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 Skills and understanding of operations with negative numbers, which are typically taught in middle school, are 

crucial aspects of numerical competence necessary for all subsequent mathematics. To more swiftly and 

coherently develop the field’s understanding of how to foster this critical competence, we need shared measures 
that allow us to compare results across studies with diverse populations and theoretical perspectives. Yet, to date 

no validated instrument exists to assess all four primary operations (addition, subtraction, multiplication and 

division). Thus, we conducted a Rasch analysis of the Integer Test of Primary Operations (ITPO) with 187 middle 

school students to provide a valid and reliable assessment with good person and item fit. The implications of this 

study are numerous for multiple stakeholders including scholars, test and textbook developers, as well as 
teachers. First, we validated three forms of the ITPO to foster future longitudinal studies of how integer arithmetic 

knowledge is maintained or decays as well as how such knowledge might be related to success in STEM disciplines. 

Second, our analysis provides trustworthy insights about relative difficulty of integer problem structures because 

regardless of test form similar problem structures loaded together. For instance, sums of additive inverses were 

the easiest structure, whereas division by -1 was more difficult than multiplying or dividing by any other integer. 
We discuss each of these and other findings that have practical implications for learning and teaching integers. 

Third, for broader mathematics assessments in which minimal items can be included to measure integer 

knowledge, this study informs which items would serve the intended assessment purpose. Finally, we provide the 

three forms as an appendix in printable formats to ensure these validated tests are practical to implement for 

teachers as well as scholars. 

Keywords: integer arithmetic, negative numbers, assessment, Rasch analysis, addition, subtraction, 

multiplication, division, middle school 
 

INTRODUCTION 

Integer operations, which are typically taught in middle school, are crucial aspects of numerical competence necessary for all 

subsequent mathematics. Moreover, competence with negative numbers is necessary for all subsequent science, technology, 

engineering, and mathematics (STEM) courses or fields. Consider just a few examples, such as chemical reactions of positive and 

negative charges and vectors in physics. Calculations with negative numbers are counterintuitive, particularly subtracting a 

negative number and multiplying or dividing two negative integers, because each of these could or do result in a positive solution 

(Fischbein, 1987; French, 2001). Numerous studies have focused on the operations of addition and subtraction with negative 

numbers (Bishop et al., 2014; Pettis & Glancy, 2015; Stephan & Akyuz, 2012; Thompson & Dreyfus, 1988; Tsang et al., 2015). In fact, 

an entire edited book was published that focused exclusively on studies of these two operations (Bofferding & Wessman-Enzinger, 

2018).  

With whole number operations, children experience a protracted period from preschool through second grade focused on 

addition and subtraction before beginning foundations of multiplication and division (National Governors Association Center for 

Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010). However, this is not the case for integer arithmetic 

learning. In the U.S. Standards students are to learn and master all primary operations with negative numbers in middle school, 

and specifically by the end of seventh grade (NGA & CCSSO, 2010). In practice, this is usually done within a single unit early in the 

beginning of the school year. Thus, future research needs to understand integer learning more broadly than addition and 

subtraction studies. 
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Constructs such as the meaning of negative numbers, ordering numbers, primary operations on two integers (addition, 

subtraction, multiplication and division), operating with more than two integers (e.g., -4 –3 + -5), meaning of negative signs as 

opposite operations, graphing on number lines, understanding and applying negative numbers to real-life contexts such as 

temperature and debt are just a few of the constructs to include and better specify (NGA & CCSSO, 2010; Vlassis, 2008). As a field, 

we have not yet determined the full canon of what constitutes integer arithmetic knowledge, although some work was begun in a 

discussion group session at the conference of the International Group for the Psychology of Mathematics Education (Bofferding et 

al., 2014). This single paper does not intend to solve this quandary about which multiple dimensions are necessary to claim 

mastery of integer knowledge. The purpose of this study is to ensure the field has at least one measure with good psychometric 

properties (e.g., reliability and validity) for each of the four primary operations using binary numbers. Rasch analysis is uniquely 

suited for this purpose (Callingham & Bond, 2006; Shaw, 1991).  

Measures Used in Prior Integer Studies 

Studies of integer learning have often been conducted using qualitative methods such as task-based interviews, because 

mathematics education currently favors these approaches (Callingham & Bond, 2006). Such research methods provide crucial 

insights about nuances, depth, and processes of student thinking. To supplement these more in-depth analyses and to make 

generalizable interpretations about integer knowledge, reliable and valid instruments that are practical for scholars as well as 

teachers are needed. 

In terms of large-scale assessments, Ryan and Williams (2007) included three integer operations items on their broader 

assessment of mathematics with 15,000 four- to fifteen-year-olds. Including only three items was appropriate for an assessment 

in which integer constructs were just a small aspect of the study purpose. However, when researchers, large-scale test designers 

or textbook developers make decisions about what items to include, it is crucial to have psychometric information about the kinds 

of items representing each construct. A measure that assesses integer calculation with the four primary operations of addition, 

subtraction, multiplication, and division satisfies this purpose.  

Given the dearth of integer knowledge measures, researchers often develop their own measures in order to conduct the study 

they intend to do. Liebeck (1999) was the only study prior to Nurnberger-Haag (2015, 2018, 2020) that compared student learning 

with a chip model to a number line model, so it has been extensively cited. Liebeck’s (1999) posttest only study conclusions are 

baseless, however, due to multiple issues with the study design that introduced many threats to validity (e.g., no pretest was used, 

teacher was conflated with instructional model, lessons were not parallel, no random assignment of class or student to method) 

as well as potential problems with the measure used to compare student knowledge after learning with a particular model. 

Liebeck’s (1999) measure consisted of just 10 addition and subtraction problems with two or three terms. Moreover, only the digits 

2 and 3 were used (e.g., 2 – 3; -3 – -2; 3 – 2 + -3) with the faulty assumption that this could represent students’ integer operation skill 

with any number. No psychometric analyses were reported for this measure. 

