics concepts to estimate the likelihood of events in the research 

tasks that were given, but they didn’t.” (Shaughnessy, 1992, p. 465, italics in original) 

In his example, Shaughnessy describes prototypical persons for which the probability 

classroom failed to anchor the concept of probability in their individual thinking as a strategic 

tool that is activated for decisions in random situations out-of-school.  

This phenomenon is disconcerting since these persons could not achieve a central aim of 

mathematical literacy, namely to acquire mathematical concepts, structures and ideas “as tools to 

organise the phenomena of the physical, social and mental world” (Freudenthal, 1983, p. IX). 

Especially crucial are those situations which do not demand the transition of difficult stochastic 

paradoxes but only elementary stochastic thinking (cf. Prediger, 2005). What exactly are the 

obstacles for more successful transitions?  

Although there is much research on stochastic (mis)conceptions concerning very different 

phenomena (see above), most of the empirical studies and articles presuppose that the people 

under consideration do activate stochastic thinking, i.e. that they use their individual probabilistic 

concepts (although these are perhaps diverging from the mathematical ones).  

The focus of this article is more fundamental in the sense that it considers the general 

willingness to activate stochastic thinking in out-of school contexts at all. This disposition for 
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transition is a basic, necessary (but of course not sufficient) condition for successful stochastic 

thinking. 

Research Questions and Structure 

The central question guiding to the author’s design research in a long-term perspective is  

(1)  How should learning arrangements be designed for that the concept of probability is 

activated as a strategic tool for decisions in random situations? 

It is treated in a long-term project and started step by step along the following questions:  

(2) How can the (perceived) gap between everyday conceptions and mathematical 

conceptions be conceptualized theoretically so that it can offer an orientation for the 

design aimed at in question (1)?  

(3) What are main differences between everyday and mathematical conceptions for the 

specific subject probability that feed the perception of a gap? 

(4) How can the individual repertoire of prior conceptions be extended to mathematical 

conceptions, and how can learners be enabled to chose the adequate conceptions in 

varying contexts?  

(5)  How can we build bridges between individual and mathematical conceptions? 

(6) In which research framework can the empirical studies concerning question (3) be 

combined most successfully with design considerations of question (5)?  

The article takes the risk of not adopting the usual style of a classical research report that 

documents design and results of one finished research study in a systematic way. Instead, it 

intends to report on a longer-term process with different steps of theory building, mathematics 

considerations and selected results from three small-scale qualitative empirical studies (of which 

only one can be presented in more depth). The article presents longer-term research as an 

(ongoing) process, in analogy to the process-orientation demanded from reform mathematics 

classrooms.  

The research process starts with making explicit an adequate conceptualization of the 

learning processes in order to substantiate the assumption that the transition problem is linked to 

the differences between everyday and mathematical conceptions (Section 2). The suggested 

horizontal view on the formation of conceptions has a critical normative part that must be 

explained in Section 2.3.  
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In the next step, a long-term research program is presented that is suitable for this 

purposes insofar as it puts these differences into the centre, namely the Educational 

Reconstruction Program (Duit et al., 2005). Its basic theories and methodological components 

have proved to be very fruitable when a mediation between individual and scientific conceptions 

is needed.  

The program does not only intend to analyse and understand learning difficulties but also 

to develop learning environments for overcoming difficulties and for initiating more sustainable 

learning processes as will be outlined in Section 3. Section 4 shows how the program was applied 

to the one special case of elementary use of stochastic conceptions. 

 

THEORETICAL BACKGROUND:  

VERTICAL AND HORIZONTAL VIEWS ON THE FORMATION OF CONCEPTIONS 

Why do probability classes often fail to install the concept of probability as a strategic 

tool that is activated for decisions in random situations, even if the concepts are successfully 

learned in school? Before giving a theoretical account for this transition problem, it is important 

to remark, that it is not specific to probability but a well-known and largely discussed problem in 

mathematics and science education. Especially science education studies have often described the 

problem that students successfully acquire scientific conceptions in the classroom, whereas in 

out-of-school situations, they prefer relying on their pre-instructional everyday conceptions (Duit 

et al., 2005).  

The term ‘conception’ itself must be explained since it is widely used in mathematics 

education but with very different meanings (cf. Kaldrimidou & Tzekaki, 2006 for a critical 

overview on different uses). In this article, conceptions are defined as all cognitive constructs 

which “students use in order to interpret their experience” (Kattmann & Gropengießer, 1996, p. 

182). These constructs are located on different epistemological levels of complexity, comprising 

for example concepts, intuitive rules, thinking forms, and local theories (Gropengießer, 2001, pp. 

30 ff.).  

Social Constructivism as a Background 

The article is based on a social constructivist position (e.g. Ernest, 1994), in which the 

generation of sustainable mathematical conceptions is conceptualized as an active, individual 

construction of mental structures. Hence, the formation process of conceptions cannot be 
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understood in simple terms of cause and effect relations between instruction and learning (cf. e.g. 

Knuth & Cunningham, 1993; Gerstenmaier & Mandl, 1995). Constructivist epistemology starts 

from the basic assumption that each perceptive activity of an individual consists of construction 

and interpretation, being regulated by social negotiation and the need to fit to the experienced 

phenomena (Ernest, 1994, p. 330 ff). 

This offers a first account for the empirically manifest phenomenon that not all learning 

processes happen as intended by the teachers, since the internal processes of construction can 

only be influenced indirectly. Nevertheless, this does not presuppose teaching to have no impact 

on individual learning processes. Instead, it is supposed that learning trajectories can be initiated 

and influenced by designing appropriate learning environments (Sierpinska & Lerman, 1996 for 

an overview).  

Beyond designing principles for learning environments, the social constructivist basis 

offers the emphasis on the importance of pre-instructional conceptions as a central influencing 

factor for formation processes of conceptions. 

