International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem
APA
In-text citation: (Roldán-Zafra et al., 2022)
Reference: Roldán-Zafra, J., Perea, C., Polo-Blanco, I., & Campillo, P. (2022). Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem. International Electronic Journal of Mathematics Education, 17(1), em0672. https://doi.org/10.29333/iejme/11556
AMA
In-text citation: (1), (2), (3), etc.
Reference: Roldán-Zafra J, Perea C, Polo-Blanco I, Campillo P. Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem. INT ELECT J MATH ED. 2022;17(1), em0672. https://doi.org/10.29333/iejme/11556
Chicago
In-text citation: (Roldán-Zafra et al., 2022)
Reference: Roldán-Zafra, Juan, Carmen Perea, Irene Polo-Blanco, and Pedro Campillo. "Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem". International Electronic Journal of Mathematics Education 2022 17 no. 1 (2022): em0672. https://doi.org/10.29333/iejme/11556
Harvard
In-text citation: (Roldán-Zafra et al., 2022)
Reference: Roldán-Zafra, J., Perea, C., Polo-Blanco, I., and Campillo, P. (2022). Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem. International Electronic Journal of Mathematics Education, 17(1), em0672. https://doi.org/10.29333/iejme/11556
MLA
In-text citation: (Roldán-Zafra et al., 2022)
Reference: Roldán-Zafra, Juan et al. "Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem". International Electronic Journal of Mathematics Education, vol. 17, no. 1, 2022, em0672. https://doi.org/10.29333/iejme/11556
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Roldán-Zafra J, Perea C, Polo-Blanco I, Campillo P. Design of an Interactive Module Based on the van Hiele Model: Case Study of the Pythagorean Theorem. INT ELECT J MATH ED. 2022;17(1):em0672. https://doi.org/10.29333/iejme/11556

Abstract

The recent increase in the number of mathematics museums has given rise to a need for tools with which to design and assess mathematics educational proposals in this non-formal context. This study proposes the use of the van Hiele model, a benchmark in mathematics instruction, for the design of interactive museum models focusing on mathematics content in general. By way of example, the model is characterised for application to the Pythagorean theorem. An interactive module designed around the aforementioned characterisation for teaching the theorem at the Museo Didáctico e Interactivo de Ciencias [interactive science instruction museum, MUDIC] may serve as a reference for future interactive modules and workshops in museums dealing with any manner of mathematics content.

Disclosures

Declaration of Conflict of Interest: No conflict of interest is declared by author(s).

Data sharing statement: Data supporting the findings and conclusions are available upon request from the corresponding author(s).