The only existing measure on integer primary operations with some psychometric information that we have found is a 24-item 

test of integer subtraction conducted in Malaysia (Periasamy & Zaman, 2009). This test was thorough in the sense that the face 

validity was addressed (Crocker & Algina, 2008), because a) they consulted teachers that these problems were of the types taught 

in school and b) every possible permutation of subtraction of two integers was accounted for in terms of the structure of a smaller 

absolute value being first or second and the use of single digit as well as double-digit integers (Periasamy & Zaman, 2009). On the 

other hand, similar to Liebeck (1999), a limitation of their items was that all these items used consistent absolute values such that 

students could use a previous item to determine another item. For instance, for an item such as 2 – 5 on Periasamy and Zaman’s 

(2009) test, a test-taker might be more likely to reason that the answer to 2 – -5 should be different than if the items had the same 

structure but different numbers, such as 4 – 8 and 3 – -7. The reliability of the dichotomous (i.e., incorrect and correct) open 

response items were analyzed using Kuder-Richardson (KR20), which was 0.92. However, this was only conducted on the pilot test 

data (N=35). In the main findings of the study with 124 participants, only descriptive statistics of item inaccuracy rates were 

reported rather than the person- and item-fit statistics and item-person map, as is customary with Rasch analysis (e.g., Bond & 

Fox, 2015; Callingham & Bond, 2006). A 24-item measure that only assesses the single operation of subtraction once expanded to 

all primary operations would be impractical for research or classrooms if each of the four operations required 24 items. Moreover, 

this number of items per construct would be still more unwieldy if part of a broader test of integer knowledge that included 

constructs other than binary operations. Nevertheless, Periasamy and Zaman (2009) provided important foundational insights for 

the field to design a more practical and psychometrically rigorous instrument. They were the first to develop a stand-alone 

measure that attended to every possible permutation of mathematical structure of for any integer operation such that patterns 

could begin to be discerned. 

As noted previously, integer arithmetic tends to be taught as four separate operations (i.e., addition, subtraction, 

multiplication, division). However, disciplinary conceptions of arithmetic involve two groups of operations (i.e., addition and 

multiplication). That is, as one example, addition and subtraction can be considered “strands” of the same dimension (i.e., 

subtraction is the same as addition of the opposite of a value). Thus, any instrument designed to assess ability with integer 

arithmetic may have a multidimensional structure and should be evidenced prior to conducting any analyses in subsequent 

studies or using the instrument in the classroom.  

Purpose of Study 

The focus of this study was to provide evidence of the psychometric properties of the Integer Test of Primary Operations (i.e., 

addition, subtraction, multiplication and division of two integers). In particular, the items were designed as three parallel forms 

to afford future research designs about instructional methods for integer learning to assess student knowledge prior to 

instruction, after instruction, and at some later time point. As opposed to the common pretest with immediate posttest designs 
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common in psychology as well as in mathematics education, research that investigates longer term knowledge is necessary to 

have any meaningful understanding of how integer instruction impacts student knowledge on time scales that matter 

(Nurnberger-Haag, 2018). A reliable and valid instrument that is useful for researchers while also being practical for classroom 

teachers to also use to assess learning is crucial.  

To date, no instrument exists that assesses students’ achievement with negative numbers and integer arithmetic with good 

reliability and validity evidence across multiple studies and populations. Rasch Analysis is uniquely suited to this endeavor (Shaw, 

1991). As Callingham and Bond (2006) noted it is interesting how infrequently quantitative approaches are used in our field that 

educates about quantitative ideas. Rasch analyses are important for the development of instruments in ways that might seem 

extensively quantitative to scholars just becoming acquainted with this method, but this statistical approach is amenable to being 

informed by and informing qualitative considerations (Callingham & Bond, 2006; Shaw, 1991).  

Accordingly, this paper addressed the primary research question: Can the three forms of the Integer Test of Primary Operations 

be used as a valid and reliable measure of middle school students’ skill with adding, subtracting, multiplying and dividing integers? 

To answer this, we asked: (RQ1) “What is the dimensional structure of the ITPO?” To satisfy practical purposes, if RQ1 was satisfied 

then additional questions were planned about the integer problem structures: (RQ2) After instruction which integer problem 

structures did middle school students find most difficult or easiest? (RQ2a) Is -1(X) or X divide -1 a more difficult construct than 

other multiplication/ division items? (RQ2b) How difficult were additive inverse items? (RQ2c) Were items involving subtracting a 

negative number the most difficult items? 

METHODOLOGY 

Measure Development— Integer Test of Primary Operations (ITPO) 

There are many constructs of integer knowledge to consider. Thus, the Integer Arithmetic Test used in a prior study 

(Nurnberger-Haag, 2015) consisted first of mixed addition and subtraction items, then mixed multiplication and division, then 

ordering items, generating additive inverses, and opposite operation items. Although there are also many other constructs that 

compose integer knowledge, an assumption of Rasch analysis is that it measures a single construct (i.e., unidimensionality, Bond 

& Fox, 2015). Thus, this study focused on providing a valid and reliable assessment of the primary operations that began the larger 

test of 36 items (i.e., 10 integer addition items, 10 integer subtraction items, eight multiplication items, eight division items) in its 

initial development phase. The problem structures were identified in a table to provide the permutations of operations on 

negative numbers. Some items on a given form were adopted from prior research with integer arithmetic (Liebeck, 1990; 

Periasamy & Zaman, 2009; Ryan & Williams, 2007) and then problems were created using other integers that maintained the same 

problem structure. To increase the chances that the assessment measured negative number understanding rather than 

underestimating this knowledge due to mistakes of whole number calculations, based on practical teaching experience specific 

numbers were chosen (e.g., multiplying by 5 or 2 is easier than multiplying by 7). Each addition and subtraction binary item from 

Liebeck (1990) was used an anchor item that provided consistency across forms (Q2, Q5, Q11, and Q13). Recall that these items all 

have integers with an absolute value of two or three (Liebeck, 1990). Items from the Periasamy & Zaman (2009) subtraction test 

were used that contained at least one negative integer.  

Content validity (Fowler, 2013) was independently addressed by two practitioners in the field and congruency was met 

regarding the operations and variation of problem structures within form and consistency of item problem structure across forms. 

Face validity (Crocker & Algina, 2008) was also addressed during recruitment of participating schools in which administrators and 

teachers confirmed that these problems were covered in their curriculum as aspects of integer knowledge. 

