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Introduction 

Nurturing students’ mathematical reasoning and proving capacity has been 

recognized as fundamental aspects of mathematics education (CCSSO, 2010; 

NCTM, 2000). However, it is also well documented that students’ understanding 

of mathematical proofs and their ability to conduct rigorous mathematical 

reasoning remains underdeveloped at all grade levels (Chazan & Lueke, 2009; 

Dreyfus, 1999; Harel & Sowder, 1998, 2007; Kuchemann & Hoyles, 2009; Weber, 

2001). 
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ABSTRACT 
Existing research have found that students’ creation and evaluation of mathematical 
proofs was inconsistent across content areas. Investigation into an explanation of the 
phenomena requires an analysis of students’ thinking processes when they conduct an 
evaluation of mathematical arguments. This study is conceptualized to contribute to 
this investigation. The analysis investigated the aspects and features of arguments that 
impacted students’ evaluation of the arguments. Eight 8th grade students participated 
in the interviews where they were asked to explain their rationale in evaluating 
arguments that justify conjectures from multiple strands of school mathematics. 
Interview data was coded using the Classification of Mathematical Argument (CMA) 
framework to identify the aspects and features of arguments that impacted students’ 
evaluation of the arguments. A detailed analysis of each subject’s interview response 
documented the complexity of each individual’s rationale and offered descriptions of 
the various differences among individuals. Despite such individual differences, the study 
also revealed a common theme among the subjects in their reasoning, i.e. the accepted 
statements in an argument, instead of its mode of presentation or mode of 

argumentation, had the largest impact on the subjects’ evaluation of an argument. 
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Usiskin (1982) conducted a large-scale study of secondary students’ 

geometric reasoning levels using the van Hiele model (van Hiele, 1980; 1986). 

Results of the study indicated that “Few students (barely a quarter of the 

population at most) are at levels 4 or 5, the levels at which, according to the van 

Hiele theory, students are able to understand proof” (p. 40). Thirty years later, 

results from National Assessment of Educational Progress mathematics studies 

revealed similar results (NAEP, 2010). Only about a quarter of the Grade 12 

participants (23% in 2005 and 26% in 2009) were at or above Proficient Level, 

where students are “able to test and validate geometric and algebraic 

conjectures using a variety of methods, including deductive reasoning and 

counterexamples” (p. 32); while very few of the participants (2% in 2005 and 3% 

in 2009) were at Advanced Level, where students are able to “provide 

mathematical justifications for their solutions, and make generalizations and 

provide mathematical justifications for those generalizations,” “reflect on their 

reasoning,” and “understand the role of hypotheses, deductive reasoning, and 

conclusions in geometric proofs and algebraic arguments made by themselves 

and others” (p. 32). 

It is recognized that this failure might be due to the fact that proofs and the 

proving process are often taught as an isolated topic in a geometry course 

instead of as a conceptual tool for reasoning throughout the curriculum (Herbst 

& Brach, 2006; Reid, 2011). As a consequence, students tend to view proof as a 

special format of written work (e.g. two-column proof) instead of a dependable 

way to produce reliable arguments (Chazan, 1993; González & Herbst, 2006; 

Healy & Hoyles, 2000; Schoenfeld, 1988). To address the issue, recent reform 

efforts in the mathematics curriculum tended to place less emphasis on the 

format of proof while paying more attention to nurturing students’ proof skills 

through the understanding of specific topics throughout the grades (de Villiers, 

1990, 2003; Hanna, 2000a, 2000b; Reid, 2011). This is consistent with the call 

from Principles and Standards for School Mathematics (NCTM, 2000), which 

states that “reasoning and proof cannot simply be taught in a single unit on 

logic, for example, or by ‘doing proofs’ in geometry” (p. 56). Such a perspective 

situates proof as a mathematical method developing naturally through 

mathematical inquiry – the need for proof emerges when the need to explore, 

verify, and systemize mathematical ideas is recognized (De Villiers, 1990; 

Lakatos, 1976). To implement such an approach, it is not only important to 

carefully examine the development of content structure, but also to understand 

the nature of students’ thinking in proof-related activities (Mejia-Ramos & 

Inglis, 2009). 

One prominent work in understanding the students’ mathematical 

reasoning is the proof scheme framework proposed by Harel and Sowders (1998). 

Extending previous research such as Bell (1976) and Balacheff (1988; 1991), 

Harel and Sowder organized the types of arguments students (primarily college 

mathematics majors) might use in various branches of mathematics and 

proposed a framework of proof schemes consisting of three main categories, i.e. 

“external,” “empirical,” & “analytical,” each of which encompasses several 

subcategories. External proof schemes include instances where students 

determine the validity of an argument by referring to external sources, such as 

the appearance or authorship of the argument instead of its content. Empirical 

proof schemes, inductive or perceptual, include instances when a student relies 

on examples or mental images to verify the validity of an argument; the prior 
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draws heavily on examination of cases for convincing oneself, while the latter is 

grounded in more intuitively coordinated mental procedures without realizing 

the impact of specific transformations. Lastly, analytical proof schemes rely on 

either transformational structures (operations on objects) or axiomatic modes of 

reasoning that include resting upon definitions, postulates, or previously proven 

conjectures.  

Harel and Sowder’s (1998) proof scheme framework is powerful in 

categorizing the type of proof adopted by students, yet it does not serve the 

purpose of explaining why a particular proof scheme is used by an individual. 

Healy and Hoyles’ (2000) study examined the factors that influence students’ 

decisions on what type of proof was valid. Focusing on high-attaining 14- and 15-

year-old students, Healy and Hoyles (2000) found that students’ judgment was 

impacted by their understanding of the purpose of the proof (i.e. to satisfy the 

teacher or to convince themselves, also see de Villiers, 1990; 2003), their 

mathematical competence, the instruction they received (also see Hoyles, 1997; 

Herbst & Branch, 2006), and their genders.  

Both Harel and Sowder (1998) and Healy and Hoyles (2000) found that 

students’ creation and evaluation of mathematical proofs was inconsistent 

across content areas. Students might value and create a deductive proof in one 

context and yet rely on empirical verification in another context. Such findings 

are consistent with existing developmental models of proof understanding (e.g. 

Waring, 2000; Yang & Lin, 2008; Tall et al., 2012), where the overarching 

understanding and consistent use of deductive reasoning is not achieved until 

learners reach the higher levels. However, the basis on which students rely on 

different schemes is still unexplained. There is a lack of explanation of why 

students may rely on, for instance, theorems to prove a geometric property, but 

are simultaneously fully convinced by checking a few cases in proving a number 

theory conjecture. Investigation into an explanation of the phenomena requires 

an analysis of students’ thinking processes when they conduct an evaluation of 

mathematical arguments. This study is conceptualized to contribute to this 

investigation.  

Theoretical framework 

The purpose of this study is to explore what students look for when 

determining if a mathematical argument is convincing. In order to do so, the 

Classification of Mathematical Argument (CMA) framework (see Figure 1) was 

conceptualized based on Stylianides and Stylianides’ (2008a) identification of 

three characteristics of proofs, and Harel and Sowder’s (1998) proof scheme 

model to categorize the aspects and features of mathematical arguments. 
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Figure 1. Classification of Mathematics Arguments (CMA) framework 

 

Stylianides and Stylianides (2008a) identified three characteristics of 

mathematical proof: the mode of argument representations (which describes the 

format of expressions), the set of accepted statements (which states what is 

taken for granted), and the mode of argumentation (which represents the 

process of reasoning). 