References

  • Allen, S. (2004). Designs for learning: Studying science museum exhibits that do more than entertain. Science Education, 88(1), 17-33. https://doi.org/10.1002/sce.20016
  • Anderson, A. V., & Thompson, V. (2001). Mathematics in science centers. Association of Science Technology Centers Inc. Available at: http://www.astc.org/resource/education/Math-SciCenters-Intro.pdf
  • Anderson, D., Lucas, K. B., & Ginns, I. S. (2000). Development of knowledge about electricity and magnetism during a visit to a science museum and related post–visit activities. Science Education, 84(5), 658-679. https://doi.org/10.1002/1098-237X(200009)84:5<658::AID-SCE6>3.0.CO;2-A
  • Anderson, D., Lucas, K. B., & Ginns, I. S. (2003). Theoretical perspectives on learning in an informal setting. Journal on Research in Science Teaching, 40(2), 177-199. https://doi.org/10.1002/tea.10071
  • Arrieta, J., Álvarez, J. L., & González, A. E. (1997). El teorema de Pitágoras a partir de la manipulación con geoplanos [The Pythagorean theorem from manipulation with geoplanes]. Revista Suma [Suma Magazine], 25, 71-86.
  • Barreto, J. (2009). Otras deducciones o extensiones del teorema de Pitágoras a lo largo de la historia como recurso didáctico [Other deductions or extensions of the Pythagorean theorem throughout history as a didactic resource]. Números: Revista de Didáctica de las Matemáticas [Issues: Journal of Mathematics Didactics], 70, 35-51.
  • Brajčić, M., Kovačević, S., & Kuščević, D. (2013). Learning at the museum. Croatian Journal of Education, 15, 159-178.
  • Campillo, P. (1998). La noción de continuidad desde la óptica de los niveles de van Hiele [The notion of continuity from the perspective of van Hiele’s levels] [Doctoral thesis, Universidad Politécnica de Valencia, España].
  • Chin, C. C. (2004). Museum experience-a resource for science teacher education. International Journal of Science and Mathematics Education, 2, 63-90. https://doi.org/10.1023/B:IJMA.0000026536.75034.34
  • Cooper, S. (2011). An exploration of the potential for mathematical experiences in informal learning environments. Visitor Studies, 14(1), 48-65. https://doi.org/10.1080/10645578.2011.557628
  • Crowley, M. L. (1990). Criterion-referenced reliability indices associated with the van Hiele geometry test. Journal for Research in Mathematics Education, 21(3), 238-241. https://doi.org/10.2307/749377
  • Falk, J. H. (1997). Testing a museum exhibition design assumption: Effect of explicit labeling of exhibit cluster on visitor concept development. Science Education, 81, 679-687. https://doi.org/10.1002/(SICI)1098-237X(199711)81:6<679::AID-SCE5>3.0.CO;2-F
  • Falk, J. H., & Dierking, L. D. (2013). The museum. Experience revisited. Left Coast Press. https://doi.org/10.1080/10645578.2015.1016375
  • Faria, C., Guilherme, E., Gaspar, R., & Boaventura, D. (2015). History of science and science museums: An enriching partnership for elementary school science. Science and Education, 24, 983-1000. https://doi.org/10.1007/s11191-015-9773-7
  • Flores, A. (1993). Pythagoras meets van Hiele. School Science and Mathematics 93(3), 152-157. https://doi.org/10.1111/j.1949-8594.1993.tb12214.x
  • González Urbaneja, P. M. (2008). El teorema llamado de Pitágoras. Una historia geométrica de 4.000 años [The so-called Pythagorean theorem. A 4,000-year geometric history]. Sigma, 32, 103-130.
  • Griffin, J., & Symington, D. (1997). Moving from task-oriented to learning-oriented strategies on school excursions to museums. Science Education, 81(6), 763-779. https://doi.org/10.1002/(SICI)1098-237X(199711)81:6<763::AID-SCE11>3.0.CO;2-O
  • Guisasola, J., & Morentín, M. (2007). ¿Qué papel tienen las visitas escolares a los museos de ciencias en el aprendizaje de las ciencias? Una revisión de las investigaciones [What role do school visits to science museums have in science learning? A review of the research]. Revista Enseñanza de las Ciencias [Science Teaching Magazine], 25(3), 401-414.
  • Guisasola, J., & Morentín, M. (2015a). Primary and secondary teachers’ ideas on school visits to science centres in the Basque Country. International Journal of Science and Mathematics Education, 13(S1), 191-214. https://doi.org/10.1007/s10763-013-9481-1
  • Guisasola, J., & Morentín, M. (2015b). The role of science museum field trips in the primary teacher preparation. International Journal of Science and Mathematics Education, 13, 965-990. https://doi.org/10.1007/s10763-014-9522-4
  • Guisasola, J., Morentín, M., & Zuza, K. (2005). School visits to science museums and learning sciences: A complex relationship. Physics Education, 40(6), 544-549. https://doi.org/10.1088/0031-9120/40/6/006
  • Gurrola, F., & Jáuregui, R. (2008). Didáctica del teorema de Pitágoras [Didactics of the Pythagorean theorem]. In R. Cantoral, F. Fasarelli, A. Garciadiego, A, R. Stein, & C. Tzanakis (Eds.), Proceedings of History and Pedagogy Mathematics, The HPM Satellite Meeting of IMCE 11. Centro Cultural del México Contemporáneo.
  • Gutierrez, A., & Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20, 27-46.
  • Gyllenhaal, E. D. (2006). Memory of math: Visitors experiences in an exhibition about calculus. Curator: The Museum Journal, 49(3), 345-364. https://doi.org/10.1111/j.2151-6952.2006.tb00228.x
  • Hein, G. E. (1998). Learning in the museum. Routledge.
  • Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74(1), 11-18. https://doi.org/10.5951/MT.74.1.0011
  • Jaime, A. (1993). Aportaciones a la interpretación y aplicación del modelo de Van Hiele: La enseñanza de las isometrías del plano. La evaluación del nivel de razonamiento [Contributions to the interpretation and application of the Van Hiele model: The teaching of the isometries of the plane. The evaluation of the level of reasoning] [Doctoral thesis, Universidad de Valencia, España].
  • Jaime, A., & Gutiérrez, A. (1990). Una propuesta de fundamentación para la enseñanza de la geometría: El modelo de van Hiele [A proposal of foundations for the teaching of geometry: The van Hiele model]. In S. Llinares, & M. V. Sánchez (Eds.), Teoría y práctica en Educación Matemática [Theory and Practice in Mathematics Education], 295-398.
  • Janousek, I. (2000). The context museum: Integrating science and culture. Museum International 52(4), 21-24. https://doi.org/10.1111/1468-0033.00281
  • Kelton, M. L. (2015). Math on the move: A video-based study of school field trips to a mathematics exhibition [Doctoral thesis, San Diego State University University of California, San Diego].
  • Loomis, E. S. (1968). The Pythagorean proposition: Its demonstrations analyzed and classified, and bibliography of sources for data of the four kinds of proofs (Classics in mathematics education). National Council of Teachers of Mathematics.
  • McManus, P. M. (1992). Topics museums and science education. Studies in Science Education, 20, 157-182. https://doi.org/10.1080/03057269208560007
  • Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372-415. https://doi.org/10.5951/jresematheduc.44.2.0372
  • Pattison, S., Rubin, A., & Wright, T. (2016). Mathematics in informal learning environment: A summary of the literature. Institute for Learning Innovation. Math in the Making Project. Available at: http://www.instituteforlearninginnovation.org/uploads/4/9/1/3/49134795/informalmathlitsummary_minm_03-23-16_v3.pdf
  • Pérez, M. A. (2009). Una historia de las matemáticas: Retos y conquistas a través de sus personajes [A history of mathematics: Challenges and conquests through its characters]. Editorial Visión Libros, Madrid.
  • Perry, D. L. (1992). Designing exhibits that motivate. ASTC Newsletter, 20(2), 9-10.
  • Popovic, G., & Lederman, J. S. (2015). Implications of informal education experiences for Mathematics teachers’ ability to make connections beyond formal classroom. School Science and Mathematics, 115(3), 129-140. https://doi.org/10.1111/ssm.12114
  • Rennie, L. J., & Johnston, D. J. (2004). The nature of learning and its implications for research on learning from museums. Science Education, 88(S1), 4-16. https://doi.org/10.1002/sce.20017
  • Richey, R. C., Klein, J. D., & Nelson, W. A. (2003). Development research: Studies of instructional design and development. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 1099–1130). Lawrence Erlbaum Associates.
  • Salmi, H. (2003). Science centre as learning laboratories: Experiences of Heureka, the Finish Science Centre. Internat. Journal of Technology Management, 25(5), 460-476. https://doi.org/10.1504/IJTM.2003.003113
  • Sarasua, J. (2010). Hacia una categorización de los objetivos geométricos: Propuesta de nuevos descriptores de los niveles de van hiele para la representación externa de figuras planas [Towards a categorization of geometric objectives: Proposal of new descriptors of van ice levels for the external representation of plane figures] [Doctoral thesis, Universidad del País Vasco. España].
  • Suter, L. E. (2014. Visiting science museums during middle and high school: A longitudinal analysis of student performance in science. Science Education, 98(5), 815-839. https://doi.org/10.1002/sce.21116
  • Tuckey, C. (1992). Children’s informal learning at an interactive science centre. International journal of Science Education, 14(3), 273-278. https://doi.org/10.1080/0950069920140304
  • Usiskin, Z. (1982). van Hiele levels and achievement in secondary school geometry. ERIC.
  • van Hiele, P. M. (1955). De niveau’s in het denken, welke van belang zijn bij het onderwijs in de meetkunde iii de eerste kíasse van het V.H.M.O. [The levels of thought that are important in the education of geometry iii the first kíasse of the V.H.M.O.]. Paedagogische Stüdien, XXXII(J.B. Wolters: Groningen), 289-297.
  • van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Press.
  • Vargas, G., & Gamboa, R. (2013). La enseñanza del teorema de Pitágoras: Una experiencia en el aula con el uso del geogebra, según el modelo de Van Hiele [Teaching the Pythagorean theorem: A classroom experience with the use of geogebra, according to the Van Hiele model]. Uniciencia [Uniqueness], 27(1), 95-118.
  • Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research & Development, 53(4), 5-23. https://doi.org/10.1007/BF02504682
  • Weiss-Pidstrygach, Y. (2007). Historical mathematical models in teacher education. Proceedings of the Seventh European Summer University ESU 7, 129-140.
  • Wright, T., & Parkes, A. (2015). Exploring connections between physical and mathematical knowledge in science museums. Informal Learning Review, March/April, 16-21.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.