The instrument development process was determined based on the intention to use Classical Test Theory (CTT) in a quasi-

experimental study of integer instructional methods (Nurnberger-Haag, 2015), so the instrument was piloted in four phases using 

factor analysis at each phase to eliminate items that were not performing as expected. After the fourth and final phase of 

development, the instrument had been piloted with 388 students and reduced to 35 primary operation items. The current study 

analyzed the items that were consistent across all phases of development (n = 31). Test questions were open-ended and then 

dichotomously scored (i.e., 0 = Incorrect; 1 = Correct).  

Settings, Participants and Procedures 

School districts that used multiple methods (e.g., a chip model, number line, and real-life contexts) were recruited to ensure 

that the test participants had experienced these typical instructional practices. The participating public Midwestern school was 

selected because all grade 7 students in that school experienced multiple integer models as part of their normal instruction. 

Participants (N = 187) came from all grade 7 classes that were taught by two female teachers. The principal investigator 

administered the ITPO to each class during each teacher’s regular class periods with the teacher present. Human subjects 

protocols were followed and for this study students remained completely anonymous to the researcher in that no identifying 

information was collected. Two students left all answers of the ITPO blank, so they were removed from further analysis. 

Additionally, extreme cases are inestimable in Rasch analysis, so these were eliminated from the final analysis sample (Linacre, 

1994). Sixteen extreme cases of students performing at floor or ceiling (i.e., summary scores of zero or 31, meaning all incorrect or 

correct responses, respectively) were identified and removed.  
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Test form and Teacher Group Comparisons 

The remaining participants (N = 169) were split into groups based on teacher (Teacher One, Teacher Two) and test form (A, B, 

and C). These groups were compared to ensure these samples could be combined into one final analysis sample and verify that 

the three forms could be treated as the same test. A 2 X 3 Factorial Analysis of Variance (ANOVA) with total ITPO score as the 

dependent variable was used to compare groups. All assumptions for ANOVA were met. There were no significant differences 

between teachers (F [1,163] = 2.661, p = .105) or test forms (F [2,163] = 2.764, p = .798) on total ITPO scores. Additionally, the 

interaction between teachers and test forms was not significant (F [5,163] = 2.764, p = .066). Thus, the groups were combined for 

further analysis. 

Data Analysis 

Descriptive analysis – including missing data and extreme values (i.e., participants with scores of zero or perfect scores on the 

ITPO) – was performed using the Statistical Package for the Social Sciences (SPSS) software (version 25). Dimensionality analysis 

was performed using Rasch Principal Components Analysis of Residuals via Winsteps (version 4.4.5). Rasch Analysis (the Rasch 

Dichotomous Model) via Winsteps was used to analyze the internal structure of the identified components.  

Rasch Principal Components Analysis of Residuals (PCAR) was used to identify components (called contrasts) that exist within 

the ITPO. PCAR contrasts depict sets of items orthogonal to the Rasch dimension (Linacre, 2019). Within a contrast, items are 

grouped into (three) clusters and compared based on their item loading. Typically, an identified cluster of strong positive or strong 

negative loadings within a contrast may represent an additional dimension – to the Rasch dimension – impacting items in the 

measure. Eigenvalues are used to measure the “strength” of a contrast. Linacre (2019) states that contrasts with eigenvalues less 

than two likely represent the random “noise” expected in the Rasch Model. Thus, any contrast with an eigenvalue greater than 

two was analyzed for consideration as an additional dimension to the Rasch dimension. Subsequently, items were separated 

based on analysis of contrasts and Rasch analysis was performed on these dimensions independently.  

The Rasch Dichotomous Model was used to analyze data addressing the parameters of Person Ability and Item Difficulty. 

Person ability and item difficulty are measured concurrently and are typically observed on an Item-Person (i.e., Wright) map. A 

general rule-of-thumb for reading an Item-Person map is that persons measured below a given item’s difficulty are more likely to 

answer that item incorrectly. Items measured below a person’s ability tend to be easier for persons of that ability level.  

Person ability and item difficulty summary statistics were reported. Winsteps identifies the lower (i.e., “real”) and upper (i.e., 

“model”) values of summary statistics, suggesting a range of values the true statistic may have (Linacre, 2019). The Root-Mean-

Square Error (RMSE) index is used to determine the amount of error in the data. Person and item separation measures indicate 

how well the instrument can distinguish between person ability levels (or strata) and item difficulty levels (Linacre, 2013). Person 

reliability is akin to traditional test reliability in Classical Test Theory, and item reliability has no comparative traditional measure 

(Linacre, 2019). Both are measures of reproducibility of results (i.e., position on the Item-Person map). 

Infit and outfit Mean Square Fit Statistics (MNSQ) were used to determine if any item or person was misfitting in the Rasch 

model. MNSQ values below 0.5 or above 1.5 indicate items or persons that may be unproductive for or degrading to the 

measurement of the construct (Wright & Linacre, 1994). Misfitting items or persons were further scrutinized, primarily based on 

point-measure correlations. Point-measure correlations below 0.3 are considered problematic (Linacre, 2019). Finally, model fit 

(i.e., log-likelihood χ2; Global Root-Mean-Square Residual [RMSR]) and dimension reliability (i.e., Kuder Richardson Formula 20 

[KR-20]; Kuder & Richardson, 1937) were analyzed. 

RESULTS 

Descriptives, Missing Data, and Extreme Cases 

Prior to any analyses, the data were assessed to identify missing data. Two cases with missing data were identified and 

removed via listwise deletion. Additionally, data were assessed to identify extreme cases of floor or ceiling performance (i.e., 

summary scores of zero or 31). Such extreme cases are inestimable in Rasch analysis so these are typically removed from 

consideration (Linacre, 1994). Sixteen extreme cases were identified and removed.  

Assumptions 

Remaining cases (N = 169) were split into six groups based on teacher (Proctor One, Proctor Two) and test form (A, B, and C). 

