International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education Indexed in ESCI
Peer interactions and their role in early mathematical learning in kindergarten discourses
In-text citation: (Henschen et al., 2022)
Reference: Henschen, E., Teschner, M., & Vogler, A.-M. (2022). Peer interactions and their role in early mathematical learning in kindergarten discourses. International Electronic Journal of Mathematics Education, 17(4), em0709.
In-text citation: (1), (2), (3), etc.
Reference: Henschen E, Teschner M, Vogler AM. Peer interactions and their role in early mathematical learning in kindergarten discourses. INT ELECT J MATH ED. 2022;17(4), em0709.
In-text citation: (Henschen et al., 2022)
Reference: Henschen, Esther, Martina Teschner, and Anna-Marietha Vogler. "Peer interactions and their role in early mathematical learning in kindergarten discourses". International Electronic Journal of Mathematics Education 2022 17 no. 4 (2022): em0709.
In-text citation: (Henschen et al., 2022)
Reference: Henschen, E., Teschner, M., and Vogler, A.-M. (2022). Peer interactions and their role in early mathematical learning in kindergarten discourses. International Electronic Journal of Mathematics Education, 17(4), em0709.
In-text citation: (Henschen et al., 2022)
Reference: Henschen, Esther et al. "Peer interactions and their role in early mathematical learning in kindergarten discourses". International Electronic Journal of Mathematics Education, vol. 17, no. 4, 2022, em0709.
In-text citation: (1), (2), (3), etc.
Reference: Henschen E, Teschner M, Vogler AM. Peer interactions and their role in early mathematical learning in kindergarten discourses. INT ELECT J MATH ED. 2022;17(4):em0709.


Since the 2000s, early co-constructive mathematical learning in kindergarten has focused on political discussions and (mathematical-didactic) research. This is because kindergarten is the first place for subject-specific learning, next to socialization in the family. Research on this first institutional learning in the kindergarten often focuses on the interaction between children and elementary school teachers, which is presented as a key variable for these learning processes. However, it is peer interaction that takes up a large part of the day in kindergarten. In these interactions, children negotiate a variety of issues that are relevant to them. The following contribution will present research that focuses on these peer interactions in the context of block play situations. There is a general analysis using methods of (qualitative) thematic analysis as well as a detailed analysis using methods of interpretative classroom research. These analyses will help answer the question as to what role these peer interactions play in early mathematical learning processes and to what extent conditions can emerge in such interactions that enable mathematical learning in the sense of Miller (1987).


  • Acar Bayraktar, E. (2018). How can a father be supportive for the mathematics learning process of a child?–The relationship between scaffolding and the interactional niche in the development of mathematical learning in the familial context. In C. Benz, A. S. Steinweg, H. Gasteiger, P. Schöner, H. Vollmuth, & J. Zöllner (Eds.), Mathematics education in the early years: Results from the POEM3 conference, 2016 (pp. 255-280). Springer.
  • Arendt, B. (2015). Kindergartenkinder argumentieren–Peer-Gespräche als Erwerbskontext [Kindergarten children argue–Peer talks as an acquisition context]. Mitteilungen des Deutschen Germanistenverbandes [Communications from the German Association of German Studies], 62(1), 21-33.
  • Arendt, B. (2019). Discourse acquisition in peer talk–The case of argumentation among kindergartners. Learning, Culture and Social Interaction, 23, 100342.
  • Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In D. A. Grouws, & T. J. Cooney (Eds.), Perspectives on research on effective mathematics teaching (pp. 27-46). Lawrence Erlbaum.
  • Bauersfeld, H., Krummheuer, G., & Voigt, J. (1985). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. G. Steiner, & H. Vermandel (Eds.), Foundations and methodology of the discipline mathematics education (didactics of mathematics). University of Antwerp.
  • Beck, M., & Vogler, A.-M. (2021). Teachers’ responsiveness as a key element in supporting learners’ participation in arithmetic discourses in primary classroom. In J. Novotná & H. Moraová (Hrsg.), Proceedings of the International Symposium Elementary Mathematics Teaching (SEMT) – Broadening experiences in elementary school mathematics (pp. 72-82). Prague.
  • Brandes, H. (2008). Selbstbildung in Kindergruppen. Die Konstruktion sozialer Beziehungen [Self-education in children’s groups. The construction of social relationships]. Ernst Reinhard Verlag.