Prior Conceptions and Conceptual Change in a Vertical View 

Whereas some researchers focus on the dissonance between everyday conceptions and 

scientific conceptions, this article prefers the wider notion prior conceptions, meaning 

conceptions that individuals have constructed before a systematic instruction on the specific 

subject. These can be everyday conceptions but also those acquired earlier in the school 

biography (which is important for example in the context of extending number domains; Prediger, 

2008).  

Empirical studies in science education research have shown that the persistency of pre-

instructional conceptions is one of the key reasons for the instability of scientific conceptions in 

the individual thinking.  

“Learning processes proved to be most crucially influenced by the pre-instructional 

conceptions that student bring with them into the classrooms … These conceptions determine 

how aspects presented by the teacher or the textbook are interpreted and hence how they are 

understood. Often, the pre-instructional conceptions and the conceptions to be learned are 

contradictory to each other. This is our account for many learning difficulties which lead, in the 

sum, to an only poor success of many scientific classrooms.” (Duit & von Rhöneck, 1996, p.7, 

translated SP). 
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Although prior conceptions had seldom been considered in mathematics education in 

many domains, research in probability learning has already been concerned with it since the 

1970ies. One starting point were Fischbein’s studies on primary intuitions (1975); Shaughnessy 

(1992) called their existence a “major problem for the teaching and learning of probability and 

statistics concepts” (p. 472) and summarizes:  

“Our students are not tabulae rasae, waiting for the normative theory of probability to 

descend from our lips. Students already have their own built-in heuristics, biases, and beliefs 

about probability and statistics.” (Shaughnessy, 1992, p. 472, see also Konold, 1989) 

With respect to the importance of everyday conceptions, probability seems to play a 

special role within the mathematical domains. Due to their abstractness, many mathematical 

objects seem to be less connected to the everyday thinking than in science education. In contrast, 

probabilistic concepts describe empirical phenomena of randomness which play a similar role in 

everyday life as for scientific concepts.  

On the theoretical level, the importance of individual prior conceptions in all domains can 

be explained on the basis of the constructivist position: individual, active constructions of mental 

structures always build upon the existing prior mental structures by appropriation to experiences 

with new phenomena (Gerstenmaier & Mandl, 1995).  

The general constructivist account for the crucial role of prior conceptions has been 

extended to the so-called conceptual change approach (Posner et al., 1982; Duit & Treagust, 

2003). According to the conceptual change approach, learning mostly means “re-learning, since 

prior conceptions and scientific conceptions are often opposed to each other in central aspects” 

(Duit & von Rhöneck, 1996, p.158, translation SP) . 

Although the conceptual change approach has gained growing interest in mathematical 

areas like arithmetic (e.g. Vosniadou & Verschaffel, 2004, Prediger, 2008), it has seldom been 

applied to probability. One important exception is Konold (1991), who used the conceptual 

change approach in order to describe students’ difficulties and possible strategies to facilitate 

conceptual change in probability:  

“Long before their formal introduction to probability, students have dealt with countless 

situations involving uncertainty and have learned to use words such as probable, random, 

independent, lucky, chance, fair, unlikely. … It is into this web of meanings that students attempt 

to integrate and thus to make sense of their classroom experience… My assumption is that 

students have intuitions about probability, and that they can’t check these in at the classroom 
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door. The success of the teacher depends on how these notions are treated in relation to those the 

teacher would like the students to acquire…” (Konold, 1991, p. 144) 

In consequence, Konold suggests several instructional techniques for confronting and 

overcoming stochastic misconceptions developed by physics educators for dealing with students’ 

pre-instructional misconceptions. The proposed teaching strategies are basically in line with the 

classical propositions given by Fischbein for building secondary intuitions onto the partly 

problematic primary intuitions (1975):  

“For instance, in order to create new correct probabilistic intuitions the learner must be 

actively involved in a process of performing chance experiments, of guessing outcomes and 

evaluating chances, of confronting individual and mass results a priori calculated predictions, etc. 

New correct and powerful probabilistic intuitions cannot be produced by merely practising 

probabilistic formulae.” (Fischbein, 1982, p. 12) The common question for research and 

development of all these conceptions (with explicit connection to conceptual change or without) 

is the following:  

How to initiate a sustainable development from prior individual conceptions to the 

intended mathematical conceptions?  

Beyond the domain-specific answers given by Fischbein and others for probability, it 

proved of a valuable research strategy in other domains to investigate the learners’ prior 

conceptions and put them into relation to a carefully specified catalogue of scientific conceptions 

to be learned. By contrasting individual and intended conceptions, one can gain ideas for the 

development of fruitful learning environments that facilitate the conceptual change process (this 

is, in short terms, one basic idea of the research program of Educational Reconstruction which is 

presented in Section 3).  

Suggesting a Complementary Horizontal View 

As long as the focus of research and development is on the vertical transformation from 

prior conceptions to mathematical conceptions, this refers to a learning theory which is based on a 

vertical view.  

Vertical views are characterized by the aim of overcoming individual (mis-)concepttions 

and carefully substituting them by regular conceptions, like the primary intuitions (Fischbein, 

1975) that are to be transformed into secondary ones.  
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Without any doubt, this vertical view is very important for the conceptions of probability. 

Nevertheless, it shall here be complemented by a horizontal view. The horizontal view starts from 

the empirical observation that the far reaching aim of conceptual change, i.e. of overcoming 

individual (mis-)conceptions by mathematics classrooms is often not reached. Many empirical 

studies show that individual conceptions often continue to exist next to the new conceptions and 

that they are activated situatively (cf. Duit & Treagust, 2003). Shaughnessy (1992) and Konold 

(1989) have emphasized this observation for probability: when people make decisions in 

probabilistic situations, both  the collection of informal prior strategies as well as taught 

probabilistic strategies are presumably available. Konold emphasizes that “which of these is 

applied in a particular instance is a function not only of individual differences in knowledge of 

probability but also of situation variables.” (Konold, 1989, p. 61) 

Petri and Niedderer (2001) have explained this phenomenon for the domain of physics 

and described it in their theoretical model of cognitive layers. They emphasize that “students can 

activate opposed explaining strategies or conceptions for a given problem without any need for a 

strong variation of context” (Petri & Niedderer, 2001, p. 53, translation SP).  

