International Electronic Journal of Mathematics Education

International Electronic Journal of Mathematics Education
Historical Creativities for the Teaching of Functions and Infinitesimal Calculus
APA
In-text citation: (Mendes, 2021)
Reference: Mendes, I. A. (2021). Historical Creativities for the Teaching of Functions and Infinitesimal Calculus. International Electronic Journal of Mathematics Education, 16(2), em0629. https://doi.org/10.29333/iejme/10876
AMA
In-text citation: (1), (2), (3), etc.
Reference: Mendes IA. Historical Creativities for the Teaching of Functions and Infinitesimal Calculus. INT ELECT J MATH ED. 2021;16(2), em0629. https://doi.org/10.29333/iejme/10876
Chicago
In-text citation: (Mendes, 2021)
Reference: Mendes, Iran Abreu. "Historical Creativities for the Teaching of Functions and Infinitesimal Calculus". International Electronic Journal of Mathematics Education 2021 16 no. 2 (2021): em0629. https://doi.org/10.29333/iejme/10876
Harvard
In-text citation: (Mendes, 2021)
Reference: Mendes, I. A. (2021). Historical Creativities for the Teaching of Functions and Infinitesimal Calculus. International Electronic Journal of Mathematics Education, 16(2), em0629. https://doi.org/10.29333/iejme/10876
MLA
In-text citation: (Mendes, 2021)
Reference: Mendes, Iran Abreu "Historical Creativities for the Teaching of Functions and Infinitesimal Calculus". International Electronic Journal of Mathematics Education, vol. 16, no. 2, 2021, em0629. https://doi.org/10.29333/iejme/10876
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Mendes IA. Historical Creativities for the Teaching of Functions and Infinitesimal Calculus. INT ELECT J MATH ED. 2021;16(2):em0629. https://doi.org/10.29333/iejme/10876

Abstract

This article presents reflections on a research that investigated processes operationalized by mathematical thoughts and practices which sought explanations for the ways of being of mathematical objects in their correlations in the socio-cultural context throughout our human history and how these ways of being they were captured, and still are, by the mind of those who exercised creativity in all the dimensions of mathematical creation both in the past and in the present, in order to produce knowledge to be disseminated in the school and scientific context. The research is a historical-epistemological study on mathematical creation, aimed at characterizing modes of stages of this creation focusing on the development of infinitesimal calculus and on the concept of function. At the end of the article, we propose educational guidelines for the teaching of these mathematical themes, based on the creation processes announced throughout the text.