Stylianides and Stylianides (2008a) identified three modes of 

representations – verbal, pictorial, and algebraic. For this study, the verbal 

category was further differentiated as two categories, narrative and numerical. 

Narrative arguments refer to those using casual language without referring to 

exact numbers or using algebraic symbols. A typical example could be “Because 

the car is slower, it takes a longer time to get to the destination.” Numerical 

arguments refer to those using Arabic digits and operational symbols (such as 

“+,” “-,” “<” and “( )”). For example, the argument “since 12 = 3 * 4, then 12 is a 

multiple of 3” is considered numerical. Algebraic arguments refer to those using 

the alphabet to represent mathematical concepts and communicate ideas. For 

instance, the argument “Since x2-2x+1=(x-1)2, then it must be non-negative” is 

considered algebraic. The last type is pictorial arguments, where pictures, 

figures, or other visual aids are provided to present concepts and to 

communicate ideas. An argument using the quantity of concrete figures to 

represent certain numbers is an example of pictorial arguments. 

Different genres within the set of accepted statements and the mode of 

argumentation were informed through Harel and Sowder’s (1998) proof scheme 

model. In particular, an accepted statement could be classified as authority (i.e. 
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what’s stated by a respectful knowledge carrier, e.g. teachers, mathematicians, 

books, agreement of a community, etc.), example (i.e. result from an empirical 

test), imaginary (i.e. mental image created from recalling previous experience), 

math fact (i.e. a well known existing mathematical result), an assumption (i.e. 

promises assumed as the context of discussion), and opinion (conviction without 

an explicit reason).  

The modes of argumentation used in this work include direct indication, 

perceptual connection, induction, transformation (Simon, 1996), ritual operation 

(Healy & Hoyles, 2000), and deduction. In direct indication, the conclusion is the 

required condition of source without any additional understanding (e.g. “Since 

the squares of a positive number, a negative number, and 0 are all non-negative, 

then the square of a real number is non-negative”). Perceptual connection refers 

to the linking of the source and the conclusion based on visualization or 

intuition. The argument “Since f(x) is a much longer expression than g(x), then 

f(x) must be larger” is an illustration of the use of perceptual connection in an 

argument. The use of metaphor/simile also falls into this category. Induction and 

transformation both refer to a conclusion informed by several pieces of empirical 

evidence; however, transformation involves a further investigation and noticing 

of properties that connect the empirical cases. For example, claiming that a 

property is true for all numbers purely based on testing a few numbers is 

considered induction; however, the use of generic examples (Balacheff, 1988), 

where certain general patterns were conceptualized during the study of the 

examples (e.g. envisioning the relationship between a person’s distance from a 

street light and the length of this person’s shadow), is considered 

transformation. Ritual operation and deduction both refer to a valid procedure; 

however, ritual operation refers to the use of a standardized procedure without 

knowing its limitations or why it works, while deduction refers to reasoning with 

an understanding of the logic between each of the steps in the process. 

Throughout the rest of this paper, the mode of representation, the set of 

accepted statements, and the mode of argumentation will be called the “aspects” 

of an argument, while each category of an aspect is called a “feature” of an 

argument.  

It is important to note that there is a certain degree of uncertainty when 

classifying a mathematical argument, depending on how explicitly the accepted 

statements are identified and how detailed the processes of argumentation are 

explained. Consider, as an example, the following argument: “Since 2+2=4, 

2+4=6, 2+6=8, 4+6=10, then the sum of two even numbers must also be even.” 

The representation of the argument is numerical. The accepted statements are 

the examples (results of several trials). The mode of argumentation appears to be 

induction, but might raise some questions. For instance, it is possible that when 

a student claims the argument to be valid, he/she might have gained insights 

from the trial results without explicitly expressing the discoveries. If that is the 

case, what convinced the student is no longer just an induction, but instead the 

transformation he/she made through the observation of the given examples. 

Therefore, it is important to acknowledge that the mode of representation, the 

set of accepted statements, and the mode of argumentation are not determined 

by the argument in its written format, but through a subject’s interpretation of 

the argument.  
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Since individuals often have different interpretations of the same argument, 

the investigation of what features of an argument influence a student’s 

evaluation of it can only be conducted with a thorough understanding of the 

student’s interpretation and understanding of the argument. Therefore, clinical 

interviews were adopted as a methodology in order to collect in-depth qualitative 

data about students’ thinking and reasoning (McConaughy, & Achenbach, 2001). 

Methods 

Participants 

Clinical interviews were conducted with eight public school eighth grade 

students from a U.S. Midwestern state. Gender appropriate pseudonyms (Allen, 

Blake, Cindy, Deb, Emily, Fiona, Grace, and Heather) are used for the rest of 

the article. All of the subjects were enrolled in Algebra I or an equivalent class 

(Integrated 8th Grade Mathematics) at the time of the interviews. Two subjects 

(Allen and Grace) were taking Honors Algebra I. The interviews were recorded 

at the end of the spring semester, and so the subjects were close to finishing 

their coursework for the school year. There were 2 male and 6 female students. 

All subjects were native English speakers. It is not expected that the 8 subjects 

could generalize to students with all demographic and academic backgrounds. 

However, it is expected that the findings about the individuals could shed light 

on the nature of how students’ thinking plays a role in evaluating mathematical 

arguments. 

The choice of 8th graders as the subjects of the study is primarily based on 

two considerations. First, according to Piaget’s (1985) Intellectual Development 

Stages, middle school students are at a critical cognitive phase where they can 

begin to engage in abstract and logical thinking. Therefore, how they learn to 

evaluate different arguments at this stage could potentially impact their 

reasoning skills and thinking habits in their later academic years. Second, 

according to the curriculum standards (NCTM, 2000; CCSSO, 2010), most 8th 

grade students should have obtained a basic understanding of numbers, shapes, 

probabilistic chance, algebraic expressions, simple propositions and properties, 

and should be able to see the connections between concepts and ideas. However, 

they may not have adopted abstract thinking or deductive ways of mathematical 

reasoning using conventional proving techniques and forms. Therefore, 8th grade 

serves as a bridge between middle and high school mathematics and the link 

between informal and more formal and abstract mathematical reasoning, and 

thus a focus on 8th graders’ thinking and reasoning could provide valuable 

information on how to initiate the development of more rigorous mathematical 

reasoning in secondary mathematics. 

Interview Design 

The According to a survey conducted by Mejia-Ramos and Inglis (2009), the 

majority of studies on mathematical proof are concerned with students’ 

estimation, exploration, and justification of a mathematical conjecture, while 

few studies attend to students’ comprehension or evaluation of a given proof. In 

addition, instruments that assess students’ comprehension of proofs are also 

underdeveloped (Mejia-Ramos et al., 2012). To address this gap in the literature, 

the interview instrument was designed to explore students’ evaluation of 

mathematical arguments in various contexts.  
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Five mathematical problems (A, B, C, D, and E) were chosen for the 

interview instrument (see Appendix I). The instrument design was informed by 

Healy and Hoyles’ (2000) study where one conjecture was proposed in each 

problem followed by several arguments, which validated the conjecture in 

different ways. The problems were embedded in the main strands of school 

mathematics as described by the curriculum: number theory, geometry, 

probability, and algebra, which provided distinct contexts to investigate subjects’ 

thinking. Conjectures in Problems A, B, D, and E are true conjectures. The 

conjecture in Problem C is false, but the counterexamples to this conjecture are 

not obvious. The arguments in each problem were provided to validate the 

corresponding conjecture. Table 1 provides an overview of the mathematical 

content and a key feature of the arguments, as identified by the researcher, 

associated with each of the conjectures. 