The theoretical construct of a cognitive layer system allows them to assign individual 

explaining strategies and conceptions to layers which are developed at different moments in the 

learning biography and can build upon each other structurally. Exploratory case studies show how 

these layers co-exist, that is why they are here conceptualized as being stratified horizontally, not 

vertically. They show how they can differ with respect to the relative strength of the scientifically 

intended conceptions.  

The model of cognitive layers can help to understand the vignette of Anne in the 

introduction: Some weeks before she asked her question “Do you want me to do it with 

probability or with my normal thinking?”, Anne had successfully acquired Laplace’s probability 

concept in different tasks and had applied it in different tasks. But when asked some weeks later 

to bet in a new dice game (on the most likely sum of two dices), she posed this quoted question. 

Anne seemed to be aware of the co-existences of two different cognitive layers. She knows that 

usually, mathematics teachers value other layers than her “normal thinking”. At the same time, 

the expression “my normal thinking” expresses that she could not really become acquainted with 

the intended mathematical conceptions so far. She does not yet consider this cognitive layer to be 

her thinking which gives evidence of a relative weakness of this new cognitive layer.  

In the concrete moment, Anne is not sure when to activate the new layer and hopes that 

the teacher “allows” her to go back to the more familiar “normal thinking”. The beginning of the 
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question “do you want me to” gives evidence that Anne would have directly chosen her “normal 

thinking” if the moment would have been out-of mathematics classroom and without her teacher 

being present.  

This story of Anne tells only a singular but nevertheless compelling case, and it is 

completely in line with the results from Petri & Niedderer’s (2001) systematic empirical studies. 

Both suggest the evolution of a hypothetical answer to the question why some people do not 

activate even elementary stochastic conceptions in out-of-school contexts. This hypotheses shall 

be pursued in Section 4.1.  

The descriptive empirical findings concerning a horizontal view for conceptual change 

have also impacts on the normative dimension: Is it really an adequate aim to demand a complete 

transformation of conceptions? For many science education researchers, the aim of a conceptual 

change process is not the complete substitution of prior conceptions by scientific ones, but the 

shift of contexts in which everyday and scientific conceptions are to be activated (Duit & von 

Rhöneck, 1996, p. 146).  

“Conceptual change does not imply that initial conceptions are ‚extinguished’. Initial 

conceptions, especially those that hold explanatory power in non-scientific contexts, may be held 

currently with new conceptions. Successful students learn to utilize different conceptions in 

appropriate contexts.” (Tyson et al., 1997, p. 402)  

In Prediger (2004), this perspective was characterized as a horizontal view, and it was 

discussed carefully by relying on the theory of intercultural learning. Here, the focus for the 

horizontal view is on the idea that learning processes should be conceptualized on the basis of a 

persisting co-existence of prior and mathematical conceptions. This idea is in line with 

Abrahamson and Wilensky’s (2007) approach to take primary intuitions as legitimate ideas which 

can persist when weaved into a new framework. For this, the students’ repertoires of conceptions 

and strategies have to be extended.  

Hence, the research question concerning the formation of conceptions must be refined in 

an vertical view into he following:  

(4)  How can the individual repertoire of prior conceptions be extended to mathematical 

conceptions, and how can learners be enabled to chose the adequate conceptions in 

varying contexts?  

It is clear that this question can only be answered by careful empirical studies which clarify the 

differences and commonalities as asked in the third question:  



Prediger 135 

(3) What are the main similarities and main differences between everyday and mathematical 

conceptions for the specific subject probability that feed the perception of a gap? 

Before presenting some selected results from suitable case studies in Section 4, the next section 

will provide an answer to the methodological question:  

(6) In which research framework can the empirical studies concerning question (3) be 

combined most successfully with design considerations of question (5)?  

In the following section, the research program of Educational Reconstruction is presented since it 

allows to follow the vertical and horizontal descriptive and constructive questions by integrating 

different approaches of didactical research and development.  

 

THE EDUCATIONAL RECONSTRUCTION PROGRAM 

The Educational Reconstruction Program was originally developed in science education 

as a theoretically based framework for subject related research and development in teaching and 

learning (Duit, Gropengießer, & Kattmann, 2005). The program shares its orientation of 

mathematics and science education as a design science (Wittmann, 1995) with many researchers 

who emphasize that design experiments with long-term iterative processes of design and theory 

development are a major task for the discipline of mathematics education (e.g. Cobb et al. 2003).  

The Educational Reconstruction Program has a special focus for its design activities, 

namely the mediation between individual and scholarly conceptions. On the basis of the sketched 

learning theory, the declared aim is to facilitate conceptual change processes in vertical and 

horizontal view by specifying links between learners’ conceptions and scientific conceptions and 

building upon these links for the design of learning environments. 

For this aim, three central tasks of mathematics and science education are carried out (see 

Figure 1):  

 

 

 

 

 

 

 
Figure 1: Integrating three components of (Science and) Mathematics Education in the Educational 

Reconstruction Program 

Design of  
learning environments 

Investigation into  
learners’ perspectives  

Clarification 
and analysis of content
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• firstly, the clarification and analysis of subject matter (like probability); 

• secondly, the investigation into learners’ perspectives with a focus on conceptions about the 

chosen mathematical or scientific subject;  

• thirdly, the design of learning environments (e.g. instructional materials, learning activities, 

lessons or learning sequences). 

The component of clarification and analysis of content is based upon the assumption that 

the content of school mathematics is not completely determined by the academic discipline. 