References

  • Araújo, T. (2009). Criatividade na educação [Creativity in education]. Imprensa Oficial.
  • Barthélemy, G. (2003). 2500 anos de Matemática: A evolução das ideias [2500 years of Mathematics: The evolution of ideas]. (Trans. I. Andrade). Instituto Piaget.
  • Bohm, D. (2011). Sobre a criatividade (Trans. R. de Cássia Gomes). Publisher of UNESP.
  • Bois-Reymond, P. (1887). Théorie générale des fonctions [General theory of functions]. Niçoise Printing.
  • Braga, C. (2003). Processo inicial de disciplinarização de função na matemática do ensino secundário brasileiro [Initial process of disciplining function in the mathematics of Brazilian secondary education]. (Masters’ thesis in Mathematics Education). Pontifíca Universidade Católica – PUCSP.
  • Carroll, L (1879). Euclid and his Modern Rivals. Macmillan and Co.
  • Carroll, L. (1885). A tangled tale. Macmillan and Co.
  • Carroll, L. (1886). Alice’s adventures underground. Macmillan and Co.
  • Clagett, M. (Ed.). (1968) Nicole oresme and the medieval geometry of qualities and motions. University of Wisconsin Press.
  • Cortez, J. (2004). Lunário e Prognóstico Perpétuo [Lunar and Perpetual Prognosi]. Lello Publishers.
  • Csikszentmihalyi, M. (1996). Creatividad: El fluir y la psicologia del descubrimiento y la invención [Creativity: Flow and the Psychology of Discovery and Invention]. Paidós.
  • Cusa, N. (2003). A Douta Ignorância [The Doubtful Ignorance]. Calouste Gulbenkian Foundation.
  • Dahan-Dalmedico, A., & Peiffer, J. (1986). Une histoirie des mathématiques: Routes et dédales [A History of Mathematics: Roads and Mazes]. Éditions du Seuil.
  • Davis, P. J., & Hersh, R. (1995). A experiência Matemática [The Mathematical Experience]. Gradiva.
  • De Masi, D. (2000). O ócio criativo [Creative leisure]. (Interview to Maria Serena Palieri). Sextante.
  • De Masi, D. (2003). Criatividade e grupos criativos [Creativity and creative groups] (Trans. de L. Manzi). Sextante.
  • Descartes, R. (1637). La Géométrie [Geometry]. In Discours de la méthode. Flammarion.
  • Duncan, D. E. (1999). Calendário: a epopéia da humanidade para determinar um ano verdadeiro e exato [Calendar: the epic of humanity to determine a true and accurate year]. Rio de Janeiro, Ediouro.
  • Einstein, A. (1993). Escritos da Maturidade [Maturity Writings]. (Trans. M. Luiza X. de A. Borges) (5th Ed.). Nova Fronteira.
  • Ervynck, G. (1991). Mathematical Creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42-53). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47203-1_3
  • Euclides. (2009). Os Elementos [The Elements] (Trans. I. Bicudo). UNESP Publisher.
  • Fernández, C. S., & Castro, C. V. (2007). Las funciones, Un paseo por su historia [The functions, A walk through its history]. Nivola.
  • Fischbein, E. (1987). Intuition in Science and Mathematics. Na Educational Approach. D. Reidel Publishing Company.
  • Frege, G. (1971). Écrits logiques et philosophiques [Logical and philosophical writings]. Éditions du Seuil.
  • Gonçalves-Maia, R. (2011). Ciência, pós-ciência, metaciência: tradição, inovação e renovação [Science, post-science, metacience: tradition, innovation and renewal]. Ed. Livraria da Física (Contexts of Science Collection).
  • Guinsburg, J., Romano, R., & Cunha, N. (Ed.). (2010) Descartes: obras escolhidas [Descartes: chosen works]. Perspectivas.
  • Hadamard, J. (2009). Psicologia da invenção matemática (Trans. E. dos Santos Abreu). Contraponto.
  • Jullien, V. (1996). Descartes. La Géométrie de 1637. Presses universitaires de France. (Collection Philosophies, 76).
  • Kasner, E., & Newman, J. (1968). Matemática e Imaginação [Mathematics and Imagination] (Trans. J. Fortes). Zahar Publishers.
  • Klein, F. (1905, 1998). De la enseñanza de las ciencias matemáticas y físicas em las universidades (Translation of an article published by D. M. V. Johresberitcht, 1905). Educación Matemática, 10(1), 133-139.
  • Klein, F. (1927). Matemática Elemental Desde um Punto de Vista Superior [Elemental Mathematics From a Top View Point] (vol. 1). Mathematical Library Collection, Madrid.
  • Klein, F. (1931). Matemática Elemental Desde um Punto de Vista Superior [Elemental Mathematics From a Top View Point] (vol. 2). Mathematical Library Collection, Madrid.