Homogeneity across groups was assessed via Factorial Analysis of Variance (ANOVA) with total ITPO score as the dependent 

variable. Levene’s Test indicated homogeneity of variance across group ITPO mean scores (F [5,163] = .680, p = .639). Additionally, 

analysis of skewness (Skewness/SE = -2.337) and kurtosis (Kurtosis/SE = -1.995) indicated ITPO total scores were approximately 

normally distributed. No significant difference in mean ITPO scores was identified based on teacher (F [1,163] = 2.661, p = .105) or 

test form (F [2,163] = 2.764, p = .798). Furthermore, no significant mean difference was identified across teachers by test form (F 

[5,163] = 2.764, p = .066). The nonsignificant results justify the choice to combine data across all groups for further analysis. See 

Table 1 for contrast clusters and item loadings. The item problem structure of addition and subtraction items in Table 1 and 

subsequently in the text of the manuscript is denoted using capital letters to represent the larger absolute value of N or n 

representing negative integers and P or p for positive integers. For example, n + p structure indicates the sum of additive inverses 

with the negative number first, whereas n + P indicates the sum of a negative number and a positive number with a greater 

absolute value. 
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Dimensionality 

Dimensionality was assessed using Rasch Principal Components Analysis of Residuals (PCAR). The total raw variance in 

observations had an eigenvalue of 47.657. Measures (i.e., Person Ability and Item Difficulty) explained 35% of this variance (Person 

Ability, 18.3%; Item Difficulty, 16.7%). That is, the Rasch dimension explained 35% of the variance in observations. The raw 

unexplained variance had an eigenvalue equivalent to the number of assessed items (31) and represented 65% of the total raw 

variance.  

PCAR analyzed the unexplained variance based on standardized residual variance as contrasts (i.e., components). Five 

contrasts were observed. The eigenvalue of a contrast is a measure of the strength of a component related to the items. That is, 

the first contrast explained 8.4% of the total raw variance with an item strength of 3.997 (i.e., the eigenvalue). Proportionally, the 

raw variance explained by items was approximately twice the unexplained variance in Contrast 1. The second contrast explained 

6.4% (item strength = 3.047) of the total raw variance. The raw variance explained by items was approximately three times larger 

than the unexplained variance in Contrast 2. Remaining contrasts were found with eigenvalues less than two. Linacre (2019) states 

that eigenvalues less than two suggest that these contrasts are representative of the random “noise” expected in the Rasch Model. 

Thus, PCAR suggested two additional components affecting the outcomes observed in the ITPO in addition to the Rasch 

dimension.  

PCAR contrasts depict sets of items orthogonal to the Rasch dimension (i.e., the first component; Linacre, 2019). Items are 

grouped into (three) clusters and compared based on their item (i.e., factor) loading. Typically, an identified cluster of strong 

positive (Cluster 1, e.g., loading > .3) or strong negative loadings (Cluster 3) within a contrast may represent an additional 

dimension – to the Rasch dimension – affecting items in the measure. Cluster 1 and Cluster 3 of Contrast 1 had a Pearson 

correlation of .326 and a disattenuated correlation (i.e., Pearson correlation measured without error) of .534. Additionally, Clusters 

1 and 3 of Contrast 2 also suggested an additional component (i.e., disattenuated r = .524). Linacre (2019) states that disattenuated 

correlations below .570 supports the existence of additional components affecting items. See Table 1 for contrast clusters and 

item loadings.  

 

Table 1. Principal Components Analysis of Residuals (PCAR) item loadings – contrast one and contrast two (N = 31) 
Item* Contrast 1 cluster Contrast 1 item loading Item content structure Contrast 2 cluster Contrast 2 item loading 

28 1 .63 n x n 2 -.06 

23 1 .61 n ÷ n 2 -.02 

29 1 .59 n ÷ (-1) 2 -.09 

27 1 .58 n ÷ n 2 -.04 

26 1 .55 p x (-1) 2 -.12 

31 1 .50 n÷ (-1) 2 -.17 

25 1 .49 p x n 3 -.28 

21 1 .47 n x n 3 -.22 

30 1 .33 n ÷ p 2 -.09 

24 2 .27 n x p 2 .05 

22 2 .26 -1 x p 2 .06 

16 2 .04 n – N 1 .62 

20 2 .03 n – N 1 .65 

18 2 -.03 p – N 1 .55 

15b 3 -.11 n – P 1 .38 

13a 3 -.13 p – N 1 .57 

9a 3 -.14 N – p 1 .42 

11a 3 -.19 p + N 3 -.32 

6 3 -.19 p + N 3 -.29 

3 3 -.22 N + p 3 -.24 

17 3 -.24 p + n 3 -.52 

14 3 -.24 p – P 2 -.02 

8 3 -.24 n + p 3 -.37 

4 3 -.26 n + P 3 -.28 

12b 3 -.27 p – P 2 -.03 

5a 3 -.30 N – n 2 .14 

19 3 -.31 n + P 3 -.30 

7 a 3 -.34 n+N 2 -.17 

10b 3 -.36 N -n 1 .32 

1 3 -.41 n + N 3 -.19 

2a 3 -.45 n + P 3 -.30 

Note. *Items listed relative to their cluster and item loading in Contrast 1. aItem adopted from Liebeck (1990). bItem adopted from Periasamy and 

Zaman (2009) in test Form A 
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Clusters 1 and 3 are typically observed as they include the items with the largest item loadings (positively and negatively, 

respectively). The items in Contrast 1, Cluster 1 shared a multiplicative commonality (i.e., all items involve multiplication or 

division). The items in Contrast 1, Cluster 3 shared an additive commonality (i.e., all items involve addition and subtraction). The 

items in Contrast 2, Cluster 1 shared a subtractive only commonality whereas Contrast 2, Cluster 3 suggested an additive only 

commonality (except for Item 21 and Item 25). Linacre (2019) suggests consideration of removal or restructuring of items that are 

affected by any identified additional dimensions. However, all identified commonalities are pertinent to the measurement of 

student ability with integer arithmetic including negative integers.  

Typically, a single contrast identifies a single dimension (i.e., the positively or negatively loading cluster within the contrast 

become a dimension). While this is the case for Contrast 1 (i.e., multiplicative items separated from additive items), the second 

contrast separated the remaining items by additive operation (i.e., addition or subtraction). Thus, the two identified contrasts with 

large item strength (i.e., > 2) formed three dimensions. Subsequent analyses separated items of the ITPO across three dimensions: 

(1) Addition (AddD), (2) Subtraction (SubD), and (3) Multiplication/Division (MDdim). Table 2 provides the items specific to each 

dimension. 