Instead it has to be reconstructed according to specific educational intentions with respect to 

contexts, genesis and meaning. This clarification is influenced by two other components:  

“Clarification and analysis of science content is informed by the other two components of 

Educational Reconstruction. The emerging design of a learning environment and its content 

requirements will narrow down the extent to which the particular science content has to be 

clarified. Our awareness of the students' point of view may substantially influence the 

interpretation of a particular science content so that a different position does not only improve the 

researchers' understanding of learning but also of the referring science content” (Duit et al., 2005) 

Methodologically, this clarification can, for example, be guided by Didactical 

Phenomenology according to Freudenthal (1983) and by Educational Analysis according to 

Klafki (1995, see Duit et al., 2005 for more details).  

The component of investigation into learners’ perspectives is crucial for the 

constructivist research program for being able to include the learners’ starting points into the 

development of learning trajectories. Methodologically, this component demands empirical 

research on individual conceptions and their backgrounds which is usually done by case studies in 

clinical interviews or classroom observations. 

These different aspects are consequently integrated for the third component, namely the 

design of learning environments which mediate horizontally and vertically between the learners’ 

perspectives and the mathematical issues to be constructed.  

Each of these three components of the program has insularly been addressed in many 

studies in mathematics and science education and with many different interesting methodologies. 

The main incentive of the Educational Reconstruction Program is their integration within one 

longer-term project by building upon the different results in an iterative process of research and 

development within a theoretically guided program.  
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Within this iterative process, the key step is the careful confrontation of mathematical and 

individual perspectives since this step has deep impacts on the understanding of both parts. This 

mutual effect can be conceptualized by a motto given in a quotation of Freudenthal (cf. Prediger, 

2005): “I want to observe learning processes in order to understand mathematics better.”  

(Freudenthal, 1974, p. 124) 

With this motto, the usual relation between educational analysis and empirical research 

on learning processes is inversed in a way which is astonishing at first sight. Freudenthal (e.g., 

1983) and others have often shown that a careful a priori analysis of contents is necessary in order 

to understand learning difficulties. The quoted statement refers to the inverse direction which is 

less usual but equally important: the careful analysis of learning processes and especially 

appearing obstacles can contribute fundamentally to an epistemologically careful analysis of the 

mathematical content.  

 

FIRST STEPS IN AN EDUCATIONAL RECONSTRUCTION OF PROBABILITY 

Having laid some conceptual and theoretical foundations in Section 2 and 3, this section 

documents the first steps of this research process that takes place within the Educational 

Reconstruction Program. These first steps here serve as a methodological case study to introduce 

the research program, and this is why the section does not follow the usual structure of presenting 

research results. Instead, the iterative research process and the emergence of scientific insights 

into the field are presented in the order of their genesis, without strong emphasis on the 

procedures of data analysis because this would distract from the longer-term perspective.  

Results from a Preliminary Study as Contrasting Example  

In order to analyse the transition problem and its possible reasons (research questions (2) 

and (3)), a preliminary study was conducted as a classroom observation in a grammar school class 

(grade 10) during the students’ first encounter with probability. From this study, only some 

results can be presented here (see Prediger, 2005 for more details).  

In the second lesson of the teaching unit, the students played the game “Sum of Two 

Dice”. In small groups they were supposed to bet on the number which is most likely to appear as 

a sum of two dice. The students’ journals and their video-taped interaction gave some impression 

how they approached the situation in a probability class.  
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Although differences could be reconstructed in the class (e.g. the use of representations, 

the choice of event space, and the interplay between the empirical and theoretical perspectives of 

the problem situation), there was one striking uniform phenomenon: There was no single student 

in the classroom who did not try to determine the probability of each sum, either by theoretical 

considerations like counting the possibilities for the sums in an event space (Laplace probability) 

or empirically by specifying the relative frequency of the sums in (more or less long term) 

experiments. Both activities can be called probabilistic approaches even if they were not always 

perfect in their concrete implementation (e.g. often, the event space was not correctly chosen or 

the experiments to short, e.g. for n=50). 

This result is contrasting to those of many studies showing that people refuse to activate 

probabilistic conceptions in analogue situations out of school (Shaughnessy, 1992). The class 

seemed to be completely prepared to adopt probabilistic approaches after only 45 minutes of 

instruction in probability. Whereas many people out of school argue that one cannot determine 

the best bet by probability at all, the students in the observed classroom had no doubt at all about 

the sense of using either theoretical or empirical probabilistic conceptions. 

In searching for first reasons for the ineffectiveness of probability teaching, this result 

was a first instance for the context-dependency of cognitive layers (see section 2). Do 

probabilistic conceptions only make sense in classroom contexts but not outside?  

Furthermore, this preliminary study gave first evidence for the impact of the implicit 

didactic contract between teacher and students (Brousseau, 1997). The students in this classroom 

perfectly knew that in a teaching unit on probability, they are expected to use probabilistic 

conceptions for their bets in the game of two dice. (One student stated it explicitly: “I knew it’s 

probability, because this is what we learned in the last lesson”). 

But once the didactic contract is out of work, the seemingly constructed knowledge 

appears to become unstable, and the gap becomes to big to be overcome.  

Investigations into Learners’ Perspectives – A short report on an interview study 

Research design 

In order to investigate into learners’ perspectives more independently from mathematics 

classrooms, a clinical interview study was conducted with 10 dyads of children who had not 

encountered probability in school before. In order to enhance explicit communication, the 20 
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children (at the age of 10 or 11) were interviewed in pairs for about 45 min. All interviews were 

completely videotaped.  

The interviews were guided as clinical game interviews (Wollring, 1994) and based on 

the slightly modified game “Sum of Two Dice”: The children were supposed to bet on number 

cards between 1 and 12. The winning number was determined by the sum of two thrown dice. 

Childrens’ activities during the game interview were betting, playing, journalizing the throwing 

outcomes, and reflecting on the question “Which is the smartest number to bet on?”. 