 

Table 1. Content of each conjecture and a key feature of each argument 

Problem A 
(number 
theory) 

Problem B 
(geometry) 

Problem C 
(geometry) 

Problem D 
(algebra) 

Problem E 
(probability) 

A1 (inductive) B1 (inductive) C1 (inductive) D1 (inductive) E1 (inductive) 

A2 (algebraic) B2 (perceptual) C2 (algebraic) D2 (algebraic) E2 (pictorial) 

A3 (perceptual) B3 (algebraic) C3 (pictorial) D3 (perceptual) E3 (perceptual) 

A4 (pictorial) B4 (pictorial) C4 (perceptual) D4 (pictorial) E4 (algebraic) 

 

The problems were presented to subjects on colored paper cards each. Each 

card had the size of 20cm by 5 cm and was printed with either a conjecture or an 

argument. A conjecture and the arguments about the conjecture were printed on 

the cards of the same color. During the interview, the subject first selected a 

problem (a bundle of the conjecture and the arguments) by a color of his or her 

choice. The subject was asked to separate and read the conjecture and 

arguments, and then place the arguments in a column from the most convincing 

(on the top of the column) to the least convincing (on the bottom of the column). 

The subject was then asked to explain his/her rationale of the ranking by 

explicitly comparing one argument to all of the other arguments within that 

problem. After the explanation, the subject repeated the same process with a 

different problem.  

Throughout the interviews, the subjects were encouraged to explain their 

thoughts and were provided ample time and opportunities to do so. In cases 

when the subject encountered difficulty in explaining his/her thoughts, the 

interviewer relied on several follow-up questions to facilitate the discussion. 

Such questions included:  

 Do you think that one of the arguments is wrong? 

 Do you think that this argument showed the conjecture is always true 

without any exception? 

 Does any argument help you understand the problem better? Why?  

 Do you think that this argument’s evidence cannot support its conclusion? 

The columns of arguments were placed side-by-side so the subject could 

have an overview of what argument was ranked highly or lowly in every 
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problem. (See Figure 2 for a sample ranking by a subject. Each card had the 

actual conjecture or argument instead of just a label as shown in the figure.) 

 

Conjecture B Conjecture C Conjecture A Conjecture D Conjecture E 

Argument B2 Argument C2 Argument A1 Argument D3 Argument E2 

Argument B1 Argument C3 Argument A3 Argument D4 Argument E1 

Argument B3 Argument C4 Argument A2 Argument D1 Argument E4 

Argument B4 Argument C1 Argument A4 Argument D2 Argument E3 

Figure 2. Illustration of subject’s view of their rankings of the arguments in all problems 

 

Besides explaining his/her ranking of arguments within each problem, the 

subject was also asked to review his/her ranking across the problems and to 

explain if there were any general ideas that guided their rankings across the 

problems. The comparison focused on why the subject ranked the arguments 

with a similar feature (e.g. pictorial demonstration, use of algebra, use of specific 

examples, and etc.) consistently highly across the problems, consistently lowly 

across the problems, or inconsistently across the problems. This comparison 

allowed the subject to explicitly explain his/her view of a certain feature of the 

arguments and how this feature may impact his/her judgment, and hence 

allowed an analysis of the explanation based on the CMA framework.  

Data Analysis 

The interview responses were transcribed verbatim and analyzed 

qualitatively. First, each comment made by a subject toward an argument was 

classified according to whether it referred to the mode of representation, the set 

of accepted statements, or the mode of argumentation. Second, the occurrence of 

comments on each of the aspects was counted to describe the subject’s attention 

while engaged in argument evaluation. Third, the occurrences of comments on a 

specific feature of an argument were counted, and whether such feature had a 

positive or negative impact on the subject’s evaluation of the argument was also 

documented. Lastly, subjects made some comments regarding factors that were 

not included in CMA framework (e.g. the length of the argument might have 

impacted some subjects’ judgment). Those factors were categorized as non-CMA 

factors and were also studied to understand each subject’s rationale in argument 

evaluation. Figure 3 illustrates the steps in the analysis. 

 

 

 

Figure 3. Steps in the interview analysis. 

 

Identify what 
aspects of the 
argument 
were 
commented 
on by subject  
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commented 
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of comments 
on each 
feature by 
subject 

Study non-
CMA factors 
considered by 
subject in the 
interview 
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Findings 

The analysis of one subject’s (Allen’s) responses is provided to demonstrate 

the findings obtained from the study. The following section offered details about 

Allen’s ranking of the arguments, his explanation of the ranking, and how his 

explanation was coded and interpreted to understand his rationale for 

evaluating mathematical arguments. The same analytical procedure was 

utilized for all the other seven subjects. 

The case of Allen 

Allen was an 8th grade student enrolled in an Honors Algebra I class at the 

time of data collection. Figure 4 illustrates the rankings provided by Allen for 

each problem. 

 

Problem C Problem B Problem D Problem A Problem E 

C2 (algebraic) B3 (algebraic) D4 (pictorial) A4 (pictorial) E2 (pictorial) 

C4 (perceptual) B4 (pictorial) D1 (inductive) A2 (algebraic) E4 (algebraic) 

C3 (pictorial) B2 (perceptual) D2 (algebraic) A3 (perceptual) E1 (inductive) 

C1 (inductive) B1 (inductive) D3 (perceptual) A1 (inductive) E3 (perceptual) 

Figure 4. Argument rankings of provided by Allen 

 

Allen’s comments on the arguments were coded referring to the table of 

codes (see Table 2). Specifically, each of Allen’s comments that referred to the 

mode of representation, accepted statements, or the mode of argumentation was 

coded with the corresponding capitalized letters, MR, AS, and MA, respectively, 

followed by a number that denotes the specific feature of that aspect. 

 

Table 2. Table of codes 

Mode of Representation Accepted Statements Mode of Argumentation 

Pictorial: MR1 Authority: AS1 Direct: MA1 
Narrative: MR2 Example: AS2 Perceptual: MA2 
Numerical: MR3 Imaginary: AS3 Inductive: MA3 
Algebraic: MR4 Math Fact: AS4 Transformational: MA4 

  Assumption: AS5 Ritual: MA5 
  Opinion: AS6 Deductive: MA6 

i). “P” denotes comments that didn’t refer to the mode of representation, accepted 
statements, or mode of argumentation.  
ii). “NA” denotes comments in which the subject claimed that he/she didn’t understand 
the argument and didn’t offer any explanation. 
iii). A notation “-” was added behind the code to indicate that this feature made the 
argument less convincing to the subject. 

 

The following clarifications are important in understanding the coding 

procedure. 

1) Not all comments could be coded according to the CMA framework. In 

cases where the factors that contributed to the judgment were not identifiable or 

were not about the mode of representation, accepted statements, or mode of 

argumentation, the comment was coded “NC,” denoting that there were non-
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CMA factors that need to be further examined. It was denoted as having non-

CMA factors since those reasons were not associated with any particular aspect 

of the argument. For example, the comment “it’s not straightforward enough” 

was coded “NC” since it could apply to many different types of arguments. There 

were also cases when the subject indicated that he/she was not able to 

understand an argument. We used “NA” to denote such comments, suggesting 

that the subject was unable to provide an evaluation of the argument. 

2) A certain feature could make an argument more or less convincing to the 

subject. To distinguish the effects different features had, a “-” was added to the 

end of a code if the identified feature made the argument less convincing to the 

subject. 

3) A comment could refer to more than one feature or factor of an argument 

and hence could be multi-coded. For example, Allen made the comment that “it 

uses formulas which I know are fact, and I like seeing fact” in his explanation of 

why he considered Argument C2 valid. This comment was coded “AS4” and 

“MR4” since it was based on a mathematical fact as an accepted statement, 

which was expressed in an algebraic form. 