 

Table 2. Dimensions of the Integer Test of Primary Operations (ITPO) 
Dimension ITPO item 

Addition (AddD) 1, 2, 3, 4, 6, 7, 8, 11, 17, 19 

Subtraction (SubD) 5, 9, 10, 12, 13, 14, 15, 16, 18, 20 

Multiplication/Division (MDdim) 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 

 

Addition Dimension 

AddD consisted of 10 total items. Prior to applying the Rasch Dichotomous Model (RDM), missingness and outlier analysis were 

reexamined on the original data (N = 187). Eighty extreme cases (i.e., scores of 0 (n=71) or 10 (n=9), see Table 3) were identified. A 

reduced sample (N = 107, M = 7.12, and SD = 2.37) was then analyzed using the RDM. Data were negatively skewed (Skewness/SE = 

5.538) and mesokurtic (Kurtosis/SE = 1.443).  

 

Table 3. Missing and extreme cases removed from the sample (N = 187) prior to Rasch analysis 

Level 
Addition construct 

n (%) 

Subtraction construct 

n (%) 

Multiplication/division construct 

n (%) 

Missing - - 2 (1.1%) 

Ceiling 9 (4.8%) 14 (7.5%) 2 (1.1%) 

Floor 71 (38%) 23 (12.3%) 82 (43.9%) 

 

Addition person summary and fit statistics 

Person Ability measures (in logits; see Table 4) ranged from -2.35 to 2.32. Mean Person Ability (1.17) suggested a negatively 

skewed distribution, confirmed by observation of the Item-Person (Wright) map. Thus, items of the AddD tended to be easier for 

persons to endorse (i.e., Person Ability Mean > 0). Person Root-Mean-Square-Error (RMSE = .93) was close to the model RMSE (.90) 

indicating little error in the data. Person separation (1.02) suggested low discrimination (i.e., only one or two strata) between 

persons’ ability levels. Low Person reliability (.51) indicated a narrow range of person ability levels (Linacre, 2019). Linacre 

alternatively suggests that a measure with low person reliability (i.e., < .80) may also benefit from the inclusion of additional items.  

Analysis of Mean Square (MNSQ) and standardized (ZSTD) summary fit statistics indicated significant (i.e., | ZSTD | > 1.96) 

maximum infit and outfit statistics. The value of the maximum outfit suggested the existence of persons degrading to 

measurement using the Rasch Model (Wright & Linacre, 1994). Three persons (Person 61, Person 117, and Person 164) were 

identified with unusual fit statistics.  

 

Table 4. Integer Test of Primary Operations (ITPO) addition dimension person statistics summary (N = 107) 
Statistic Total score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 7.10 10 1.17 .89 1.00/.12 .99/.12 

P.SD 2.40 .00 1.33 .17 .17/.68 .45/.72 

S.SD 2.40 .00 1.33 .17 .17/.68 .45/.72 

Max 9.00 10 2.32 1.08 1.54/2.85 4.01/2.76 

Min 1.00 10 -2.35 .66 .73/-1.85 .57/-1.68 

Note. Real/Model RMSE = .93/.90; Real/Model True SD = .95/.97; Real/Model Separation = 1.02/1.07; Real/Model Person Reliability = .51/.54; 
Coefficient Alpha (KR-20) = .71, SEM = 1.26 

 

Person 61 and Person 117 obtained large MNSQ outfit statistics (MNSQ = 2.25, MNSQ = 4.01, respectively); however, their 

standardized fit statistics did not indicate troubling misfit. That is, Person 61 received a nonsignificant standardized outfit (ZSTD 

= 1.25, p > .05) and Person 117 had an unusual outfit (ZSTD = 2.05, p < .05) but may not be considered outliers (i.e., | ZSTD | > 2.58). 

Person 164 (Infit MNSQ = 1.54, Outfit MNSQ = 1.64) obtained unstandardized fit statistics that are good for measurement (Wright 

& Linacre, 1994). However, the standardized fit (Infit ZSTD = 2.85, p < .01; Outfit ZSTD = 2.76, p < .01) suggested significant misfit. 
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These fit statistics did not provide a clear picture for misfit persons (i.e., that the measure may benefit from removal of persons). 

Additionally, Linacre (1994) suggests that Rasch modeling is robust to misfit persons (more so than misfit items). Therefore, 

removal of persons was not considered.  

Addition item summary and fit statistics 

Summary statistics for AddD are defined in Table 5. Item difficulty measures ranged from -1.34 logits to .77 logits. Item 

reliability (.80) suggests an acceptable sample size was used for analysis of item difficulty. Item separation (1.98) indicates good 

discrimination of levels (strata) between items (i.e., three levels; Linacre, 2013). Real RMSE (.27) was close to the Model RMSE (.26) 

suggesting little error in the data. Analysis of MNSQ fit statistics reveals significant (i.e., | ZSTD | > 1.96) maximum infit and outfit 

statistics, as well as significant minimum infit statistics. Wright and Linacre (1994) indicate that items with MNSQ statistics 

between 1.50 and 2.00 may be unproductive for measurement, though not degrading to a scale. 

 

Table 5. Integer Test of Primary Operations (ITPO) addition dimension item statistics summary (N = 10) 
Statistic Total score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 76.2 107 .00 .26 .97/-.07 .99/.14 

P.SD 8.3 .00 .60 .03 .20/1.36 .10/.46 

S.SD 8.7 .00 .63 .03 .21/1.43 .31/1.44 

Max 93.0 107 .77 .34 1.29/2.30 1.58/3.04 

Min 64 107 -1.34 .23 .61/-1.98 .59/-1.80 

Note. Real/Model RMSE = .27/.26; Real/Model True SD = .53/.54; Real/Model Separation = 1.98/2.05; Real/Model Item Reliability = .80/.81; Standard 

Error of Item Mean = .20 

 

Individual items were scrutinized based on significant minimum and maximum fit statistics. Item 7 (Outfit MNSQ = 1.58, ZSTD 

= 3.04, p < .05) was potentially misfit to the model. The point-measure correlation for Item 7 (.31) was the lowest recorded value 

among AddD items. Additionally, Item 7 shared common structure with Item 1 (i.e., a negative first term summed with a larger 

negative second term in parentheses) that has a similar item difficulty measure (.55 and .44 for Item 7 and Item 1, respectively). 

