International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Alves FRV, Machado Vieira RP, Cruz Catarino PMM. Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research. INT ELECT J MATH ED. 2020;15(3), em0594. https://doi.org/10.29333/iejme/8280
APA 6th edition
In-text citation: (Alves et al., 2020)
Reference: Alves, F. R. V., Machado Vieira, R. P., & Cruz Catarino, P. M. M. (2020). Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research. International Electronic Journal of Mathematics Education, 15(3), em0594. https://doi.org/10.29333/iejme/8280
Chicago
In-text citation: (Alves et al., 2020)
Reference: Alves, Francisco Regis Vieira, Renata Passos Machado Vieira, and Paula Maria Machado Cruz Catarino. "Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research". International Electronic Journal of Mathematics Education 2020 15 no. 3 (2020): em0594. https://doi.org/10.29333/iejme/8280
Harvard
In-text citation: (Alves et al., 2020)
Reference: Alves, F. R. V., Machado Vieira, R. P., and Cruz Catarino, P. M. M. (2020). Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research. International Electronic Journal of Mathematics Education, 15(3), em0594. https://doi.org/10.29333/iejme/8280
MLA
In-text citation: (Alves et al., 2020)
Reference: Alves, Francisco Regis Vieira et al. "Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research". International Electronic Journal of Mathematics Education, vol. 15, no. 3, 2020, em0594. https://doi.org/10.29333/iejme/8280
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Alves FRV, Machado Vieira RP, Cruz Catarino PMM. Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Example of Brazil X Portugal Research. INT ELECT J MATH ED. 2020;15(3):em0594. https://doi.org/10.29333/iejme/8280

Abstract

In this work, recurrent and linear sequences are studied, exploring the teaching of these numbers with the aid of a computational resource, known as Google Colab. Initially, a brief historical exploration inherent to these sequences is carried out, as well as the construction of the characteristic equation of each one. Thus, their respective roots will be investigated and analyzed, through fractal theory based on Newton's method. For that, Google Colab is used as a technological tool, collaborating to teach Fibonacci, Lucas, Mersenne, Oresme, Jacobsthal, Pell, Leonardo, Padovan, Perrin and Narayana sequences in Brazil and Portugal. It is also possible to notice the similarity of some of these sequences, in addition to relating them with some figures present and their corresponding visualization.