4) There were scenarios in which it was difficult to judge what an argument 

meant based on the comment. In this case, the conversation before and after the 

comment was studied to determine the contextual meaning of the comment. For 

example, when reading the comment, “I’m not seeing very many supporting 

arguments,” it was unclear what were the “supporting arguments” referred to by 

Allen. However, in reading the conversation that happened before the comment, 

where Allen talked about the need to see formulas in a convincing argument, it 

became clear that Allen was referring to mathematical facts as what he called 

“supporting arguments.” Therefore, this comment was coded as “AS4.” 

The occurrence of each code was then summed and added into Figure 5 to 

describe the aspects and features of the arguments that influenced Allen’s 

evaluation of their validity.  

As shown in Figure 5, the total number of comments that focused on the 

mode of representation, accepted statements, and mode of argumentation were 

27, 47, and 7, respectively, indicating that the accepted statements seemed to 

have the greatest impact on Allen’s evaluation of the arguments. Among all 

types of accepted statements, Allen found that math facts (well known existing 

mathematical results) and examples (results from an immediate test) were 

reliable sources to establish an argument, each of which was referred to 17 and 

18 times. His explanation was heavily rooted in the discussion of specific 

mathematical concepts (e.g. specific numbers’ properties, specific geometric 

properties, meaning of graphs, etc.) instead of personal assumptions or opinions. 

This was highlighted by his claims that “when someone is trying to convince me 

of something, I would like facts” and “giving concrete numbers and facts and 

stating their observations of what they did the experiment on” would make an 

argument convincing. In addition, he clearly emphasized that “opinions and 

people doing things that I have not personally seen” did not make an argument 

valid to him. Similar statements were mentioned 8 times during the interview. 

Overall, Allen’s comments demonstrated his need to see specific and concrete 

evidence in an argument in order to consider it valid. 
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Total number of references to the mode of representation: 27 

 Pictorial Narrative Numerical Algebraic   

Positive 12 1 1 12   
Negative 0 1 0 0   

Total number of references to the accepted statements: 47 

 Authority Example Imaginary Math Fact Assumption Opinion 

Positive 0 18 2 17 0 0 
Negative 0 1 1 0 0 8 

Total number of references to the mode of argumentation: 7 

 Direct Perceptual Inductive Transformational Ritual Deductive 

Positive 0 2 0 3 1 0 
Negative 0 1 0 0 0 0 

Figure 5. Aspects and features of arguments that influenced Allen’s evaluation of their 
validity 

 

The representation of arguments also influenced Allen’s judgment. In 

particular, he indicated that pictorial and algebraic representations contributed 

to the validity of arguments. Each representation was referred to 12 times 

during the interview. Allen claimed that he loved “formulas, which are always in 

my mind second to visual representations.” He also suggested that if “there’s a 

combination of visual diagrams and formulas, that would be fabulous, that 

would be perfect.” This tendency was backed up by his capability to represent 

variables with symbols and manipulate the symbols fluently, as well as the 

capability to connect graphs to the content of the problem.  

Allen made fewer comments on the mode of argumentation. Among all the 

comments he made, only 7 referred to a certain way to connect the accepted 

statements to the conclusion of an argument. In 2, 3, and 1 case(s), respectively, 

Allen found a perceptual, transformational, and ritual reasoning valid. Allen 

was unable to recognize that showing a few examples would not prove a 

conjecture is always true. He considered an argument convincing “because it 

gives examples that worked.”  

In addition, Allen had personal standards that could not be captured by the 

CMA framework for deciding whether an argument was convincing. There were 

14 comments that were coded as non-CMA factors, i.e. “NC.” Nine of these 

comments concerned the simplicity of an argument, using terms such as 

“straightforward,” “simple,” and “quick” to explain why he was or was not 

convinced, while the other 6 comments referred to the clarity of the arguments 

(e.g. “There’s always the showing, they’re working it out”). These comments 

suggested that the pursuit of simplicity and clarity might sometimes override 

his preference on other aspects of an argument. For example, although Allen 

had repeatedly addressed the preference of seeing formulas, he claimed, in 

evaluating Argument D2, that “this is not straightforward… because it is a 

longer and more complicated and not straightforward enough formula” in 

explaining why he did not consider it convincing. 

A clearer picture of Allen’s rationale for evaluating mathematical 

arguments was formed when combining non-CMA factors and those 

characterized by the CMA framework. Allen viewed arguments that utilized 

precise descriptions and involved simple reasoning procedures as convincing. To 

him, known mathematical facts and concrete examples were the most 

straightforward accepted statements, while the pictorial and algebraic 
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representations were the clearest ways to describe and relate those examples. 

However, since Allen was not yet able to reflect on the rigidness of logic 

embedded in an argument, the mode of argumentation was not among his major 

focuses. Arguments that used transformation, perceptual, and ritual reasoning 

might have been perceived as convincing by him. An argument was convincing 

to him as long as the reasoning looked “straightforward” to him, regardless of its 

logical rigidity. 

 

 
Figure 6. Illustration of Allen’s rationale for evaluating mathematical arguments 

 

With this platform, Allen’s rankings of the arguments (see Figure 4) became 

more sensible. In Problem C, the clarity of the accepted statements provided in 

each argument determined their ranking. The accepted statements provided 

were ranked in the following order: C2 (the triangle area formula), C4 

(imaginary triangle made by wire), C3 (drawn triangle within a transformation 

process), and C1 (a collection of triangles). Among these, the formula was the 

simplest and clear; the imaginary triangle made by wire was less clear, but also 

very simple; the triangle within a transformation process looked more complex; 

while the collection of triangles offered a mix of information and “trip[ped] 

[Allen] up for the first few seconds.”  

Arguments in Problem B were also ranked based on the simplicity and 

clarity of the evidence provided by them. Compared to his ranking for Problem 

C, the only difference was that the rankings of the visual and perceptual 

arguments were switched. Allen’s explanation was that the image of the triangle 

made by wire was clearer to him than the image of a football field. Therefore, 

the argument based on the football field scene was less convincing to him. 

In the other three arguments, Allen found the visual arguments to be the 

most convincing options while the algebraic arguments were ranked lower. A 

possible explanation was that in Problem C and B, both algebraic arguments 

contained well known mathematical facts (triangle area formula and the 

Pythagoras Theorem); however, in Problems D, A and E, the algebraic 

expressions were not well known formula or theorems but were used to 

represent the variables’ relationships in the problem. Therefore, Allen’s 

preference on algebraic expressions was not resolute but depended on the exact 

use of such expressions. 

The different rankings of the inductive arguments across the problems 

could also be explained. Notice that in Problems A, B and C, the inductive 

arguments were considered the least convincing. This was because there was no 

actual example given in A1 and B1, while in C1, the examples seemed 
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“confusing” to him. On the contrary, since D1 and E1 discussed more details 

about the examples, they were considered more convincing. 

Overall, we found that the analysis of Allen’s responses during the 

interview provided insights into the bases of his reasoning in determining the 

validity of different mathematical arguments. His reasoning was too complicated 

to be simply labeled as pro-algebra, pro-pictorial, or pro-induction. The pursuit 

of straightforward statements, the need to see mathematical facts and concrete 

examples as evidence, and preference towards visual and symbolic 

representation were all embedded in Allen’s rationale in the evaluation of 

mathematical arguments, and all of them needed to be considered, in a specific 

context, to understand how Allen determined if an argument is convincing. 