However, other items also had equivalent structure (e.g., Item 6 and Item 11) but did not present as misfit or redundant. 

Furthermore, the item-person map (see Figure 1) did not suggest redundancy of items and analysis of Person Ability statistics 

indicated that the AddD may benefit from additional items. Thus, removal of Item 7 was not considered.  
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Addition model fit and reliability 

The log-likelihood chi-square statistic (χ2 = 951.80, df = 959, p = .56) was not significant. Additionally, the Global Root-Mean-

Square Residual (RMSR = .3767) was less than the expected RMSR (.3769). Both measures supported good model fit. The Kuder-

Richardson (KR-20) reliability statistic for the AddD was .71. 

Addition descriptives: Accuracy of full and reduced sample 

Although Rasch analyses render the following descriptives moot from a measurement and evaluation perspective, from a 

practical mathematics classroom instruction perspective, it would be useful to consider the descriptive statistics of items inclusive 

of all students who took the assessment. Thus, Table 6 includes the accuracy of each addition item of the full sample (i.e., from 72 

to 88%) to compare to the accuracy of those included in the Rasch subsample (60 to 87%). To provide insights about whether some 

students might have better conceptual understanding of the calculation even if inaccurate, the accuracy rates are posted next to 

the rates of accuracy of student open responses that have the accurate sign. Note that approximately 75% or more of students in 

the Rasch sample answered each addition item with the correct sign (e.g., 18 who were inaccurate on the most difficult question 

4, provided a positive solution). 

 

Figure 1. Item-person map for the addition dimension of the integer test of primary operations 
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Table 6. Addition items by level, mathematical structure, accuracy rate, and correct sign usage 

Rasch 

levela Integer structure Digit structure Item # 

Accurate 

Rasch subsample 

n (%) 

Correct sign 

Rasch subsample 

n(%) 

Accurate 

full sample 

n(%) 

3 n+P DD+DD Q4 64 (59.8%) 82 (76.6%) 135 (72.2%) 

2 

n+N SD+SD Q7 68 (63.6%) 80 (74.8%) 139 (74.3%) 

n+N SD+SD Q1 70 (65.4%) 82 (76.6%) 141 (75.4%) 

n+P SD+SD Q2 73 ( 68.2%) 81 (75.7%) 144 (77%) 

N+p DD+SD Q3 74 (69.2%) 87 (81.3%) 145 (77.5%) 

p+N SD+SD Q6 75 (70.1%) 89 (83.2%) 146 (78.1%) 

p+N SD+SD Q11 79 (73.8%) 90 (84.1%) 150 (80.2%) 

n+P SD+SD Q19 79 (73.8%) 88 (82.2%) 150 (80.2%) 

p+n DD+DD Q17 87 (81.3%) - 158 (84.5%) 

1 p+n DD+DD Q8 93 (86.9%) - 164 (87.7%) 

Note. Sample size of each analysis: Accurate and Correct Sign Rasch Subsamples (n = 107); Accurate Full Sample (N = 187). Capital N or P indicates 
these integers have the greater absolute value. SD indicates single digit and DD indicates double digit regardless of magnitude comparisons. 
aRasch level based on separation index in item summary statistics 

 

Subtraction Dimension 

SubD consisted of ten total items. Prior to applying the RDM, missingness and outlier analysis were reexamined on the original 

data (N = 187). Thirty-seven extreme cases (i.e., scores of 0 (n = 23) or 10 (n = 14), see Table 3) were identified. A reduced sample (N 

= 150, M = 4.82, SD = 2.609) was then analyzed using the RDM. Data were approximately symmetric (Skewness/SE = 1.217) and 

platykurtic (Kurtosis/SE = 3.350). 

Subtraction person summary and fit statistics 

Person ability measures (M = -.07; see Table 7) ranged from -2.40 to 2.40 suggesting an approximately symmetric distribution 

(i.e., on average item difficulty was equivalent to person ability). The item-person map suggested a bimodal distribution of Person 

Ability scores. Person RMSE (.86) was close to the model RMSE (.82) suggesting little error in the data. Person separation (1.33) 

suggested moderate discrimination between strata of person abilities and Person reliability (.64) was low, like the AddD.  

Analysis of person ability fit statistics suggested some misfit persons (i.e., large [MNSQ > 2] and unlikely [ | ZSTD| > 1.96] fit 

statistics; Bond & Fox, 2015; Wright & Linacre, 1994). MNSQ fit statistics suggested only a few problematic persons (i.e., MNSQ > 2). 

However, misfit persons are not as problematic as misfit items (Linacre, 1994). Thus, removal of misfit persons was not considered.  
 

Table 7. Integer Test of Primary Operations (ITPO) subtraction dimension person statistics summary (N = 150) 
Statistic Total Score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 4.80 10 -.07 .81 1.00/.04 1.04/.07 

P.SD 2.60 0 1.42 .14 .26/.87 .61/.96 

S.SD 2.60 0 1.43 .14 .26/.87 .61/.97 

Max 9 10 2.40 1.08 1.77/2.70 3.79/2.70 

Min 1 10 -2.40 .67 .59/-1.96 .42/-1.75 

Note. Real/Model RMSE = .86/.82; Real/Model True SD = 1.14/1.16; Real/Model Separation = 1.33/1.42; Real/Model Person Reliability = .64/.67; 

Coefficient Alpha (KR-20) = .73, SEM = 1.36 
 

Subtraction item summary and fit statistics 

Item Difficulty measures ranged from -1.21 logits to 1.06 logits. Item Real RMSE (.21) was close to the model RMSE (.20) 

suggesting little error in the data. Item reliability (.92) suggested a large enough sample size was used. Item separation (3.40) 

indicated excellent discrimination between strata of item difficulty. High item reliability and separation provided evidence of 

construct validity for the dimension (Linacre, 2019). Analysis of fit statistics suggested potentially misfit items. However, all item 

infit and outfit MNSQ fit statistics all presented as productive for measurement (Wright & Linacre, 1994) and the item-person map 

(see Figure 2) did not suggest redundancy of items. Additionally, analysis of Person abilities suggested that the SubD may benefit 

from more items. Therefore, removal of items was not considered. See Table 8 for full item summary statistics.  
 