In this setting, the research question (3) was followed by reconstructing students’ pre-

instructional conceptions and strategies. This was operationalized by analyzing how children 

explain and justify the dice results and their decisions for betting in the game situation – 

independent of mathematics classrooms. Hence, the research interest was not focused on the 

childrens’ interpretations of existing conventional mathematical concepts (as it is often the case in 

empirical studies), but on their individual conceptions of moments in the game situations. The 

classical probabilistic concepts can emerge in order to conceptualize the situation, but they do not 

necessarily emerge for all children.  

 

Data analysis  

The transcripts of all interviews were analysed sequentially in a first step and coded 

closely to the text in a second step in a category-developing way (Flick, 1999) by the author and 

another well-trained coder. The resulting coding scheme covered seven categories for individual 

conceptualizations of the way in which the children explained or justified the moments of the 

game.  

The built categories were (by theoretical considerations) assigned to different cognitive 

layers which are not hierarchically organised. Here, the central categories for individual 

conceptions are presented each with a typical statement taken from the transcripts: 

1. Cognitive Layer: Everyday conceptions 

• significance conception: sums are chosen or the throwing is explained due to the individual 

significance of the number (e.g. “I have thrown the 8 several times. And I already know why. 

[…] Because I am born on 16/8.”) 
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• reachability conception: single numbers and some sums are considered to be different likely to 

appear, hence sums differ in their reachability with respect to their summands (e.g. “For 6, you 

can get Five and One, but this is difficult […] if you are really lucky, you get two Threes.”) 

• persuasibility conception: dice can be persuaded or influenced to throw a wished sum. (e.g. 

“Sometimes, I thought, oh dear, I urgently need a 6, and then I had a 6.”)  

2. Cognitive Layer: Empirical conceptions  

• long-term empirical “experiences”: some students refer to long term experiences to estimate 

the likelihood of sums: “When playing games I have always been lucky with the 5.”  

• empirical experiences in the game interview: decisions are taken with reference to former 

outcomes in the game (“I will take the 10, because we saw that the dice can do it.”)  

3. Cognitive Layer: Theoretical conceptions 

• random is arbitrary: refuse to explain anything since random is considered to be not 

determinable at all (“We cannot say anything, it is just luck.”) 

• Laplace conception: counting possibilities of outcomes as a theoretical strategy to specify the 

probability (“I have chosen the 7, because there are six ways to get it, and for the others, there 

are only five or three. Hence, we can more easily throw a 7.”) 

For controlling the reliability of the coding scheme, a third, independent coder re-

analysed the data and achieved an interrater agreement of Cohen’s kappa = 0.75 for assigning the 

categories and = 0.96 for assigning the layers.  

At first sight, these layers seem to correspond to the different approaches to probability as 

discussed by many authors: the subjective approach, the empirical (frequentistic) approach and 

the classical, objective approach (e.g. Kapadia, 1988). But considered more deeply, this 

parallelizing would be misleading. The everyday conceptions here do not correspond to the 

subjective approach, in which probability is treated as the degree of belief (e.g. Kapadia, 1988). 

This is especially true for the persuability conception, a well known everyday conception which 

has often been found in empirical studies (e.g. Fischbein et al., 1991; Wollring, 1994). They 

appear as alternative cognitive layers even in the thinking of well educated adults. Also the 

significance conception  is well documented in the literature (e.g. Wollring, 1994; Borovcnik & 

Peard, 1996), it might be a candidate for transforming into a subjective probability conception in 

a later learning process. Underneath the reachability conception, one can often find the well 

known refusal of children to ascribe equal probability to each elementary outcome (e.g. Green, 
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1983). Even clearer, the expressed conceptions categorized in the empirical layer do not 

correspond directly to the intended frequentistic conception. The expressed idiosyncratic long-

term experimental experience might sometimes be linked to the availability heuristic (Tversky & 

Kahneman, 1973), the empirical evidence in the game interview might be a point of contact for a 

later transformation into the intended conception. The conception “Random is arbitrary” is a 

theoretical position that does not connect to classical approaches either. 

After coding and categorizing, the coded (and for this purpose decontextualized) 

statements were re-situated in the course of the transcript. This step of data analysis is important 

for reconstructing the individual reasons and senses behind the statements. Since the activation of 

different cognitive layers is considered to depend on the situation in which individuals have to 

take decisions (see Section 2.3), re-situating allows to reconstruct the moments in which the 

different individual conceptions appeared. Although all of them were formulated in the same 

global game situation, these moments (i.e. the micro-situations) differ enormously.  

 

Selected Result 1: Oszillation 

Already the categories in the coding scheme offer an important result of the first step of 

the data analysis. Once established, the coding scheme allowed an overview on the complete 

interviews and their development. 

The main result of this overview is the reconstructed oszillation between different layers 

and conceptions. It is typical that all but two quotations by which the categories were illustrated 

come from one single pair of children (well shared between both of them). Most of the observed 

children used very different conceptions for explaining the concrete outcomes, the long-term 

patterns and their predictions. In only one out of 10 interviews, the two children experienced a 

linear learning process from the everyday layer to the mathematically more fruitful theoretical 

layer with a Laplace conception. In contrast, all other interviews show children who oscillate 

between different layers and conceptions forward and backward. Hence, the concurrence of 

cognitive layers even appears within the temporarily limited game interview situation.  

 

Selected Result 2: Patterns in micro-situated use 

For some categories, patterns could be reconstructed in which kind of micro-situations 

they were used. For example, the significance conception appeared most often in moments were 

the students tried to explain or predict single outcomes.  
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Discussion: Levels of development or situated layers? 

Before discussing the selected results, one important limit of the study must be 

mentioned: Given that only 10 pairs of children took part in the game interviews, there is already 

a wide spectrum of individual conceptions. Nevertheless, the data sample cannot be assumed to 

be saturated, one would have expected at least well known individual conceptions like the so-

called equiprobability bias (Lecoutre, 1985) which had not yet appeared within the sample. 