Findings from all subjects 

The Seven other subjects’ interview data were analyzed using the same 

process as illustrated in Allen’s case. Combining the data from each subject, it is 

clear that the subjects’ view of which argument is convincing is highly distinct in 

every problem. Table 3 illustrates the differences (an argument received a score 

of 1, 2, 3 and 4, depending on the ranking by a subject, with 1 being the most 

convincing).  

 

Table 3. Summary of the subjects’ argument rankings 

 Allen Blake Cindy Deb Emily Fiona Grace Heather 

A1 4 1 3 2 4 4 4 2 

A2 2 2 2 1 1 2 1 4 

A3 3 3 4 4 3 1 2 3 

A4 1 4 1 3 2 3 3 1 

B1 4 2 2 2 1 4 3 2 

B2 3 1 1 4 4 1 4 1 

B3 1 3 4 3 2 3 1 4 

B4 2 4 3 1 3 2 2 3 

C1 4 2 1 3 2 3 3 1 

C2 1 4 2 2 4 2 1 3 

C3 3 3 4 1 1 4 2 2 

C4 2 1 3 4 3 1 4 4 

D1 2 2 1 3 4 2 1 1 

D2 3 3 3 4 1 3 2 2 

D3 4 1 2 1 3 4 4 3 

D4 1 4 4 2 2 1 3 4 

E1 3 2 1 1 4 1 1 3 

E2 1 1 4 3 3 3 3 1 

E3 4 3 3 2 2 4 4 2 

E4 2 4 2 4 1 2 2 4 

 

There is no clear pattern that any argument was considered convincing or 

not convincing by the subjects. Every argument (except for E3) was considered 
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as the most convincing by some subjects while ranked as the least convincing by 

others. In other words, not a single argument could convince all the eight 

subjects that the corresponding conjecture is true. At the same time, any 

argument could convince at least one subject that the corresponding conjecture 

is true. Although no statistical conclusion on what argument is significantly 

more convincing than another one could be made due to the limited number of 

subjects, this finding suggested that it might be very unlikely to find a single 

most effective way to convince all students, and thus discussions from multiple 

perspectives using multiple representations might be a more promising way to 

convince learners with different thinking patterns. 

The subjects’ explanations were analyzed to investigate what factors might 

have impacted their judgment. Table 4 shows the number of references in each 

subject’s explanation regarding each of the three aspects of arguments. The 

numbers in Table 4 suggest that the subjects paid the most attention to the 

accepted statements, followed by the mode of representation, with mode of 

argumentation being the least attended to among the three. Specifically, the 

accepted statements were the most referred aspect by 6 subjects, while the mode 

of argumentation was the least referred aspect by 7 subjects. 

 

Table 4. Number of references regarding each aspect of arguments by the subjects 
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Mode of 
Representation 

27 32 22 10 37 14 23 29 194 

Accepted 
Statements 

47 27 46 21 46 27 30 27 272 

Mode of 
Argumentation 

7 3 8 11 19 15 8 10 81 

 

Table 5 further illustrates the subjects’ perspective on what features of each 

aspect of the arguments contributed to their validity. The similarities and 

differences among the subjects are further specified in the following discussion. 

Subjects’ views on accepted statements 

The most prominent similarity among the subjects was that they all 

considered findings from testing a few examples as reliable accepted statements. 

This was observed in the comments from every subject on several if not all 

arguments.  

Subjects’ views on the use of mathematical facts were less consistent. Allen, 

Emily, and Grace indicated that they were likely to be convinced if an argument 

was based on a known mathematical fact. On the contrary, Blake seemed 

unwilling to use any established result and preferred exploring the problem 

from scratch. The other four subjects acknowledged that some known results 

(e.g. the triangle area formula) helped convince them an argument was true; 
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however, they only acknowledged these results as something they had heard 

about instead of as known established mathematical facts.  

 

Table 5. Summary of the subjects’ preferred features of arguments 

 Accepted 
Statement 

Mode of 
Representation 

Mode of 
Argumentation 

Non-CMA factors 

Allen Examples, Math 
Facts  

Pictorial, 
Algebraic 

Transformationa
l, Perceptual, 

Ritual 

Simple 
procedure, 

Precise 
description 

Blake Examples, 
Imaginaries 

Pictorial, 
Numerical, 

Narrative 

Perceptual, 
Ritual 

Easy to 
understand, 

Non-procedural 
Cindy Examples, 

Imaginaries 
Pictorial, 

Numerical 
Perceptual, 

Inductive 
Easy to 

understand, 
Familiar 

procedure 
Deb Examples Pictorial Transformationa

l 
Easy to 

understand, 
Familiar 

procedure 
Emily Examples, Math 

Facts 
Algebraic, 
Numerical 

Deductive, 
Transformationa

l 

True for all 
cases 

Fiona Examples, 
Imaginaries 

Pictorial, 
Narrative 

Perceptual Easy to 
understand, 

Relatable 
scenario 

Grace Examples, Math 
Facts 

Algebraic, 
Numerical 

Ritual, 
Perceptual, 

Transformationa
l 

Detailed 
procedure 

Heather Examples Pictorial, 
Narrative, 
Numerical 

Inductive, 
Ritual, 

Transformationa
l 

Easy to 
understand, 

Simple 
procedure 

 

The subjects’ views of imaginaries (i.e. mental image created from recalling 

previous experience) also differed. To Blake, Cindy, and Fiona, imaginaries were 

a major source of evidence, while in Emily’s view, an individual’s brain can 

“skew everything” so imaginaries were definitely unreliable. To Allen, it 

depended on whether the imaginary was adequately clear to him. 

Overall, the use of examples seemed to uniformly contribute to the subjects’ 

evaluation of arguments, while each individual’s view on the use of other 

sources, such as known mathematical facts and imaginaries, differed. 

Subjects’ views on mode of representation 

When looking at the mode of representation, pictorial representation was 

referenced the most and six subjects stated that visual aids could make an 

argument more convincing, especially when the image was simple and 

understandable to them. However, Emily and Grace expressed that they were 

unlikely to be convinced by pictorial arguments. Emily claimed that she was 

concerned that pictures and figures might misrepresent the problem, while 
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Grace believed pictorial illustration must be accompanied with narrative 

explanation in order to be persuasive.  

Although not as commonly mentioned as pictorial representation, numerical 

representations were also often positively valued by the subjects. Five of the 

subjects believed a numerical representation makes an argument more 

convincing, and no subjects claimed that a numerical representation made an 

argument less convincing.  

Narrative representation was the least commented type of representation. 

Some subjects demonstrated a higher need for narrative explanation than 

others. For example, Grace suggested that visual illustration alone was not 

convincing unless it was also accompanied by a narrative explanation. In 

contrast, Allen preferred to read equations and examine graphs and did not 

consider an argument convincing if it was too “wordy.” Narrative representation 

could help the subjects to understand an argument. At the same time it could be 

difficult to use a narrative to describe some concepts or examples as precisely as 

using numerical, visual, or symbolic representations. Consequently, the subjects’ 

evaluations of narrative descriptions depended highly on whether they 

understood the concepts embedded in narratives without seeing any specific 

numbers, images, or symbols, or whether they understood the numbers, images, 

or symbols in the absence of a narrative description.  