Table 8. Integer Test of Primary Operations (ITPO) subtraction dimension item statistics summary (N = 10) 
Statistic Total score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 72.3 150 .00 .20 .99/-.09 1.04/.08 

P.SD 18.6 .00 .73 .01 .14/1.47 .29/1.58 

S.SD 19.6 .00 .77 .01 .15/1.55 .30/1.67 

Max 103 150 1.06 .21 1.15/1.60 1.52/2.68 

Min 46.00 150 -1.21 .20 .78/-2.19 .63/-2.18 

Note. Real/Model RMSE = .21/.20; Real/Model True SD = .70/.70; Real/Model Separation = 3.40/3.51; Real/Model Item Reliability = .92/.92; Standard 

Error of Item Mean = .24 
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Subtraction model fit and reliability 

The log-likelihood chi-square statistic (χ2 = 1501.13, df = 1494, p = .44) was not significant. Additionally, the Global Root-Mean-

Square Residual (RMSR = .4048) was less than the expected RMSR (.4066) suggesting the model was overfit to the data. Both 

measures supported good model fit. The KR-20 reliability statistic for the AddD was .73. 

Subtraction descriptives: Accuracy of full and reduced sample 

Although Rasch analyses render the following descriptives moot from a measurement and evaluation perspective, from a 

practical mathematics classroom instruction perspective, it would be useful to consider the descriptive statistics of items inclusive 

of all students who took the assessment. Thus, Table 9 includes the accuracy of each subtraction item of the full sample (i.e., from 

37 to 67%) to compare to the accuracy of those included in the Rasch subsample (31 to 69%). To provide insights about whether 

some students might have better conceptual understanding of the calculation even if inaccurate, the accuracy rates are posted 

next to the rates of accuracy of student open responses that have the accurate sign. Note that approximately 50% or more of 

students in the Rasch sample answered each subtraction item with the correct sign (e.g., 44 students who were inaccurate on the 

most difficult question 13, correctly provided a negative solution, such that 60% of the sample knew the solution was negative). 

 

Figure 2. Item-person map for the addition dimension of the integer test of primary operations 
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Table 9. Subtraction items by level, mathematical structure, accuracy rate, and correct sign usage 

Rasch 

levela 
Integer structure Digit structure Item # 

Accurate 

Rasch subsample 

n (%) 

Correct sign 

Rasch subsample 

n(%) 

Accurate 

full sample 

n (%) 

4 
p-N SD-SD Q13 46 (30.7%) 90 (60%) 69 (36.9%) 

p-N DD-DD Q18 47 (31.3%) 75 (50%) 70 (37.4%) 

3 
n-P SD-DD Q15 59 (39.3%) 81 (54.4%) 82 (43.9%) 

N-p SD-SD Q9 59 (39.3%) 138 (92.0%) 82 (43.9%) 

2 
n-N SD-SD Q16 70 (46.7%) 84 (56%) 93 (49.7%) 

n-N SD-SD Q20 74 (49.3%) 87 (58%) 97 (51.9%) 

1 

N-n SD-SD Q10 85 (56.7%) 120 (80.0%) 108 (57.8%) 

N-n SD-SD Q5 87 (58%) 123 (82.0%) 110 (58.8%) 

p-P DD-DD Q12 93 (62%) 105 (70.0%) 116 (62%) 

p-P DD-DD Q14 103 (68.7%) 109 (72.7%) 126 (67.4%) 

Note. Sample size of each analysis: Accurate and Correct Sign Rasch Subsamples (n=150); Accurate Full Sample (N=187). Capital N or P indicates 
these integers have the greater absolute value. SD indicates single digit and DD indicates double digit regardless of magnitude comparisons. 
aRasch level based on separation index in item summary statistics 
 

Multiplication/Division Dimension 

The MDdim consisted of 11 total items. Prior to applying the RDM, missingness and outlier analysis were reexamined on the 

original data (N = 187). Two cases of missing data and 84 extreme cases (i.e., scores of 0 (n = 82) or 11 (n = 2), see Table 3) were 

identified. A reduced sample (N = 101, M = 6.73, SD = 3.01) was then analyzed using the RDM. Data were approximately symmetric 

(Skewness/SE = 1.733) and platykurtic (Skewness/SE = 2.859). 

Multiplication/division person summary and fit statistics 

Person Ability (M = .64, see Table 10) ranged from -2.41 to 2.40 logits on the MDdim suggesting a negatively skewed Person 

Ability distribution (i.e., Person Ability Mean > 0; Items easier to endorse on average). The item – person map (see Figure 3) 

supported the distribution of person abilities. The real RMSE (.84) was near the model RMSE (.82) indicating little error in the data. 

Person separation (1.41) suggested a moderate discrimination between person ability levels (Linacre, 2013). Person reliability (.66) 

was low, like the AddD and SubD. 

 

Table 10. Integer Test of Primary Operations (ITPO) multiplication/division dimension person statistics summary (N = 101) 

Statistic Total score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 6.70 11.00 .64 .81 1.00/.18 .99/.15 

P.SD 3.00 .00 1.45 .16 .15/.59 .35/.69 

S.SD 3.00 .00 1.46 .16 .15/.60 .36/.69 

Max 10.00 11.00 2.40 1.06 1.39/2.14 2.84/2.05 

Min 1.00 11.00 -2.41 .62 .75/-1.10 .45/-1.10 

Note. Real/Model RMSE = .84/.82; Real/Model True SD = 1.19/1.20; Real/Model Separation = 1.41/1.46; Real/Model Person Reliability = .66/.69; 

Coefficient Alpha (KR-20) = .79, SEM = 1.38 

 

Analysis of person ability fit statistics suggested some misfit persons (i.e., large [MNSQ > 2] and unlikely [ | ZSTD| > 1.96] fit 

statistics; Bond & Fox, 2015; Wright & Linacre, 1994). MNSQ fit statistics suggested only a few problematic persons (i.e., MNSQ > 2). 

However, misfit persons are not as problematic as misfit items (Linacre, 1994). Thus, removal of misfit persons was not considered.  

Multiplication/division item summary and fit statistics 

Item Difficulty (see Table 11) ranged from -1.01 to .73 logits. Real RMSE (.26) was close to model RMSE (.25) indicating little 

error in the data. Item separation (1.64) and item reliability (.73) suggested a large enough sample size and moderate 

discrimination between item strata in the construct hierarchy. The item-person map (see Figure 3) suggested a relatively uniform 

distribution. Item fit statistics did not indicate any problematic items (i.e., MNSQ > 2). 

