International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education Indexed in ESCI
Fostering Risk Literacy in Elementary School
APA
In-text citation: (Till, 2014)
Reference: Till, C. (2014). Fostering Risk Literacy in Elementary School. International Electronic Journal of Mathematics Education, 9(2), 83-96. https://doi.org/10.29333/iejme/283
AMA
In-text citation: (1), (2), (3), etc.
Reference: Till C. Fostering Risk Literacy in Elementary School. INT ELECT J MATH ED. 2014;9(2), 83-96. https://doi.org/10.29333/iejme/283
Chicago
In-text citation: (Till, 2014)
Reference: Till, Christoph. "Fostering Risk Literacy in Elementary School". International Electronic Journal of Mathematics Education 2014 9 no. 2 (2014): 83-96. https://doi.org/10.29333/iejme/283
Harvard
In-text citation: (Till, 2014)
Reference: Till, C. (2014). Fostering Risk Literacy in Elementary School. International Electronic Journal of Mathematics Education, 9(2), pp. 83-96. https://doi.org/10.29333/iejme/283
MLA
In-text citation: (Till, 2014)
Reference: Till, Christoph "Fostering Risk Literacy in Elementary School". International Electronic Journal of Mathematics Education, vol. 9, no. 2, 2014, pp. 83-96. https://doi.org/10.29333/iejme/283
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Till C. Fostering Risk Literacy in Elementary School. INT ELECT J MATH ED. 2014;9(2):83-96. https://doi.org/10.29333/iejme/283

Abstract

Risk communication in the public domain is often transmitted with an ambigous language or misleading representations of information. This causes biases in people's understanding of risks. Furthermore people's reasoning about risks is also often biased by their emotions and feelings (Gigerenzer, 2013). This correlates with people's problems in understanding statistical and numerical information. Consequently one of the main aims of educators should be to become aware of this "Risk Illiteracy" and to improve young learners' understanding of different aspects of Risk. From the perspective of stochastics education, this means to focus on an early encounter with probabilistic issues in real-life situations of risk. Ongoing studies discovered that mathematical concepts like proportions, expected values and conditional probabilities can be taught to children through "Natural Frequencies" in hands-on activities (Gigerenzer & Hoffrage, 1995). This work presents an intervention study in twelve classes of 4th graders. The aim of the study was to find out whether children have probabilistic preconcepts of risk and decision making under uncertainty, and if they do, which is the good way to foster them.