Algebraic expressions were usually more abstract than ideas represented in 

the other three forms. Compared to the other three types of representations, the 

subjects showed the greatest differences in their views about algebraic 

representation. Students who understand the embedded ideas of algebra 

expressions often appreciate how clear and concise such expressions are in 

communicating ideas. For Emily, the algebraic representation could show the 

conjecture was true in every case. For Allen, the algebraic representation 

demonstrated the ideas clearly and concisely. For Grace, the algebraic 

representation helped her see the precise steps of the argument. Therefore, 

these three subjects found the algebraic representation positively contributed to 

their conviction. On the contrary, to those who had not yet adapted to algebraic 

representations, such arguments looked unintuitive and difficult, and hence 

were not convincing to them. For example, Blake considered algebraic terms 

confusing and not appropriate for his age group. Heather also found 

algebraically expressed theorems too abstract to communicate meaningful ideas. 

As a consequence, arguments using the algebraic representation were 

unconvincing to the two. The other three subjects neither claimed algebraic 

representations as helpful, nor did they find them confusing. Whether an 

argument was written by algebraic representations did not seem to contribute 

much to their evaluation of the mathematical arguments. 

Subjects’ views on mode of argumentation 

The mode of argumentation was the least commented aspect of arguments 

for almost every subject. Among the rare mentions of this aspect, Emily was also 

the only subject who found algebraic deduction the most reliable way to 

guarantee the conclusion of an argument to apply to general cases. In fact, she 

was the only subject who insisted that a convincing argument must show the 

conjecture was always true without any exception. According to the other 

subjects, this condition was not a requirement for a convincing argument. 
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Nonetheless, several subjects (Deb, Emily, Fiona, and Grace) articulated 
that showing a few examples might help them understand an argument, but 
were not sufficient to convince them that a conjecture was true. This suggested 
that some students were aware of the limitations of induction in proving general 
validity. Although they were not yet able to appreciate deductive reasoning, they 
had developed the ability to understand generic examples. For example, Deb 
could visualize that some geometric properties are stable when the shape was 
changing in particular ways. Allen could see that some values in an argument 
could be replaced by another value without violating the validity of each step in 
the argument. Overall, it was observed in five subjects’ explanations that 
arguments that adopt transformational reasoning, and in particular, detecting 

and applying patterns from analyzing specific ideas, were considered convincing. 

Perceptual connection was also applied by several subjects (including Allen, 
Blake, Cindy, Fiona, and Grace). Perceptual connection relates a given 
mathematical problem to imaginaries created from recalling previous 
experiences, and in many cases, such a connection was not precisely described, 
but was perceived by the subjects (e.g. by using a metaphor). Emily was the only 
subject who pointed out such a connection might not be a reliable way to build 
an argument. 

Lastly, although ritual operations were rarely mentioned, they never 
contributed negatively to the subjects’ evaluation of any argument in their 
explanations. 

Non-CMA factors 

Non-CMA factors played an important role in the subjects’ decision making 
and could be a major cause of the distinct evaluations of the same argument by 
different individuals. 

Emily seemed to be the only person who believed a convincing argument 
should be one that proved the conjecture was always true. For the other 
subjects, this was not a guiding principle. This result is consistent with findings 
of existing research (e.g. Hersh, 2009; Selden, A., & Selden, 2003). Many 
subjects (Blake, Cindy, Deb, Fiona, and Heather) determined the credibility of 
an argument by examining how “easy” it was to understand it. However, there 
were differences in how they determined an argument is easy to understand. 
Blake found an argument easy to understand if it used easy language, easy 
examples, and easy pictorial illustrations. Cindy and Deb found an argument 
easy to understand if the concepts used in the argument and the steps in the 
reasoning procedure were familiar to them. Fiona considered an argument easy 
to understand only if the argument was built upon a real life scenario (as 
opposed to classroom experience) to which she could relate. Heather was able to 
appreciate more complex examples and pictorial demonstrations; however, she 
preferred an easy argument that did not involve a complex procedure (e.g. 
multiple steps). 

Allen and Grace were the only two subjects who didn’t claim that a 

convincing argument must be easy to understand. Allen claimed that he didn’t 

have much difficulty understanding any argument used in the interview. 

Although he still personally preferred simple or “straightforward” arguments, he 

did not think whether an argument is easy to understand determines whether it 

is convincing. Similar to Allen, Grace also demonstrated an understanding of a 

wide range of arguments, but paid more attention to the details of arguments. 

Unlike Allen, Grace found that arguments with minimum wording often require 
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readers to fill in the gaps of reasoning and hence are open to interpretation. She 

did not consider such argument to be convincing. For example, she did not 

consider pictorial illustrations alone to be convincing, since such illustrations 

must be accompanied with narrative explanations in order to avoid 

misinterpretation of their precise meanings. 

Summary of the findings 

The analysis of the subjects’ responses during the interviews revealed great 
differences among individuals in how they determined if an argument was 
convincing. Yet, an overall pattern was also observed: whether the subjects 
agreed with the accepted statements in an argument had the largest impact on 
their evaluation of the argument, followed by the mode of representation of the 
argument, while the mode of argumentation seemed to be the least considered 
aspect in their decision making. 

Table 6 summarizes the similarities and differences in how the subjects 
determine if an argument is convincing. Consistent with existing research (e.g. 
Knuth, Choppin, & Bieda, 2009), when considering the accepted statements, the 
analysis of interview responses revealed that an argument based on empirical 
testing of examples was often considered convincing by the subjects. However, 
the subjects’ views towards the use of mathematical facts and imaginaries 
differed.  

In considering the mode of representation, the subjects often found 
numerical and narrative arguments easier to understand than algebraic ones. 
Pictorial illustrations could be helpful or confusing depending on the images or 
diagrams provided. Only one subject realized that the algebraic representation 
had the potential to prove the general validity of a conjecture. Some subjects 
found algebraic expressions concise and clear, while others viewed them as 
confusing and meaningless.  

In considering the mode of argumentation, only one subject was aware that 
a valid argument must show the conclusion was always true without any 
exceptions. Half of the subjects realized argumentation based on induction was 
not reliable. Transformational and perceptual reasoning was widely viewed as 
convincing.  

Lastly, several non-CMA factors were found to be a contributing factor to 
the subjects’ evaluation of the arguments. The subjects’ interview responses 
revealed that the perceived complexity of the arguments, students’ familiarity 
with the contexts used in the arguments, and the clarity of the explanation 
presented seemed to have impacted the subjects’ evaluation and judgment. 

Implication for research and practice 

Similar to other studies based on the self-reflection of subjects, data 
obtained in this study had limitations in determining whether subjects’ 
explanations actually reflected the rationale of their decisions (Dunning, Heath, 
& Suls, 2005). Additionally, the study used the number of subjects’ comments on 
a certain feature of arguments as the indicator of whether the feature was an 
important factor in the subjects’ decisions, which also involved a certain degree 
of bias since the topic of such comments was influenced by the flow of 
conversation occurring around when the subjects were making their judgment. 
Therefore, the value of the study can only be discussed with acknowledgement of 
these limitations. 
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Table 6. Similarities and differences in how the subjects determine if an argument is 
convincing 

 Similarities Differences 

Accepted 
Statements 

 

 Findings based on testing a 
few examples were 
convincing. 

 Authority, assumption and 
personal opinion were rarely 
referred to as convincing. 

 Imaginaries and 
mathematical facts might or 

might not be viewed as 
reliable sources of evidence. 

Mode of 
Representation 

 

 Numerical and narrative 
arguments were usually easier 
to understand. 

 Seeing a few numbers in an 
argument was helpful in most 
cases. 

 Pictorial illustration was 
helpful if the provided image 
was understandable. 

 Most subjects were not aware 
that algebraic representation 
denotes general cases. 

 Pictorial illustration could 
be sufficient or not 

sufficient to demonstrate 
the validity of a conjecture. 

 Narrative descriptions could 
be necessary or 

unnecessary. 
 Algebraic expression could 

be concise and clear or 
confusing and meaningless. 