The result 1 concerning the oszillation between categories and layers is in definitive 

contrast to attempts of other researchers for specifying levels of developments in neo-piagetian 

traditions (e.g. Jones, Langrall, Thornton and Mogill, 1997). Whereas those researchers assign 

individual conceptions of probability, variance and expectation to certain levels of development 

which children reach at a certain age, the results here suggest that children (and also adults) move 

between different layers even within a sequence of approximately 45 minutes.  

Many researchers in mathematics education concentrate their efforts on the elimination of 

these everyday conceptions and reach this aim with temporary but rarely sustainable success 

(Shaughnessy, 1992). In contrast to adopting this vertical view, this article revisits the well-

known empirical phenomenon in a horizontal view, in which the individual conceptions are not 

considered to be misconceptions that have to be overcome as soon as possible, but as concurrent 

conceptions which co-exist with newly developed mathematical conceptions even in the long run 

(see Section 2.3).  

One explanation for the sustainability of these persisting (seemingly wrong) individual 

conceptions is that they might also have rational roots: individuals do not decide to abandon their 

everyday conceptions because they prove of value in certain situations. This is why Kattmann 

pleads for an analysis in a horizontal view in order to specify the reasons for the discrepancy.  

“Beyond the formation and the stability of everyday conceptions, we often find reasons 

which determine the learning process themselves. That is why they cannot be simply excluded or 

overcome. Instead, knowing them allows to use the individual conceptions in a more adequate 

and effective way for the learning of subject matter content.” (Kattmann,, 2003, p. 7, translation 

SP). 

The reconstructed patterns in micro-situated use (Result 2) give an important access to 

make sense of students’ thinking: If the activation of layers shows pattern in the micro-situated 

use, it might be more than an eliminable misconception. For explaining this point, the discussion 
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is here focused on the example of one selected category, namely the significance conception 

(sums are chosen or throwing is explained due to the individual significance of the number).  

As explained above, the significance conception is a well known individual approach 

which is an obvious misconception since “the dice do not know your birthday”, as one 

interviewee said. Though, what can it mean to consider this individual conception to be a 

legitimate perspective? How to find any rational sense in it?  

The step of re-situating the instances of the category shows that children are most likely 

to activate a significance conception in micro-situations where they focus their attention on the 

prediction or explanation of single outcomes instead of long-term patterns. This focus of attention 

on single outcomes has already been found in studies by Konold (1989) and Borovcnik (1991) as 

an important factor for individual thinking:  

 “errors in reasoning under uncertainty arise not only from indiscriminate application of 
natural assessments, but also from analyses based on a different understanding of the goal 
in reasoning under uncertainty.” (Konold, 1989, p. 61, italics added by SP].  

Konold specified a model called the outcome approach: “According to this model, 

referred to as the outcome approach, the goal in dealing with uncertainty is to predict the outcome 

of a single trial. These same individuals tended to evaluate their predictions as being correct or 

incorrect after one trial. Furthermore, outcome-oriented participants often based predictions on a 

causal analysis of the situation. Numbers assigned as ‘probabilities’ were used occasionally to 

gauge the strength of these perceived causal factors.” (Konold, 1989, p. 61) 

Konold’s hypotheses is supported by our study insofar as the importance of the outcome 

approach can be shown in many moments of the interviews, for example when children 

• tried to explain the last outcome 

• drew consequences from one outcome 

• tried to predict the next outcome 

• found evidence for the unpredictability of outcomes in one outcome which did not follow the 

theoretical considerations  

• etc. 

But unlike Konold’s results, the analysis in this study could not affirm the outcome 

approach as a stable viewpoint of some children, but as appearing situatively: children sometimes 

adopted an outcome approach and sometimes didn’t. They switched between the perspectives 
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even without being aware of it. It depended on the special moment in the game interview, on the 

specific question of the interviewer or the specific aspect the children discussed with each other. 

The same children could adopt a long-term perspective two minutes later, e.g. when considering a 

tally sheet with 200 outcomes. 

This observation of situatedness of activating an outcome-approach (being a background 

for the significance conception) is an important support for the horizontal view and the model of 

cognitive layers which coexist within single individuals. 

Confrontation of Mathematical and Individual Perspectives  

According to the Educational Reconstruction Program, the reconstruction of individual 

reasons can be strengthened methodologically by an explicit confrontation of mathematical and 

individual perspectives. This step of the research program is exemplified (see Figure 2) by the 

confrontation of only one individual conception with the intended mathematical conception.  

For this, the selected category significance conception is now confronted with it’s a 

mathematical counterpart by which the game situation could have mathematized successfully, the 

Laplace conception (possibilities of outcomes are counted as a theoretical strategy to specify the 

probability). Although the Laplace conception also appeared (rarely) as individual conceptions of 

interviewees, it is now treated as the representative of the mathematical perspective, whereas the 

significance conceptions is treated as one exemplary representative of the learners’ perspective.  

How does this help to make sense of the significance conception? Although the outcome 

approach was not a stable viewpoint, it was underlying nearly all moments when the significance 

Figure 2: Diverging focus of attention as a source for discrepancies  

Mathematical 
Perspective
  

Learners’ 
Perspective  

Attention to a  
single outcome 

Attention  
to the long run 

Laplace conception:  
“I have chosen the 7, because there are six 
ways to get it, and for the others, there are 
only five or three. Hence, we can more easily 
throw a 7.“ 

Significance conception:  

“I have thrown the 8 several times. 
And I already know why. […] 
Because I am born on 16/8.”) 
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perspective emerged. In order to make sense of the phenomenon, it is important to ask neutrally: 

What is an adequate strategy for explaining single outcomes? It turns out that the Laplace 

conception of counting possibilities is not more suitable for explaining single outcomes than the 

significance conception.  

In the case of predicting single outcomes, the probability judgement must offer the most 

convincing measure of certitude for the individual (subjective probability, Kapadia, 1988). It can 

be supported by probability calculations according to the Laplace-rule. But applying this 

conception for predicting single outcomes is rarely secure, the prediction often fails with the 

result of deep disappointment. This serious limit leads many people to a significance conception 

which might offer alternative measures for certitude in which the individual can trust, with a 

higher subjective security.  

