International Electronic Journal of Mathematics Education

AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Ambrus G, Herendiné Kónya E, Kovács Z, Szitányi J, Csíkos C. A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10. Int Elect J Math Ed. 2019;14(3), 513-521. https://doi.org/10.29333/iejme/5753
APA 6th edition
In-text citation: (Ambrus et al., 2019)
Reference: Ambrus, G., Herendiné Kónya, E., Kovács, Z., Szitányi, J., & Csíkos, C. (2019). A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10. International Electronic Journal of Mathematics Education, 14(3), 513-521. https://doi.org/10.29333/iejme/5753
Chicago
In-text citation: (Ambrus et al., 2019)
Reference: Ambrus, Gabriella, Eszter Herendiné Kónya, Zoltán Kovács, Judit Szitányi, and Csaba Csíkos. "A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10". International Electronic Journal of Mathematics Education 2019 14 no. 3 (2019): 513-521. https://doi.org/10.29333/iejme/5753
Harvard
In-text citation: (Ambrus et al., 2019)
Reference: Ambrus, G., Herendiné Kónya, E., Kovács, Z., Szitányi, J., and Csíkos, C. (2019). A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10. International Electronic Journal of Mathematics Education, 14(3), pp. 513-521. https://doi.org/10.29333/iejme/5753
MLA
In-text citation: (Ambrus et al., 2019)
Reference: Ambrus, Gabriella et al. "A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10". International Electronic Journal of Mathematics Education, vol. 14, no. 3, 2019, pp. 513-521. https://doi.org/10.29333/iejme/5753
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Ambrus G, Herendiné Kónya E, Kovács Z, Szitányi J, Csíkos C. A Cross-sectional Analysis of Students’ Answers to a Realistic Word Problem from Grade 2 to 10. Int Elect J Math Ed. 2019;14(3):513-21. https://doi.org/10.29333/iejme/5753

Abstract

Several investigations have revealed that students tend to exclude their real-world knowledge when solving simple, routine-like mathematical word problems. The current research is a cross-sectional developmental analysis with students from grade 2 to 10 (N=1346). Other than describing the development (or lack thereof) in students’ realistic answers, connections with math-related background variables and possible class-level effects have been investigated.