Mode of 
Argumentation 

 

 Deduction was rarely used or 
considered necessary. 

 Transformation and 
perceptual connection was 
widely adopted. 

 Ritual operation was rarely 
considered but was never 
unconvincing. 

 Induction could be viewed as 
convincing, convincing in 

some situations, or not 
convincing at all. 

Non-CMA factors 
 

 Most subjects didn’t focus on 
whether an argument could 
prove the conjecture was 
always true without any 
exception. 

 Whether an argument was 
easy to understand was 

taken into consideration by 
some but not all subjects. 
 Some subjects found 

arguments embedded in a 
familiar context more 

convincing. 
 The subjects had different 

demands for the clarity of 
arguments. 

 

The existing trend of proof instruction continues to shift away from 

teaching students “the right way” of doing proofs and towards developing their 

abilities to generate arguments that can be used to convince oneself and others 

(Hanna & Jahnke, 1993; NCTM 2000; Healy & Hoyles, 2000; Stylianides & 

Stylianides, 2008b; Tall et al., 2012). Therefore, the process of nurturing 

mathematical reasoning should be built upon an understanding of how students 

convince themselves in the first place. 

Reflection on what it means to develop mathematical reasoning 

“locally”  

The explanations provided by eight 8th grade students in the comparison of 

arguments within and across multiple contexts allowed researchers to gain 

insights of the bases of their reasoning. By coding students’ explanations of how 
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they evaluate the validity of mathematical arguments according to the CMA 

framework, results of the study suggested that the accepted statements of an 

argument had a greater influence on students’ evaluation of the mathematical 

arguments than its mode of representation or mode of argumentation. Since the 

accepted statements are content specific while the mode of representation or 

mode of argumentation are more general characteristics, this finding is 

consistent with existing studies that suggest students develop an understanding 

of proof in local contexts (e.g. Freudenthal, 1971, 1973; Reid, 2011).  

Results of the study suggested that helping students identify what accepted 

statements in a mathematically valid argument can be is an essential step in 

fostering their mathematical reasoning capacity. One finding of this study is 

that students’ confidence in an argument was strongly influenced by the 

examination of concrete examples. This conclusion coincided with views of using 

examples and counterexamples to help students understand the construction of 

mathematical structures in a heuristic way (e.g. Lakatos, 1976; Knuth, Choppin, 

& Bieda, 2009; Stylianides & Stylianides, 2008b; von Glasersfeld, 1994). 

Although using examples to verify a statement is not a rigorous way to prove a 

statement, it does provide a concrete context for students to examine the 

mathematical concepts and procedures involved in the argument, and hence, to 

help them understand the problem better (Balacheff, 1988; de Villiers, 2003; 

Simon, 1996).  

Results of the study also indicated that misunderstanding or rejection of 

mathematical facts often led to denial of mathematically valid arguments. Why 

can Side-Angle-Side imply congruency of triangles? Why does the distributive 

law hold for whole numbers, rational numbers, and real numbers? Why do you 

multiply the probability of each event to find out the likelihood of several 

independent events happening simultaneously? Related results and procedures 

are often memorized by students but the whys are often not investigated. 

Therefore, it is impossible for students to be fully convinced by arguments built 

upon these fundamental mathematical properties and results without a 

thorough understanding of such properties and results in the first place. 

Since the validity of fundamental properties and results needs to be studied 

in a case-by-case manner, fostering proof capacity must be initiated in multiple 

strands of school mathematics. Students’ understanding of the mathematical 

reasoning process grows concurrently with their experience in conducting such 

reasoning in different contexts. Only when their reasoning capacity within each 

context reaches certain levels are they able to identify features generally 

possessed by convincing arguments in these contexts. Therefore, results of the 

study suggest that it is more promising to develop mathematical reasoning 

based on an understanding of the fundamental properties and results within 

each mathematical content area, as opposed to authorizing a standard procedure 

that must be adopted in all areas of mathematics. 

Reflection on the theoretical development of reasoning classification 

frameworks 

This study offered an explanation of why students’ reliance on a certain 

type of argument is inconsistent across multiple contexts (Harel & Sowder, 

1998; Healy & Hoyles, 2000; Author, 2013). It was evident in the results of this 
study, where those interviewed demonstrated different perceptions of the same 
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type of arguments (e.g. inductive argument) in each problem. The status of 

pictorial representations’ impact on students’ conviction was also inconclusive. 
However, by analyzing the subjects’ explanations, this study suggested that this 

inconsistency is caused by the mismatch of the criteria used by researchers to 

categorize the arguments and the factors considered by the subjects in 
evaluating an argument. For instance, a student may consider an inductive 

argument convincing in one context but another inductive argument not 

convincing in another context. While researchers may detect an inconsistency in 
the student’s reasoning since both arguments are classified as “inductive,” such 

inconsistency did not exist in the perspective of the student since he/she never 

noticed the common inductive feature of both arguments. Instead, the different 

evaluations might occur due to the fact that the student found the examples in 

one argument understandable, while the examples in the other argument were 

unfamiliar. So although it seemed that the student offered inconsistent views of 
whether inductive arguments are reliable, his/her need for familiar examples to 

verify the validity of an argument was consistent across content areas.  

The development of argument classification models has often focused on two 
aspects of an argument, i.e. the mode of representation (e.g. algebraic vs. 

pictorial) and mode of argumentation (e.g. inductive vs. deductive). However, 

proof learners often pay more attention to the other aspect (i.e. the set of 
accepted statements of an argument). As such, students who haven’t yet 

developed the ability to compare mathematical arguments across the content 

areas are unable to see the features researchers have used to label arguments. 

Instead, their evaluation of an argument was rooted in their understanding of 

its specific mathematical topic (e.g. whether they agree with the set of accepted 

statements). 

With an emphasis on local development of mathematical reasoning ability, 
the absence of content specific proof/argument classification models becomes 

more critical. Considering the complexity of individual differences identified by 

this study, making any general conclusions to suggest certain kinds of 
arguments as more (or less) convincing to students is oversimplifying students’ 

thinking patterns in argument evaluation. Current models measuring students’ 

reasoning maturity or schemes are often based upon the synthesis of what was 
known about mathematical reasoning as a generalized method (e.g. Harel & 

Sowder, 1998; Simon, 1996; Tall et al., 2012; Waring, 2000). However, theories 

within specific content areas, especially areas other than geometry, remain 
underdeveloped. There are limited frameworks that synthesize how to make 

specific mathematical results convincing to students. Consequently, theories 

have not been built upon the features of local content and learners’ 
understanding of such content. This is not to deny the existence of more general 

patterns in students’ development of reasoning ability across the content areas. 

However, merely identifying these general patterns might not be sufficient to 
understand students’ development of disciplinary reasoning skills and, as such, 

is limited in the quality of guidance it provides to support curricular 

instructional designs. Therefore, there is a critical need to develop content 
specific proof/argument classification and development models, which, perhaps, 

should also take some personal factors (e.g. the non-CMA factors identified in 

this study) into consideration.  
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Appendix I. Mathematics problems and arguments used in the interview  

 

PROBLEM  A1 

 

Shaina claimed that: 

 

“A multiple of 6 must also be a multiple of 3.” 

 

Argument A1: I’ve tried plenty of multiples of 6 (like 12, 60, 606, etc.) and 

found they are multiples of 3 as well. So I am sure that Shaina’s 

statement must be true. 

Argument A2: Any multiple of 6 can be written as 6n. We know that 6n = 3•2n, 

which is a multiple of 3. Therefore a multiple of 6 must also be a 

multiple of 3. 