References

  • Batanero, C., Godino, J. D., Vallecillos, A., Green, D.R., & Holmes, P. (1994). Errors and Ddifficulties in Understanding Elementary Statistical Concepts. International Journal of Mathematics Education in Science and Technology, 25(4), 527–547.
  • Brase, G. L. (2008). Pictorial Representations in Statistical Reasoning. Appl. Cognit. Psychol. DOI: 10.1002/acp.1460 Retrieved from: http://www.kstate.edu/psych/research/documents/200 9ACP.pdf
  • Campbell, S. (2007). What is the definition of risk? Personal communication relating to an article submitted to Journal of Risk Research.
  • De Haan, G., Kamp, G., Lerch, A., Martignon, L., Müller-Christ, G., Nutzinger, H. (2008). Nachhal- tigkeit und Gerechtigkeit. New York: Springer-Verlag.
  • Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and Opportunities. In Kahneman, D., Slovic, P., Tversky, A. (Eds.), Judgment under Uncertainty: Heuristics and Biases (pp. 249- 267). Cambridge: Cambridge University Press.
  • Fischbein, E., Pampu, I. & Minzat, I. (1970b). Effects of age and instruction on combinatory ability in children. British Journal of Educational Psychology, 40, 261– 270.
  • Gaissmaier, W. & Gigerenzer, G. (2008). Statistical illiteracy undermines informed shared decision making. ZEFQ, 102, 411– 413.
  • Gal, I. (2012). Developing probability literacy: Needs and pressures stemming from frameworks of adult competencies and mathematics curricula. 12th International Congress on Mathematical Education. 1-7.
  • Gal, I., Garfield J. G. (1997). Curricular goals and assessment challenges in statistics education. In Gal, I., Garfield J. G. (Eds.), The Assessment Challenge in Statistics Education (pp. 1-13). IOS press.
  • Galesic, M., Garcia-Retamero, R. (2010). Statistical Numeracy for Health. A Crosscultural Comparison with Probabilistic National Samples. Arch Intern Med., 170(5), 462-465. Retrieved from: http://archinte.jamanetwork.com/article .aspx?articleid=415709#RESULTS
  • Garfield, J. & Ahlgren, A. (1988). Difficulties in Learning Basic Concepts in Probability and Statistics: Implications for Research. Journal for Research in Mathematics Education, 19(1), 44–63.
  • Gigerenzer, G. (2013). Risiko. Wie man die richtigen Entscheidungen trifft. München: Bertelsmann Verlag.
  • Gigerenzer, G. & Gray, M. (2011). Better Patients. Better Doctors. Better Decisions. Envisioning Health Care 2020. Cambridge: MIT Press.
  • Gigerenzer, G. & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684-704.
  • Gresh, D., Deleris, L. A., & Gasparini, L. (2012).Visualizing Risk. IBM research report.
  • Kahneman, D. & Tversky, A. (1979). Prospect Theory: An analysis of decision under risk. Economet- rica, (47), 263-291.
  • Kapadia, R. (2009). Chance Encounters – 20 years later. Fundamental ideas in teaching probability at school level. International Electronic Journal of Mathematics Education, 4(3), 371-386.
  • Kuntze, S., Gundlach, M., Engel, J. & Martignon, L. (2010). Aspects of statistical literacy between competency measures and indicators for conceptual knowledge – empirical research in the project “RIKO-STAT”. Proceedings of the 8th International Conference on Teaching Statistics (ICOTS8).
  • Latten, S., Martignon, L., Monti, M. & Multmeier, J. (2011). Die Förderung erster Kompetenzen für den Umgang mit Risiken bereits in der Grundschule. Ein Projekt von RIKO-STAT und dem Harding Center. Stochastik in der Schule, (31), 17–25.
  • Martignon, L. & Krauss, S. (2009). Hands-On Activities for Fourth Graders: A Tool Box for Decision-Making and Reckoning with Risk. International Electronic Journal of Mathematics Education, 4(3), 227-258.
  • Martignon, L. & Kurz-Milcke, E. (2006). Educating Children in Stochastic Modeling: Games with Stochastic Urns and Colored Tinker-Cubes. Hg. v. ICOTS 7. International Association of Sta- tistical Education (IASE).
  • Pratt, D., Ainley, J., Kent, P., Levinson, R., Yogui, C., & Kapadia, R. (2011). Role of Context in Risk-Based Reasoning. Mathematical Thinking and Learning, 13(4), 322-345.
  • Scholz, R. W. & Waschescio R. (1986). Kognitive Strategien von Kindern bei Zwei-Scheiben- Rouletteaufgaben. Beiträge zum Mathematikunterricht.Hannover: Franzbecker.
  • Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing uncertainty about the future. Science, (333), 1393-1400.
  • Schapira, M. M., Nattinger, A. B., & McHorney, C. A. (2001). Frequency or Probability? A Qualitative Study of Risk Communication Formats Used in Health Care. Medical Decision Making, (21), 459-467.
  • Zhu, L. & Gigerenzer, G. (2004). Children can solve Bayesian problems: the role of representation in mental computation. Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Center for Adaptive Behaviour and Cognition, Max Planck Institute for Human Developement, Berlin, Germany. Retrieved from: http://library.mpibberlin.mpg.de/ft/gg/GG_Child_2006.pdf

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.