  • Brandt, B. (2004). Kinder als Lernende. Partizipationsspielräume und -profile im Klassenzimmer [Children as learners. Participation scopes and profiles in the classroom]. Peter Lang.
  • Brandt, B., & Höck, G. (2012). Mathematical joint construction at elementary grade–A reconstruction of collaborative problem solving in dyads. In Proceedings of CERME 7. Rzeszów, Polen.
  • Brandt, B., & Tiedemann, K. (Eds.). (2019). Mathematiklernen aus interpretativer Perspektive [Learning mathematics from an interpretative perspective]. Waxmann.
  • Bruce, T., Gura, P. & Froebel Blockplay Research Group. (1992b). Children being scientific and solving problems. In P. Gura, & T. Bruce (Eds.), Exploring learning. Young children and blockplay (pp. 107-131). P. Chapman.
  • Bruce, T., Gura, P., & Froebel Blockplay Research Group. (1992a). Being mathematical. In P. Gura, & T. Bruce (Eds.), Exploring learning. Young children and blockplay (pp. 75-91). P. Chapman.
  • Bruner, J. (1990). Acts of meaning. Harvard University Press.
  • Brunner, E. (2014). Mathematisches Argumentieren, Begründen und Beweisen. Grundlagen, Befunde und Konzepte [Mathematical reasoning, reasoning and proof. Basics, findings and concepts]. Springer.
  • Buchholtz, N. (2019). Planning and conducting mixed methods studies in mathematics educational research. In G. Kaiser, & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (S. 131-152). Springer.
  • Buchholtz, N. (2021). Voraussetzungen und Qualitätskriterien von Mixed-Methods-Studien in der mathematikdidaktischen Forschung [Prerequisites and quality criteria of mixed-methods studies in mathematics didactic research]. Journal für Mathematik-Didaktik [Journal for Mathematics Didactics], 42(1), 219-242.
  • Cekaite, A., Blum-Kulka, S., Grøver, V., & Teubal, E. (Eds.). (2014). Children’s peer talk: Learning from each other. Cambridge University Press.
  • Chaiklin, S. (2003). The zone of proximal development in Vygotsky’s analysis of learning and Iinstruction. In A. Kozulin, B. Gindis, V. S. Ageyev, & S. M. Miller (Eds.), Vygotsky’s educational theory in cultural context (pp. 39-64). Cambridge University Press.
  • Civil, M., Planas, N., & Quintos, B. (2005). Immigrant parents’ perspectives on their children’s mathematics education. ZDM, 37(2), 81-89.
  • Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning: Interaction in classroom cultures. Lawrence Erlbaum.
  • Cobb, P., Yackel, E., & Wood, T. (1992). Interaction and learning in mathematics classroom situations. Educational Studies in Mathematics, 23(1), 99-122.
  • Cooke, A., & Bruns, J. (2018). Early childhood educators’ issues and perspectives in mathematics education. In I. Elia, J. Mulligan, A. Anderson, A. Baccaglini-Frank, & C. Benz (Eds.), Contemporary research and perspectives on early childhood mathematics education (pp. 267-289). Springer.
  • Cooper, J., Prescott, S., Cook, I., Smith, L., Mueck, R., & Cuseo, J. (1984). Cooperative learning and college instruction. Effective use of student learning teams. Fundation Publikation.
  • Corsaro, W., & Rizzo, T. A. (1990). Disputes in the peer culture of American and Italian nursery-school children. Conflict Talk, 21-66.
  • Eisenberg, A. R. (1987). Learning to argue with parents and peers. Argumentation, 1(2), 113-125.
  • Ertle, B. B., Ginsburg, H. P., Cordero, M. I., Curran, T. M., Manlapig, L., & Morgenlander, M. (2008). The essence of early childhood mathematics education and the professional development needed to support it. In A. Dowker (Eds.), Mathematical difficulties. Psychology and intervention (pp. 59-83). Academic Press.
  • Flottorp, V. (2011). How and why do children classify objects in free play? A case study. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings from the 7th Congress of the European Society for Research in Mathematics Education, Rzeszów, Poland (pp. 1852-1862). European Society for Research in Mathematics.
  • Forman, E. (1989). The role of peer interaction in the social construction of mathematical knowledge. International Journal of Educational Research, 13(1), 55-70.
