International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
On Conditional Probability Problem Solving Research – Structures and Contexts
APA
In-text citation: (Huerta, 2009)
Reference: Huerta, M. P. (2009). On Conditional Probability Problem Solving Research – Structures and Contexts. International Electronic Journal of Mathematics Education, 4(3), 163-194. https://doi.org/10.29333/iejme/235
AMA
In-text citation: (1), (2), (3), etc.
Reference: Huerta MP. On Conditional Probability Problem Solving Research – Structures and Contexts. INT ELECT J MATH ED. 2009;4(3), 163-194. https://doi.org/10.29333/iejme/235
Chicago
In-text citation: (Huerta, 2009)
Reference: Huerta, M. Pedro. "On Conditional Probability Problem Solving Research – Structures and Contexts". International Electronic Journal of Mathematics Education 2009 4 no. 3 (2009): 163-194. https://doi.org/10.29333/iejme/235
Harvard
In-text citation: (Huerta, 2009)
Reference: Huerta, M. P. (2009). On Conditional Probability Problem Solving Research – Structures and Contexts. International Electronic Journal of Mathematics Education, 4(3), pp. 163-194. https://doi.org/10.29333/iejme/235
MLA
In-text citation: (Huerta, 2009)
Reference: Huerta, M. Pedro "On Conditional Probability Problem Solving Research – Structures and Contexts". International Electronic Journal of Mathematics Education, vol. 4, no. 3, 2009, pp. 163-194. https://doi.org/10.29333/iejme/235
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Huerta MP. On Conditional Probability Problem Solving Research – Structures and Contexts. INT ELECT J MATH ED. 2009;4(3):163-94. https://doi.org/10.29333/iejme/235

Abstract

In this paper we summarize the research we have recently carried out on classifying problems of conditional probability. We investigate a particular world of school word problems we call ternary problems of conditional probability. With the help of a mathematical object, the trinomial graph, and the analysis and synthesis method, we propose a framework for a structural, didactical and phenomenological analysis of the ternary problems of conditional probability. Consequently, we have organized this world into several types of problems. With respect to students’ behaviour, we identify four types of thinking processes related to data format and the use of data. We also illustrate our approach by use of the diagnostic test situation, and in the particular context of health. The main purpose of our work is to improve secondary school students’ understanding of conditional probability and their probability literacy by proposing a teaching approach based on problem solving within appropriate contexts. We believe that the framework we present in this paper could help teachers and researchers in this purpose.

References

  • B.O.E. (2006). Real Decreto 1513/2006, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Primaria, Boletín Oficial del Estado, nº 293. Madrid, Ministerio de Educación y Ciencia.
  • B.O.E. (2007). Real Decreto 1631/2006, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria, Boletín Oficial del Estado, nº 5. Madrid, Ministerio de Educación y Ciencia.
  • Carles, M. & Huerta, M. P. (2007). Conditional probability problems and contexts. The diagnostic test context. In D. Pitta-Pantazi & G. Philippou (Eds.), European Research in Mathematics Education V. Proc. CERME 5 (pp. 702–710). Nicosia: The University of Cyprus.
  • Carles, M. (2007). Estudios preliminares de los problemas de probabilidad condicional en contexto. El caso del test de diagnóstico, Memoria para el examen de DEA. Universitat de València. (Preliminary studies on conditional probability problems in context. The case of diagnostic tests, Memory of the pre-doctoral DEA exam. University of Valencia).
  • Cerdán, F. & Huerta, M. P. (2007). Problemas ternarios de probabilidad condicional y grafos trinomiales. Educación Matemática, 19 (1), 27–62.
  • Eddy, D.M. (1983). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, P. Slovic & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 249–267). Cambridge: Cambridge Academic Press.
  • Estrada, A.; Díaz, C. (2006). Computing probabilities from two-way tables: an exploratory study with future teachers. Proc. ICOTS-7. Retrieved June 7, 2009, from http://www.stat.auckland.ac.nz/~iase/publications/17/C413.pdf .
  • Evans, J., Handley, S. J., Perham, N., Over, D. E., & Thompson, V. A. (2000). Frequency versus probability formats in statistical word problems. Cognition, 77, 197–213.
  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer Academic Press.
  • Gal, I. (2005). Towards “probability literacy” for all citizens: Building blocks and instructional dilemmas. In Graham A. Jones (Ed.), Exploring probability in School: Challenge for teaching and learning (pp. 39–63). Berlin: Springer.
  • Girotto, V. & González, M. (2001). Solving probabilistic and statistical problems: a matter of information structure and question form. Cognition, 78, 247–276.
  • Hoffrage, U.; Gigerenzer, G.; Graus, S. & Martignon, L. (2002). Representation facilities reasoning: what natural frequencies are and what they are not. Cognition, 84, 343–352.
  • Huerta, M. P. & Lonjedo, Mª A. (2006). The nature of the quantities in a conditional probability problem. Its influence on the problem solving behaviour. In M. Bosch (Ed.), European Research in Mathematics Education IV. Proc. CERME 4 (pp. 528–538). Barcelona: Fundemi IQS – Universitat Ramon Llull.
  • Huerta, M.P. & Lonjedo, M.A. (2007). The same problem in three presentation formats: Different percentages of success and thinking processes. In D. Pitta-Pantazi & G. Philippou (Eds.), European Research in Mathematics Education V. Proc. CERME 5 (pp. 732–741). Nicosia: The University of Cyprus.
  • Lonjedo, M. A. (2007). Análisis de los problemas ternarios de probabilidad condicional de enunciado verbal y de sus procesos de resolución (Analysis of the word ternary problems of conditional probability and their resolution processes). Doctoral Dissertation. Universitat de València.
  • NCTM, (2000). Principles and Standard for school mathematics. Reston, VA: N.C.T.M. Retrieved June 7, 2009 from http://standards.nctm.org/.
  • Puig, L. & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.
  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 465–494). New York: MacMillan.
  • Tversky, A. & Kahneman, D. (1983). Evidential impact of base rates. In D. Kahneman, P. Slovic & A. Tversky (Ed.), Judgment under uncertainty: Heuristics and biases (pp. 153–160). Cambridge: Cambridge Academic Press.
  • Watson, J. (2005). The probabilistic reasoning of middle school students. In Graham A. Jones (Ed.), Exploring probability in School: Challenge for teaching and learning (pp. 145–169). New York: Springer.
  • Watson, J. (2006). Chance – Precursor to Probability. In J. Watson (2006), Statistical Literacy at School (pp. 127–185). Mahwah, NJ: Lawrence Erlbaum Associates.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.