Hence, whenever the outcome approach is underlying the interpretation of the micro-

situation, the significance conception is not much less adequate than approaches calculated by the 

Laplace rule.  

The Laplace conception in its classical interpretation gains for secure predicting power 

only in the long-term perspective, not while focussing the attention on the single outcome. 

Whenever predictions or explanations for outcomes in the long run are given, the mathematical 

concepts prove to be superior to diverging subjective conceptions. .  

Only those individuals who understand this important difference between short-term and 

long-term perspective and understand the limits of the mathematics concepts (as not being 

applicable securely to short-term considerations), can use probability in a judicious way, i.e. in 

game situations. 

Clarification of the Content  

Hence, one result of the confrontation of mathematical and individual perspectives, is the 

important characteristic of random which turned out to be a crucial point for the clarification of 

content:  

“Random cannot be calculated for the single case. In the long run, it has a regularity. It is 

the main task for an introduction to probability to explicate this phenomenon.” (Hefendehl-

Hebeker, 2003, p. 13, translation SP) 

In a similar way, David Moore puts the phenomenon random into the centre of his 

introduction to probability and turns this characteristic into a definition for random:  
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“Phenomena having uncertain individual outcomes but a regular pattern of outcomes in 

many repetitions are called random. ‘Random’ is not a synonym for ‘haphazard’ but a description 

of a kind of order different from deterministic one that is popularly associated with science and 

mathematics. Probability is the branch of mathematics that describes randomness.” (Moore, 1990, 

p. 97) 

The background of this characterization is the empirical law of large numbers. Although 

principally well-known, it gains a new meaning in this reconstructive context. The empirical law 

of large numbers explains why one can adopt probabilistic conceptions in a successful way 

although random cannot be calculated for single outcomes. It explains the sense and the 

preconditions, but also the limits of probabilistic considerations.  

In the individual research process of the author, becoming aware of this role was an 

instance of Freudenthal’s motto which conceptualizes the observation of learning processes as a 

source of better understanding mathematics itself. In the Educational Reconstruction Program, 

this is institutionalized by the step of investigation into learners’ perspectives and its impact on 

the clarification of content. Hence, this offers a starting point for the reconstruction of elementary 

probability (see below).  

Coming back to the law of large numbers, we can also understand the impacts of the 

horizontal view adopted in this paper in contrast to classical research approaches which focus on 

the identification of misconceptions: Tversky & Kahneman (1971) introduced the term “law of 

small numbers” for the individual assumption that an a priori probability (e.g. specified by the 

Laplace rule) should also predict securely the relative frequency in experiments with small 

numbers of outcomes. This assumption has often been reapproved as a typical “misconception” 

(e.g. Borovcnik, 1991; Konold, 1989).  

In contrast, in the horizontal view, this immediate result of an outcome approach is first 

considered to be a legitimate perspective which should be respected alongside the mathematical 

perspectives. “Wouldn’t it be nicer, if it was true?”, said one of the author’s students in a 

discussion. This offers the opportunity to become aware of a major restriction of probabilistic 

conceptions: it would of course be more powerful to have also a law of small numbers, but 

stochastics is not able to guarantee this “better law”. Hence, the phenomenon that many people 

believe in the law of small numbers does not only hint to individual deficits, but to a deficit of 

mathematics. From the individual’s perspective, it is a legitimate and senseful request to look for 

secure predictions also for single outcomes. (Remark that accepting learners’ question as 

legitimate is something different than a teacher or researchers who ask a student to predict a 
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single outcome!) Hence, the often intuitively formulated “law of small numbers” might be a very 

interesting starting point for a fruitful reflection on stochastics not being able to fulfil this request 

since only the weaker law of large numbers applies to random phenomena.  

In this way, the horizontal view offers a completely different conceptualization of the 

relation between individual and mathematical perspectives than it is usually implicitly proposed 

in mathematic education research. 

Furthermore, it offers an answer to research question (4): How can the individual 

repertoire of prior conceptions be extended to mathematical conceptions, and how can learners be 

enabled to chose the adequate conceptions in varying contexts?  

The analysis in a horizontal view shows that this aim can only be reached if the necessary 

divergence in perspective is made explicit, together with the connected divergence in the focus of 

attention, on the single outcome on the one hand and the long run on the other hand. For enabling 

learners to switch between the mathematical and the everyday perspective and to activate the 

mutual appropriate cognitive layer according to the specific micro-situation, they must attain an 

explicit awareness exactly of this divergence in focus of attention. The most important reason for 

this is that this awareness is an important precondition of an explicit and rational choice between 

the different available cognitive layers.  

Hence, we claim to have a new learning content which is well described by Hefendehl-

Hebekers sentence “Random cannot be calculated for the single case. On the long run, it has a 

regularity.” (see below). On the one hand, this seems self-evident, on the other hand, the analysis 

of (at least german) textbooks showed that it is not really discussed in most textbooks so far. 

First Ideas for the Design of Learning Environments:  

Making the Change of Perspective Explicit 

In the last section of his article, Konold makes suggestions for instruction which aim at 

overcoming the outcome approach by an intensive, scientist-like inquiry whether the outcome 

approach is really consistent with the beliefs of others, with the own beliefs and specially with 

empirical observations (Konold, 1989, pp. 152ff). Hence, his suggestions are similar to 

Fischbein’s (1975), although without explicit reference to this source.  