  • Helenius, O., Johansson, M. L., Lange, T., Meaney, T., Riesbeck, E., & Wernberg, A. (2016). When is young children’s play mathematical? In T. Meaney, O. Helenius, M. L. Johansson, T. Lange, & A. Wernberg (Eds.), Mathematics education in the early years. Results from the POEM2 Conference, 2014 (pp. 139-156).
  • Henschen, E. (2020). In Bauspielen Mathematik entdecken. Aktivitäten von Kindern mathematikdidaktisch analysieren und verstehen [Discover mathematics in construction games. Analyzing and understanding the activities of children in mathematics education]. Springer VS.
  • Jung, J. (2019). Möglichkeiten des gemeinsamen Lernens im inklusiven Mathematikunterricht. Eine interaktionistische Perspektive [Possibilities of joint learning in inclusive mathematics lessons. An interactionist perspective]. In B. Brandt, & K. Tiedemann (Eds.), Mathematiklernen aus interpretativer Perspektive [Learning mathematics from an interpretative perspective] (pp. 103-126). Waxmann.
  • KMK. (2005). Beschlüsse der Kultusministerkonferenz [Decisions of the Conference of Ministers of Education]. Luchterhand–Wolters Kluwer.
  • Krummheuer, G. (1983). Das Arbeitsinterim im Mathematikunterricht [The work interim in mathematics lessons]. In H. Bauersfeld, B. H., G. Krummheuer, J. H. Lorenz, & J. Voigt (Eds.), Lernen und Lehren von Mathematik. Analysen zum Unterrichtshandeln II [Learning and teaching mathematics. Analysis of classroom action II] (S. 57–104). Köln: Aulis.
  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82.
  • Krummheuer, G. (2009). Inscription, narration and diagrammatically based argumentation. The narrative accounting practices in the primary school mathematics lesson. In W.-M. Roth (Ed.), Mathematical representation at the interface of the body and culture (pp. 219-243). Information Age Publishing.
  • Krummheuer, G. (2013). The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educational Studies in Mathematics, 84(2), 249-265.
  • Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule [Paraphrase and traduction. Participation-theoretical elements of an interaction theory of mathematics learning in elementary school]. Beltz.
  • Krummheuer, G., & Schütte, M. (2014). Das Wechseln zwischen mathematischen Inhaltsbereichen–eine Kompetenz, die nicht in den Bildungsstandards steht [Switching between math content areas–a skill that is not in the educational standards]. Zeitschrift für Grundschuldidaktik [Journal for Elementary School Didactics], 7(1), 112-124.
  • Kuckartz, U. (2014a). Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung [Qualitative content analysis. Methods, practice, computer support]. Beltz.
  • Kuckartz, U. (2014b). Qualitative text analysis. A guide to methods, practice & using software. SAGE.
  • Lave, W., & Wenger, E. (1991). Situated learning. Legitimate peripheral participation. Cambridge University Press.
  • Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. In Problem solving in mathematics education. ICME-13 topical surveys (pp. 1-39). Springer.
  • Mercer, N., Wegerif, R., & Dawes, L. (1999). Children’s talk and the development of reasoning in the classroom. British Educational Research Journal, 25(1), 95-111.
  • Miller, M. (1987). Argumentation and cognition. In M. Hickmann (Ed.), Social and functional approaches to language and thought. Academic.
  • NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
  • Pyle, A., DeLuca, C., & Danniels, E. (2017). A scoping review of research on play-based pedagogies in kindergarten education. Review of Education, 5(3), 311-351.
  • Robertson, A. D., Scherr, R., & Hammer, D. (Eds.). (2016). Responsive teaching in science and mathematics. Taylor & Francis.
  • Saxe, G. B., Gearhart, M., Note, M., & Paduano, P. (1993). Peer interactions and the development of mathematical understandings: A new framework for research and educational practice. In H. Daniels (Ed.), Charting the agenda: Educational activity after Vygotsky. Routledge.
  • Schoenfeld, A. (1985). Mathematical problem solving. Academic Press.
  • Schütz, A., & Luckmann, T. (1979). Strukturen der Lebenswelt [Structures of the living environment]. Suhrkamp.
  • Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourses, and mathematizing. Cambridge University Press.