Argument A3: If the total number of cookies is a multiple of 6, then we can put 

them into several boxes where each box contains 6 cookies. We can 

further divide each box into 2 packages, where each package contains 3 

cookies. Now all the cookies are put into packages of 3. Therefore, the 

total amount of cookies must also be a multiple of 3. 

Argument A4: The total number of square cards below is a multiple of 6: 

 

We can rearrange the squares in this way: 

 

Now we can see that a multiple of 6 must also be a multiple of 3. 

 

 

                                                           
1 An item similar to Problem A was also used in Stylianides and Stylianides (2008b). 
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PROBLEM B 

 

Ryan claimed that: 

 

“The diagonal of a rectangle must be longer than each of its sides.” 

 

Argument B1: I’ve drawn several rectangles and measured the length of their 

sides and diagonals. I found that the diagonal of any of those rectangles 

is longer than any side of the same rectangle. So Ryan’s statement must 

be true for all rectangles. 

Argument B2: Imagine that you are standing on the corner of a football field. 

Then the diagonal of the field is definitely longer than any of its sides. So 

Ryan’s claim must be right. 

Argument B3: As shown in the figure below, ABCD is a rectangle. 

Since ∠A = 90°, then by the Pythagorean Theorem,  

BD^2 = AB^2 + AD^2.  
So BD^2 > AB^2 and BD^2 > AD^2  
(The notation X^2 means the square of X. For example, BD^2 

means the square of BD). Therefore, BD is longer 

than AB and longer than AD. 

Argument B4: Suppose ABCD is a rectangle. Draw a circle 

using B as the center and BD as the radius. From 

the figure shown, we can see that BD = BQ = BP. 

Since BC < BP and BA < BQ, then both BA and BC 

are shorter than BD. Therefore, the diagonal of a 

rectangle must be longer than any of its sides.  

 

 

PROBLEM C 

 

There are two triangles. The lengths of the three sides of Triangle I are A, B, 

and C and the lengths of the three sides of Triangle II are a, b, and c. Jennifer 

claims that: 

“If A > a, B > b and C > c, then the area of Triangle I must also be larger 

than Triangle II.” 

Argument C1: If A = B = C = 2, a = b = c =1, then Triangle I is obviously larger 

than Triangle II. I also tried many other cases (as shown in the figures 

below) and found Triangle I always has an area larger than that of 

Triangle II. So I am sure Jennifer's claim must be correct. 
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Argument C2: We all know that the area of a triangle equals 1/2 of the product 

of its base and height. As shown in the figures below, the area of 

Triangle I = BH/2, and the area of Triangle II = bh/2. We know that B > 

b. In addition, since A > a and C > c, then it must be true that H > h. So 

BH/2 must be larger than bh/2. Therefore, the area of Triangle I must be 

larger than the area of Triangle II. 

 

Argument C3: As shown in the figures below, since each side of Triangle II is 

shorter than the corresponding side of Triangle I, we can cut each side of 

Triangle I shorter and then compose Triangle II using the shortened 

sides. Therefore, the area of Triangle II must be smaller than the area of 

Triangle I. 

 

Argument C4: Since each side of Triangle I is longer than the corresponding 

side of Triangle II, then the perimeter of Triangle I must also be longer 

than the perimeter of Triangle II. If we make the two triangles using 

wires, then it needs a longer wire to make Triangle I than Triangle II. 

Using a longer wire we can make a larger triangle. Therefore, the area of 

Triangle I is definitely larger than the area of Triangle II.  
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PROBLEM D 

 

The sales tax rate of the state where Ravi lives is 5%. Ravi is buying a new bike 

in a local bike store and has a $20 coupon2. Ravi claims that: 

 

“I can always save $1 if the $20 coupon is applied before tax rather than 

after tax, regardless of the actual price of the bike.” 

 

Argument D1: Suppose the original price of the bike is $100.  

If the coupon is applied before tax, then Ravi needs to pay  

(100 – 20) × (1 + 5%) = 84 dollars.  
If the coupon is applied after tax, then Ravi needs to pay  
100 × (1 + 5%) – 20 = 85 dollars, which is $1 more than what he needs to 

pay if the coupon is applied before tax.  

I tried some other possible prices of the bike, such as $200, $500, etc., 

and found he always pays $1 less if the coupon is applied before tax. 

Therefore, I am sure Ravi’s claim is always right.  

Argument D2: Suppose the original price of the bike is x dollars.  

If the coupon is applied before tax, then Ravi needs to pay  

(x – 20) × (1 + 5%) = 1.05x – 21 dollars.  
If the coupon is applied after tax, then Ravi needs to pay  
x × (1 + 5%) – 20 = 1.05x – 20 dollars.  
Notice that (1.05x – 20) – (1.05x – 21) = 1. Therefore, Ravi always saves 

one more dollar if the coupon is applied before tax rather than after tax. 

Argument D3: If the coupon is applied before tax, then Ravi doesn’t need to pay 

the tax for the $20 discount. If the coupon is applied after tax, then he 

needs to pay the tax of the original price of the bike. Notice that $20 × 

5% = 1. Therefore, Ravi always saves one more dollar if the coupon is 

applied before tax rather than after tax. 

Argument D4: Let x be the original price of the bike and y be how much Ravi 

actually needs to pay (after applying the coupon and tax). Based on 

calculation, the graph below is generated by a graphing calculator to 

illustrate the two 

situations: the solid line 

represents how much Ravi 

needs to pay if the coupon 

is applied after tax; the 

dashed line represents 

how much he needs to pay 

if the coupon is applied 

before tax. From the 

                                                           
2 The assumption that a bike costs more than $20 was not stated in the problem to test if subjects 

themselves might raise this question. 
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graph, we can see that the solid line is parallel to the dashed line and is 

always 1 unit above it. Therefore, Ravi can always save one more dollar 

if the coupon is applied before tax rather than after tax. 

 

PROBLEM  E 

 

There are some white and orange ping-pong balls in a box. You cannot see 

what’s inside the box but you will get a reward if you pick out an orange ping-

pong ball from the box. Jenna claims that:  

 

“If the number of white ping-pong balls and the number of orange ping-

pong balls are both doubled, the chance for you to get a reward still 

stays the same.” 

 

Argument E1: Suppose there are 2 orange ping-pong balls and 3 white ping-

pong balls in the box, then the chance for you to get a reward is 2 out of 

2+3, which is 40%. If the numbers of ping-pong balls of each color are 

both doubled, then there will be 4 orange ping-pong balls and 6 white 

ping-pong balls. Hence the chance for you to get a reward is 4 out of 4 + 

6, which is also 40%. Therefore, the chance of winning the reward won’t 

change. 

Argument E2: As shown in the figure below, if the numbers of orange and 

white ping-pong balls are both doubled, the ratio between the ping-pong 

balls of the two colors will still be the same. Therefore, the chance of 

winning won’t change. 

 

…  …

 

…  …

 
Argument E3: When the number of orange ping-pong balls is doubled, the cases 

for winning the reward are also doubled. However, when the number of 

white ping-pong balls is doubled, the cases for not winning the reward 

are also doubled. As a result, the ratio of the cases of winning to the 

cases of not winning stays the same. Therefore, the chance of winning 

won’t change. 

Argument E4: Suppose there are n orange ping-pong balls and m white ping-

pong balls in the box, then the chance for you to get a reward is n / (n + 

m). If the numbers of ping-pong balls of each color are both doubled, then 

the chance for you to get a reward becomes 2n / (2n + 2m), which is equal 

to n / (n + m). Therefore, the chance of winning the reward won’t change. 