  • Kline, M. (1985). Matemáticas. La pérdida de la certidumbre [Math. the loss of certainty]. Siglo XXI de España Publishers.
  • Lakatos, I. (1978). A Lógica do descobrimento matemático: provas e refutações (Trans. N. C. Caixeiro). Zahar Publishers.
  • Lopes, G. L. O (2017). A criatividade matemática de John Wallis na obra Arithmetica Infinitorum: contribuições para ensino de cálculo diferencial e integral na licenciatura em matemática [The mathematical creativity of John Wallis in the work Arithmetica Infinitorum: contributions to the teaching of differential and integral calculus in the degree in mathematics] (Doctoral dissertation in Education), Education Center, Federal University of Rio Grande do Norte, Natal.
  • Maclaurin, C. (1742). A treatise of fluxions in two books. T. W. and T. Ruddimans.
  • Martins, V. M. T. (2000). Para uma pedagogia da criatividade [Towards a pedagogy of creativity]. Work proposals. Asa Publishers. (Research and Practice Notebooks, 12).
  • Maturana, H. R., & Varela, F. J. (2001). A árvore do conhecimento: As bases biológicas da compreensão humana [The tree of knowledge: The biological bases of human understanding] (Trans. H. Mariotti & L. Diskin). Palas Athena.
  • Mendes, I. A. (2006). A investigação histórica como agente da cognição matemática na sala de aula [Historical research as an agent of mathematical cognition in the classroom]. In I. A. Mendes, J. A. Fossa, & J. E. N. Valdez (Eds.), A História como um agente de cognição na Educação Matemática. Editora Sulina.
  • Mendes, I. A. (2015). História da Matemática no ensino: entre trajetórias profissionais, epistemologias e pesquisas [History of Mathematics in teaching: between professional trajectories, epistemologies and research]. LF editorial.
  • Mendes, I. A. (2019). Criatividade na história da criação matemática: potencialidades para o trabalho do professor [Creativity in the history of mathematical creation: potentialities for the teacher’s work]. SBEM Pará.
  • Moles, A. A. (1998). La création scientifique [Scientific creation] (1st Ed.). Kister.
  • Moles, A. A. (2007). A criação científica [The scientific creation]. Perspectiva. (Studies Collection - Philosophy of Science).
  • Moles, A. A., & Caude, R. (1970). Créativité et méthodes d’innovation das l’entreprise [Creativity and innovation methods in the company]. Fayard-Mame.
  • Perkins, D. (2003). La bañera de Arquímedes y otras historias del descubrimiento científico: El arte del pensamiento creativo [The Archimedean Bath and Other Stories of Scientific Discovery: The Art of Creative Thinking] (Trans. G. Solana). Paidós.
  • Poincaré, H. (1908, 1999). Science et Methode [Science and Method]. Paris: Flammarion, 1908. Reed. Paris: Kimé.
  • Rodis-Lewis, G. (1996). Descartes: uma biografia [Descartes: a biography] (Trans. J. A. D. Melo). Records.
  • Roxo, E. (1937). A Matemática na Educação Secundária [Mathematics in Secondary Education]. Companhia Editora Nacional.
  • Serres, M. (2008). Ramos [Branches] (Trans. E. de Assis Carvalho & M. P. Bosco). Bertrand Brasil.
  • Steiner, G. (2011). Gramáticas de la Creación [Grammars of Creation] (Trans. A. Alonso & C. G. Rodriguez). Ediciones Siruela.
  • Sternberg, R. J., & Williams, W. M. (2000). Como desenvolver a criatividade do aluno [How to develop student creativity]. Asa Publishers.
  • Valente, W. R. (2017). A matemática a ensinar e a matemática para ensinar [Mathematics to teach and mathematics to teach]. In R. Hofetetter & W. R. Valente (Ed.), Saberes em (trans)formação: tema central da formação de professores. Editora Livraria da Física.
  • Vaulezard, J. L. (1986). La nouvelle algèbre de M. Viète. Suivi de Zététiques. Paris: 1630. Reed. Corpus des oeuvres philosophiques en langue française [M. Viète’s new algebra. Zetetics follow-up. Paris: 1630. Reed. Corpus of philosophical works in French]. Fayard.
  • Vergani, T. (2009). A criatividade como destino: transdisciplinaridade, cultura e educação [Creativity as a destination: transdisciplinarity, culture and education]. Ed. Livraria da Física (Contexts of Science Collection).

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.