Konold’s suggestions are convincing as far as a vertical perspective is adopted that aims 

at changing the students’ initial conceptions in favour of the more fruitful focus of attention to the 

long-term experiments. This is also supported by Shaughnessy (1992):  
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“It is important for us to begin our instructions by confronting both our students’ 

deterministically entrenched paradigms, and their statistically naïve heuristics. We must create 

some dissonance within our students’ past belief systems if we are to have a chance of replacing 

them with mathematical models. […] Even this is no guarantee, though, as research has shown 

our students’ stochastic tenets to be amazingly robust.” (Shaughnessy, 1992, p. 486) 

But it is exactly Shaughnessy’s last phrase with the hint of the robustness of students’ 

conceptions that again supports adopting a complementary, horizontal view. In a horizontal view, 

instruction should not aim at replacing the attention on the single outcome by long-term 

considerations, but at enhancing awareness that both are two different perspectives with different 

advantages and disadvantages which should be adopted in different situations.  

This is crucial since one cannot easily say that the outcome-approach is false (as Konold, 

1989 already emphasizes). In contrast it comprises the legitimate question how to predict the 

single outcome. Teachers should take the learners’ disappointment very serious that probability 

has no secure answer to this important question.  

In order to reach this awareness, the law of large numbers must be an important issue in 

the learning environment to be designed. Although there already exist several interesting 

suggestions for the law of large numbers in middle schools (e.g. Aspinwall & Tarr, 2001), non of 

these make the role of the law of large numbers explicit as the main condition for applying 

probabilistic conceptions.  

Problem: Why does thinking about probability makes sense? 

Now, I have bet on the most probable number but still I 
have lost! I must have done something wrong.  

What good does the whole calculating 
with probability do? I still cannot say what 
to beton in the next game.  
It is still random who decides! 

But in the long run, it is good to 
know about probability, since in the long run, 
random has a regularity. 

Hanna 

Katharina Thomas 

What do you say about Katharina’s and Thomas 
statements?  

Figure 3: Problem for becoming aware of the necessary change of perspective 
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Students do not learn this by theory alone, as the answers to the Problem in Figure 3 

shows. The problem is also printed as a first proposition for an implementation of the intended 

aims. In this example, the different perspectives are concretized for the children as positions of 

different children. In this way, students can communicate without entering an abstract meta-level. 

The problem was posed at the end of a classical three-week-unit on probability and 

random in a grade 7 comprehensive school. The results show that it is not self-evident to be aware 

of the divergence of perspectives. Only five out of 17 students agreed to Hanna and were able to 

adopt a long-term perspective in this case, as the following answer: “Hanna means that 

probabilities are approximately fulfilled when you have longer experiments.” 

Also five children agreed to Thomas who stated that probability considerations cannot 

help since random is hazardous: “I mean that you can really not calculate which number will 

appear since random is untamable.” 

Over all, these results give hints that the change in perspective is not made by many 

children even after three weeks of probability in classroom, and only some are aware of the 

divergence in perspectives.  

Lisa’s answer in Figure 4 shows that these kind of tasks might be a fruitful format to 

reflect on the issue. Lisa has written her text in three steps. First, she answered like many of her 

colleagues and agreed to the short-term perspective. But while working on the problem, she 

modified her perspective, crossed her first answer and agreed to Hanna. In the third step, she 

added the last phrase which expressed a first awareness of the inconsistency of the phenomenon 

and acknowledged that also Katharina and Thomas have legitimate perspectives. Lisa’ process 

 

Katharina tells rubbish. When you 
throw a dice, all numbers are equally 
probable. 

Hanna means that you cannot 
completely calculate random. In the 
long run, there are more probable 
possibilities.  

Katharina + Thomas are also  
not completely wrong!!! 
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(although far from being perfect), is a first example of how the process of becoming aware of the 

divergent perspectives might take place.  

This process can be facilitated by problems like the one in Figure 3 which explicitly 

initiate the reflection on different perspectives (Buechter, Leuders, Hußmann, &  Prediger, 2005 

for more suggestions for the design of suitable learning environments).  

Outlook on Further Developments and Research 

The author’s research group in Dortmund is currently developing a learning environment 

for low achieving students in grade 6 which puts the experimental experience with the law of 

large numbers and the reflection on its meaning into the centre (Hußmann & Prediger 2009, 

Prediger & Rolka, 2008). In this learning environment the different perspectives are implemented 

as concurrent betting strategies in a game which was explicitly designed for this purpose. The 

learning environment is characterized by a high degree of reflective tasks. This is born from the 

conviction of the developers that only the explicit reflection can enable students to chose 

rationally between different available cognitive layers and that this might hopefully increase the 

sustainability of the constructed probabilistic conceptions. Also newer developments like 

Abrahamson & Wilensky (2007) give hope that the problem can be treated constructively in the 

future. 

 

CONCLUSION 

“Do you want me to do it with probability or with my normal thinking?” As long as Anne 

and many other students and adults experience this gap between their everyday thinking and the 

mathematical thinking without opportunity to reflect on differences and conditions when to use 

which cognitive layer, probability classrooms will always risk to fail in their important 

elementary aim to anchor the concept of probability in the individual thinking in such a way that 

people activate probabilistic conceptions in suitable random situations out of school.  

The article gave accounts for this limited success by analysing the phenomenon in terms 

of the conceptual change approach and the horizontal view on the construction of conceptions.  

The deeper analysis and search for reasons resulted in the insight that the different 

perspectives have their roots in diverging foci of attention, the mathematically suitable long-term 

perspective being in concurrence to the more natural short-term attention to single outcomes. The 

codification and categorization of the interviews showed that many students do not adopt one 
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stable perspective but oszillate between the concurrent perspectives even without being aware of 

it.  

These analyses offer starting points for the development of learning environments that 

can built successful bridges between individual and mathematical conceptions. Adequate learning 

environments must 

• make explicit different individual conceptions and strategies 

• give the opportunity of intense experiments for questioning the prior conceptions  

• offer opportunities to become aware of the underlying differences between short-term and 

long-term perspectives and their typical questions, benefits and limits.  

In this way, the Educational Reconstruction Program offered the possibility to specify the 

roots of obstacles and to develop guidelines for designing learning environments which respect 

the horizontal view. The learner shall be enabled to chose adequate conceptions in varying mutual 

situations instead of aiming at overcoming the prior conceptions. 
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