References

  • Adamns, D. (1982). Mathematics of Computation. American Mathematical Society, 39(159).
  • Alves, F. R. V., & Vieira, R. P. M. (2020). The Newton Fractal’s Leonardo Sequence Study with the Google Colab. International Electronic Journal of Mathematics Education, 15(2), 1-9. https://doi.org/10.29333/iejme/6440
  • Alves, F. R. V. (2019). Sequência de Oresme e algumas propriedades (matriciais) generalizadas. C.Q.D. – Revista Eletrônica Paulista de Matemática, 16, 28-52. https://doi.org/10.21167/cqdvol16201923169664frva2852
  • Alves, F. R. V. (2017). Engenharia Didática para a s-Sequência Generalizada de Jacobsthal e a (s,t)-Sequência Generalizada de Jacobsthal: análises preliminares e a priori. Revista Iberoamericana de Educación Matemática, 51, 83-106.
  • Alves, F. R. V. (2016). Sequência generalizada de Pell (SGP): aspectos históricos e epistemológicos sobre a evolução de um modelo. Revista Thema, 13(2), 27-41. https://doi.org/10.15536/thema.13.2016.27-41.324
  • Alves, F. R. V., & Catarino, P. M. (2019). Situação Didática Profissional: um exemplo de aplicação da Didática Profissional para a pesquisa objetivando a atividade do professor de Matemática no Brasil. Indagatio Didactica 11(1), 1-30. https://doi.org/10.34624/id.v11i1.5641
  • Assis, T. A., Miranda, J. G. V., Mota, F. de B. R., Andrade, F. S., & Castilho, C. M. C. (2008). Geometria fractal: propriedades e características ideais. Revista Brasileira de Ensino de Física, 30(2), 2304-01-2304-10. https://doi.org/10.1590/S1806-11172008000200005
  • Catarino, P., & Borges, A. (2020). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 1(89), 75-86.
  • Catarino, P. M. M. C., Campos, H., & Vasco, P. (2016). On the Mersenne sequence. Annales Mathematicae et Informaticae, 46, 37-53.
  • Craveiro, I. M. (2004). Extensões e Interpretações Combinatórias para os Números de Fibonacci, Pell e Jacobsthal. 117 f. Tese de doutorado - Instituto de Matemática, Estatística e Computação Científica, UNICAMP, Campinas, São Paulo. https://doi.org/10.5540/tema.2004.05.02.0205
  • Forbes, T. (2014). Linear recurrences sequences. in Talks given at LSBU, 1-6.
  • Ford, K., Luca, F., & Shparlinski, I. E. (2009). On the largest prime factor of the Mersenne numbers. Bulletin of the Australian Mathematical Society, 79, 455-463. https://doi.org/10.1017/S0004972709000033
  • Horadam, A. F. (1974). Oresme numbers. Fibonacci Quarterly, 12, 267-271.
  • Kaplansky, I. (1943). Solution of the " Problème des ménages&quot. Bulletin of the American Mathematical Society, 49(10), 784-785. https://doi.org/10.1090/S0002-9904-1943-08035-4
  • Knott, R. (06 Jan. 2020). The Mathematical Magic of the Fibonacci Numbers. 2Surrey.ac.uk. University of Surrey.
  • Koshy, T., & Gao, Z. (2013). Catalan numbers with Mersenne subscripts. Mathematical Scientist, 38, 86-91.
  • Koshy, T. (2001). Fibonacci and Lucas Numbers with Application. A Wiley Interscience Publication. John Wiley & Sons. https://doi.org/10.1002/9781118033067
  • Malcolm, N. (2000). The publications of John Pell, F. R.S (1611 – 1685): some new lights and some old confusions. Notes and Records of the Royal Society of London, 54(3), 275-292. https://doi.org/10.1098/rsnr.2000.0113
  • Oliveira, R. R., & Alves, F. R. V. (2019). An investigation of the Bivariate Complex Fibonacci Polynomials supported in Didactic Engineering: an application of Theory of Didactics Situations (TSD). Revista Acta Scientiae, 21, 170-195. https://doi.org/10.17648/acta.scientiae.v21iss3id3940
  • Parameswaran, S. (1998). The Golden Age of Indian Mathematics, Indian: Swadeshi Kerala.
  • Protázio, A. dos A., Oliveira, M. de F. S. dos S., & Protázio, A. dos S. (2019). Análise de software para o ensino de evolução através de critérios pedagógicos e computacionais. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, 24, 44-55. https://doi.org/10.24215/18509959.24.e06
  • Ramirez, J. L., & Sirvent, V. F. (2015). Uma nota sobre a sequência k-Narayana. Ann. Matemática. Inform, 45, 91-105.
  • Shannon, A. G. (2019). A note on generalized Leonardo numbers. Note on Number Theory and Discrete Mathematics, 25(3), 97-101. https://doi.org/10.7546/nntdm.2019.25.3.97-101
  • Singh, P. (1985). The So-called Fibonacci Numbers in Acient and Medieval India, Historia Mathematica, 12(1), 229-244. https://doi.org/10.1016/0315-0860(85)90021-7
  • Souza, T. S. A., & Alves, F. R. V. (2018). Engenharia didática como instrumento metodológico no estudo e no ensino da Sequência de Jacobsthal. Tear: Revista de Educação, Ciência e Tecnologia, 7(1), 1-30. https://doi.org/10.35819/tear.v7.n2.a3119
  • Takayasu, H. (1990). Fractals in the Physical Sciences Manchester Univ. Press, Manchester.
  • Teodoro, M. M., & Aguilar, J. C. Z. (2015). O método de Newton e fractais. Dissertação de Mestrado Profissional em Matemática – Universidade Federal de São João del-Rei.
  • Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2019). Alternative views of some extensions of the padovan sequence with the Google Colab. Anale. Seria Iformatica, XVII(2), 266-273.
  • Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2019). Relações bidimensionais e identidades da sequência de Leonardo. Revista Sergipana de Matemática e Educação Matemática, 4(2), 156-173. https://doi.org/10.34179/revisem.v4i2.11863
  • Voet, C., & Schoonjans, Y. (2012). Benidictine thought as a catalist for 20tm century liturgical space: the motivation behind dom hans van der laan s aesthetic church arquitectury. Proceeding of the 2nd international conference of the Europa Architetural History of Network, 255-261.
  • Walker, I. I. (2011). Explorations in Recursion with John Pell and the Pell Sequence: Recurrence Relations and their Explicit Formulas (Dissertation - Master in Mathematics), Portland: Portland State University.
  • Zierler, N. (1959). Linear recurring sequences. Journal of the Society for Industrial and Applied Mathematics, 7(1), 31-48. https://doi.org/10.1137/0107003

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.