  • Siraj‑Blatchford, J., & MacLeod‑Brudenell, I. (1999). Supporting science, design and technology in the early years. Open University Press.
  • Stude, J. (2014). The acquisition of discourse competence: Evidence from preschoolers’ peer talk. Learning, Culture and Social Interaction, 3(2), 111-120.
  • Tiedemann, K., & Brandt, B. (2010). Parents’ support in mathematical discourses. In U. Gellert, E. Jablonka, & C. Morgan (Eds.), Proceedings of the 6th International Conference on Mathematics Education and Society (pp. 457-468).
  • Toulmin, S. E. (1969). The uses of argument. Cambridge University Press.
  • van Oers, B. (2019). Dynamics of enculturation: Results and consequences of engagement in ECE practices. European Early Childhood Education Research Journal, 27(4), 433-435.
  • Vogler, A.-M. (2019). Chances and obstacles of ‘indirect’ learning processes in situations with preschool teachers [Paper presentation]. Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11, February 6 – 10, 2019), Utrecht, Netherlands.
  • Vogler, A.-M. (2020). Mathematiklernen im Kindergarten. Eine (mehrperspektivische) Untersuchung zu Chancen und Hürden beim frühen mathematischen Lernen in Erzieher*innen-Situationen [Learning mathematics in kindergarten. A (multi-perspective) study of opportunities and obstacles in early mathematical learning in early childhood education settings]. Waxmann.
  • Vogler, A.-M. (2021). Indirect learning processes as key variable in early mathematics leaning In M. Inprasitha, N. Changsri & N. Boonsena (Eds.), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education (pp. 639-647). PME.
  • Vogler, A.-M., & Beck, M. (2020). Förderung responsiven Handelns durch den Einsatz mathematischer Situationspattern [Promotion of responsive action through the use of mathematical situation patterns]. In M. Beck, L. Billion, M. Fetzer, M. Huth, V. Möller, & A.-M. Vogler (Hrsg.), Ein multiperspektivischer Blick auf Lehr-Lernprozesse – Konzeptionelle, multimodale und digitale Analysen im elementaren und hochschuldidaktischen Kontext [A multi-perspective view of teaching-learning processes - conceptual, multimodal and digital analyzes in the elementary and university didactic context] (pp. 193-214). Waxmann.
  • Vogler, A.-M., Henschen, E., & Teschner, M. (2022). Collective problem-solving in peer interactions in block play situations in kindergarten. Manuscript submitted for publication.
  • Vogler, A.-M., Heschen, E., & Teschner, M. (in press). Facettenreichtum kollektiver Argumentationen in Peerinteraktionen in Bauspielsituatio-nen [Diversity of collective arguments in peer interactions in construction game situations]. In B. Brandt & K. Tiedemann (Eds.), Mathematiklernen aus interpretativer Perspektive II. u.a [Learning mathematics from an interpretive perspective II]. Waxmann.
  • Völkel, P. (2002). Geteilte Bedeutung–Soziale Konstruktion [Shared meaning–social construction]. In H.-J. Laewen, & B. Andres (Eds.), Bildung und Erziehung in der frühen Kindheit [Education and upbringing in early childhood] (pp. 159-207). Beltz.
  • Völkel, P. (2018). Konstruktion der Wirklichkeit. Die Bedeutung der Kindergruppe für die frühkindliche Bildung [construction of reality. The importance of the children’s group for early childhood education]. In TPS 7/2018 Kinder unter Kindern [TPS 7/2018 Children among children] (pp. 4-7). BETA.
  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Harvard University Press.
  • Webb, N. M. (1989). Peer interaction and learning in small groups. International Journal of Educational Research, 13(1), 21-39.
  • Webb, N. M., & Farivar, S. (1999). Developing productive group interaction in middle school mathematics. In A. M. O’Donnell, & A. King (Eds.), The Rutgers Invitational Symposium on Education Series. Cognitive perspectives on peer learning (pp. 117-149). Lawrence Erlbaum.
  • Youniss, J. (1994). Soziale Konstruktion und psychische Entwicklung [Social construction and psychological development]. Suhrkamp.
  • Zippert, E. L., Eason, S. H., Marshall, S., & Ramani, G. B. (2019). Preschool children’s math exploration during play with peers. Journal of Applied Developmental Psychology, 65, 101072.


This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.