International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
The Newton Fractal’s Leonardo Sequence Study with the Google Colab
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Alves FRV, Machado Vieira RP. The Newton Fractal’s Leonardo Sequence Study with the Google Colab. INT ELECT J MATH ED. 2020;15(2), em0575. https://doi.org/10.29333/iejme/6440
APA 6th edition
In-text citation: (Alves & Machado Vieira, 2020)
Reference: Alves, F. R. V., & Machado Vieira, R. P. (2020). The Newton Fractal’s Leonardo Sequence Study with the Google Colab. International Electronic Journal of Mathematics Education, 15(2), em0575. https://doi.org/10.29333/iejme/6440
Chicago
In-text citation: (Alves and Machado Vieira, 2020)
Reference: Alves, Francisco Regis Vieira, and Renata Passos Machado Vieira. "The Newton Fractal’s Leonardo Sequence Study with the Google Colab". International Electronic Journal of Mathematics Education 2020 15 no. 2 (2020): em0575. https://doi.org/10.29333/iejme/6440
Harvard
In-text citation: (Alves and Machado Vieira, 2020)
Reference: Alves, F. R. V., and Machado Vieira, R. P. (2020). The Newton Fractal’s Leonardo Sequence Study with the Google Colab. International Electronic Journal of Mathematics Education, 15(2), em0575. https://doi.org/10.29333/iejme/6440
MLA
In-text citation: (Alves and Machado Vieira, 2020)
Reference: Alves, Francisco Regis Vieira et al. "The Newton Fractal’s Leonardo Sequence Study with the Google Colab". International Electronic Journal of Mathematics Education, vol. 15, no. 2, 2020, em0575. https://doi.org/10.29333/iejme/6440
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Alves FRV, Machado Vieira RP. The Newton Fractal’s Leonardo Sequence Study with the Google Colab. INT ELECT J MATH ED. 2020;15(2):em0575. https://doi.org/10.29333/iejme/6440

Abstract

The work deals with the study of the roots of the characteristic polynomial derived from the Leonardo sequence, using the Newton fractal to perform a root search. Thus, Google Colab is used as a computational tool to facilitate this process. Initially, we conducted a study of the Leonardo sequence, addressing it fundamental recurrence, characteristic polynomial, and its relationship to the Fibonacci sequence. Following this study, the concept of fractal and Newton’s method is approached, so that it can then use the computational tool as a way of visualizing this technique. Finally, a code is developed in the Phyton programming language to generate Newton’s fractal, ending the research with the discussion and visual analysis of this figure. The study of this subject has been developed in the context of teacher education in Brazil.

References

  • Alves, F. R. V. (2018). The Quaterniontonic and Octoniontonic Fibonacci Cassini´s Identity: An Historical Investigation with the Maple´s Help. International Eletronic Journal of Mathematics Education, 13(3), 125-138. https://doi.org/10.12973/iejme/2703
  • Alves, F. R. V., & Catarino, P. M. M. C. Sequência matricial generalizada de Fibonacci e sequência matricial k-Pell: propriedades matriciais. C.Q.D. – Revista Eletrônica Paulista de Matemática, 15, 39-54. https://doi.org/10.21167/cqdvol15201923169664frvapmmcc3954
  • Burton, B. (2009). Newton’s method and fractais. Technical manuscript, Whitman College.
  • Carreira, A. S., & Andrade, C. A. D. (1999). Geometria a várias dimensões - Fractais. Faculdade de Ciências, Universidade de Lisboa.
  • Catarino, P., & Borges, A. (2019). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 1-12.
  • Cláudio, D. M., & Martins, J. M. (2000). Cálculo Numérico Computacional, Teoria e Prática. São Paulo: Atlas.
  • Felgueiras, C. A. da S. (1996). Caracterização Fractal de Sequências de Batimentos Cardíacos Fetais (Master Thesis). Electrical and Computer Engineering, Faculdade de Engenharia da Universidade do Porto.
  • Lima, E. L. (1976). Curso de análise. Rio de Janeiro, Instituto de Matemática Pura e Aplicada. CNPq, 1.
  • Macedo, R. D. de. (2015). Introdução à Teoria de Fractais e à Derivada Métrica (Monograph of the Bachelor of Applied Mathematics course of the Institute of Mathematics, Statistics and Physics). Universidade Federal do Rio Grande.
  • Macleiod, A. J. (1984). A generalization of Newton–Raphson. Int. J. Math. Ed. Sci. Tech., 15(1), 117-120. https://doi.org/10.1080/0020739840150116
  • Oliveira, R. R. de, & Alves, F. R. V. (2019). An investigation of the Bivariate Complex Fibonacci Polynomials supported in Didactic Engineering: an application of Theory of Didactics Situations (TSD). Acta Scientiae, 21(3), 170-195. https://doi.org/10.17648/acta.scientiae.v21iss3id3940
  • Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the jupyter notebook as a tool for open science: An empirical study. ACM/IEEE Joint Conference on Digital Libraries (JCDL). IEEE, 1-2. https://doi.org/10.1109/JCDL.2017.7991618
  • Santos, A. A. dos, & Alves, F. R. V. (2017). A fórmula de Binet como modelo de generalização e extensão da sequência de Fibonacci a outros conceitos matemáticos. C.Q.D. - Revista Eletrônica Paulista, 9, 4-22. https://doi.org/10.21167/cqdvol9201723169664aasfrva0422
  • Teodoro, M. M., & Aguilar, J. C. Z. (2015). O método de Newton e fractais (Master’s Dissertation in Mathematics), Federal University of São João del-Rei.
  • Vieira, R. P. M., & Alves, F. R. V. (2019). Sequences of Tridovan and their identities. Notes on Number Theory and Discrete Mathematics, 25(3), 185-197, 2019. https://doi.org/10.7546/nntdm.2019.25.3.185-197
  • Zierler, N. (1959). Linear recurring sequences. Journal of the Society or Industrial and Applied Mathematics, 7(1), 31-48. https://doi.org/10.1137/0107003

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.