References

  • Ambrus, G., & Szűcs, K. (2016). Fehleranalyse beim Lösen von offenen Aufgaben- Ergebnisse einer empirischen Studie in der Grundschule, Teaching Mathematics and Computer Science, 14, 83-113. https://doi.org/10.5485%2Ftmcs.2016.0420
  • Ambrus, G. (2016). The Pocket Money Problem. In A. Kuzle, B. Rott, & T. H. Čadež (Eds.), Problem Solving in the Mathematics Classroom – Perspectives and Practices from Different Countries (pp. 49-59). Münster: WTM Verlag.
  • Baruk, S. (1989). Wie alt ist der Kapitän? Über den Irrtum in der Mathematik. Basel: Birkhäuser. https://doi.org/10.1007/978-3-0348-6354-4
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1, 45-58.
  • Csíkos, C., Andras, S., Rausch, A., & Shvarts, A. (2019). Mathematical learning and its difficulties in Eastern European countries. In A. Fritz et al. (Eds.), International handbook of mathematical learning difficulties (pp. 145-163). Springer:Cham, Switzerland.
  • Csíkos, C., Kelemen, R., & Verschaffel, L. (2011). Fifth-grade students’ approaches to and beliefs of mathematics word problem solving: a large sample Hungarian study. ZDM, 43(4), 561-571. https://doi.org/10.1007/s11858-011-0308-7
  • English, L., & Sriraman, B. (2010). Problem solving for the 21st century. In B. Sriraman & L. English (Eds.), Theories of mathematics education. Seeking new frontiers (pp. 263-290). Heidelberg-Dordrecht-London-New York: Springer. https://doi.org/10.1007/978-3-642-00742-2_27
  • Galbraith, P., & Stillman, G. (2001). Assumptions and context. Pursuing their role in modelling activity. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education. ICTMA 9: Applications in science and technology (pp. 300-310). Chichester, UK: Horwood. https://doi.org/10.1533/9780857099655.5.300
  • Gravemeijer, K., & Terwel, J. (2000). Hans Freudenthal: a mathematician on didactics and curriculum theory. Journal of Curriculum Studies, 32, 777-796. https://doi.org/10.1080/00220270050167170
  • Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., & Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25, 12-21. https://doi.org/10.3102/0013189x025004012
  • Jupri, A., & Drijvers, P. (2016). Students difficulties in mathematizing word problems in algebra. Eurasia Journal of Mathematics, Science & Technology Education, 12, 2481-2502. https://doi.org/10.12973/eurasia.2016.1299a
  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38, 302-310. https://doi.org/10.1007/bf02652813
  • Khisty, L. L., & Chval, K. B. (2002). Pedagogic discourse and equity in mathematics: When teachers’ talk matters. Mathematics Education Research Journal, 14, 154-168. https://doi.org/10.1007/bf03217360
  • Kollosche, D. (2014). Mathematics and power: An alliance in the foundations of mathematics and its teaching. ZDM, 46, 1061-1072. https://doi.org/10.1007/s11858-014-0584-0
  • Peled, I., & Balacheff, N. (2011). Beyond realistic considerations: modeling conceptions and controls in task examples with simple word problems. ZDM, 43, 307-315. https://doi.org/10.1007/s11858-011-0310-0
  • Pollak, H. O. (1969). How can we teach applications of mathematics? Educational Studies in Mathematics, 2, 393-404.
  • Pollak, H. O. (1979). The Interaction between Mathematics and Other School Subjects. In UNESCO (Ed.), New Trends in Mathematics Teaching IV. (pp. 232-248). Paris: UNESCO.
  • Prediger, S. (2010). Über das Verhältnis von Theorien und wissenschaftlichen Praktiken – am Beispiel von Schwierigkeiten mit Textaufgaben, Journal für Didaktik der Mathematik 31, 167–195. https://doi.org/10.1007/s13138-010-0011-1
  • Ramharter, E. (2002). Wie alt ist der Kapitän wirklich? - Über die Bewährung der Mathematik an der Realität oder Wittgenstein, Regeln und der Mathematikunterricht. Mathematica Didactica, 25, 37-53.
  • Reusser, K., & Stebler, R. (1997). Every word problem has a solution—The social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309-327. https://doi.org/10.1016/s0959-4752(97)00014-5
  • Schukajlow, S. (2011). Mathematisches Modellieren. Schwierigkeiten und Strategien von Lernenden als Bausteine einer lernprozessorientierten Didaktik der neuen Aufgabenkultur. Münster: Waxmann.
  • Szendrei, J. (2007). When the going gets tough, the tough gets going problem solving in Hungary, 1970–2007: research and theory, practice and politics. ZDM, 39, 443-458. https://doi.org/10.1007/s11858-007-0037-0
  • Treffers, A. (1993). Wiscobas and Freudenthal realistic mathematics education. Educational Studies in Mathematics, 25, 89-108. https://doi.org/10.1007/978-94-017-3377-9_6
  • Varga, T. (1988): Mathematics Education in Hungary today. Educational Studies in Mathematics, 19, 291-298. https://doi.org/10.1007/bf00312449
  • Verschaffel, L., & De Corte, E. (1997). Word problems: A vehicle for promoting authentic mathematical understanding and problem solving in the primary school? In T. Nunes & P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 69–97). Hove, UK: Psychology Press.
  • Verschaffel, L. De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 273-294. https://doi.org/10.1016/0959-4752(94)90002-7
  • Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1, 195-229. https://doi.org/10.1207/s15327833mtl0103_2
  • Verschaffel, L., Van Dooren, W., Greer, B., & Mukhopadhyay, S. (2010). Reconceptualising word problems as exercises in mathematical modelling. Journal für Mathematik-Didaktik, 31, 9-29. https://doi.org/10.1007/s13138-010-0007-x
  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for research in mathematics education, 458-477. https://doi.org/10.2307/749877
  • Yoshida, H., Verschaffel, L., & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning and Instruction, 7, 329-338. https://doi.org/10.1016/s0959-4752(97)00007-8

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.