 

Table 11. Integer Test of Primary Operations (ITPO) multiplication/division dimension item statistics summary (N = 11) 
Statistic Total score Count Measure Model SE Infit MNSQ/ZSTD Outfit MNSQ/ZSTD 

M 61.80 101.00 .00 .25 1.01/.03 .99/-.13 

P.SD 7.80 .00 .50 .01 .16/1.31 .26/1.23 

S.SD 8.20 .00 .53 .01 .17/1.27 .27/1.29 

Max 77.00 101.00 .73 .27 1.31/2.20 1.50/2.20 

Min 50.00 101.00 -1.01 .24 .81/-1.54 .65/-1.86 

Note. Real/Model RMSE = .26/.25; Real/Model True SD = .43/.43; Real/Model Separation = 1.64/1.72; Real/Model Item Reliability = .73/.75; Standard 

Error of Item Mean = .16 
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Multiplication/division model fit and reliability 

The log-likelihood chi-square statistic (χ2 = 1067.16, df = 1071, p = .53) was not significant suggesting good model fit. However, 

the Global Root-Mean-Square Residual (RMSR = .3961) was greater than the expected RMSR (.3953) suggesting that the model was 

slightly underfit to the data. The KR-20 reliability statistic for the MDdim was .79. 

Multiplication/division descriptives: Accuracy of full and reduced sample 

Although Rasch analyses render the following descriptives moot from a measurement and evaluation perspective, from a 

practical mathematics classroom instruction perspective, it would be useful to consider the descriptive statistics of items inclusive 

of all students who took the assessment. Thus, Table 12 includes the accuracy of each multiplication/division item of the full 

sample (i.e., from 71% to 86%) to compare to the accuracy of those included in the Rasch subsample (50% to 76%). To provide 

insights about whether some students might have better conceptual understanding of the calculation even if inaccurate, the 

accuracy rates are posted next to the rates of accuracy of student open responses that have the accurate sign. Note that 

approximately 62% or more of students in the Rasch sample answered each multiplication/division item with the correct sign (e.g., 

 

Figure 3. Item-person map of the multiplication/division dimension of the integer test of primary operations 



 Nurnberger-Haag et al. / INT ELECT J MATH ED, 17(1), em0667 13 / 27 

29 who were inaccurate on the most difficult question 31 that involved dividing a positive number by -1, 79% correctly provided a 

negative solution although their actual solution was inaccurate). 

 

Table 12. Multiplication and division items by level, mathematical structure, accuracy rate, and correct sign usage 

Rasch 

levela 
Integer structure Item # 

Accurate 

Rasch subsample 

n (%) 

Correct sign 

Rasch subsample n(%) 

Accurate 

full sample 

n (%) 

3 
Pn [ P-1] Q31 50 (49.5%) 79 (79.0%) 132 (71.4%) 

Nn [N-1] Q29 52 (51.5%) 63 (62.4%) 134 (72.4%) 

2 

Nn Q27 57 (56.4%) 64 (63.4%) 139 (75.1%) 

nP Q24 57 (56.4%) 67 (66.3%) 139 (75.1%) 

Nn Q23 59 (58.4%) 63 (62.4%) 141 (75.4%) 

nN Q28 60 (59.4%) 69 (68.3%) 142 (76.8%) 

nN Q21 62 (61.4%) 66 (65.3%) 144 (77.8%) 

1 

Pn [P-1] Q26 66 (65.3%) 68 (67.3%) 148 (80%) 

nP [-1 P] Q22 69 (68.3%) 73 (72.3%) 151 (81.6%) 

Np Q30 71 (70.3%) 79 (79.0%) 153 (82.7%) 

pN Q25 77 (76.2%) 80 (80.0%) 159 (85.9%) 

Note. Sample size of each analysis: Accurate and Correct Sign Rasch Subsamples (n = 101); Accurate Full Sample (N = 185). Capital N or P indicates 

these integers have the greater absolute value. a Rasch level based on separation index in item summary statistics 

 

Summary of Findings 

The main finding from the Rasch Analysis for all three identified components (i.e., Addition, Subtraction, 

Multiplication/Division) were five-fold: (1) Person summary and fit statistics indicated good reliability and separation, (2) Item 

summary and fit statistics also indicated good reliability and separation, (3) The Item-Person Map corroborated the above findings, 

(4) Good model fit was evidenced, (5) there was strong internal consistency/reliability for all components. Table 13 summarizes 

these main findings.  

 

Table 13. Summary of primary Rasch analysis with related conceptual findings 
Section Analysis Findings 

Dimensionality Rasch principal components analysis of residuals Three components identified 

Addition dimension* 

Subtraction dimension* 

MDa dimension* 

Rasch dichotomous model  

 Person summary statistics 
Good person separation and reliability 

No persons misfit to the model 

 Item summary statistics 
Good item separation and reliability 

No items misfit to the modelb 

 Item-person (Wright) map Confirmed person/item separation and reliability 

 Model fit Good model fit (p > .05 for all) 

 Reliability Strong internal consistency (KR-20 > .70) 

Note. * Order of analysis the same across dimensions. aMultiplication/Division. bOne item identified as redundant after Rasch analysis in MD 

dimension 

DISCUSSION AND IMPLICATIONS 

We first address the micro level implications in terms of what we learned about particular item structures related to each 

research question. Then we explain the broader implications that the field now has a reliable and valid instrument for use with 

middle school students that consists of three forms, which are ethically available to any stakeholder in education.  

Item Level Discussion and Implications 

From a school mathematics perspective there are four primary operations and from a disciplinary mathematics perspective 

there are just two operations (addition and multiplication) by which the others are defined. Thus, we might have expected that 

the test would consist of four or two unidimensional constructs. Alternatively, because subtraction of a negative number results 

in addition operations (e.g., 4 – -2 = 4 + 2) and multiplication and division follow regular rules that differ only by the number of 

negative factors, we might have expected some addition problem structures would load with some more mathematically related 

subtraction structures and that multiplication and division items might also separate based on the regularity of the rules. In fact, 

the 31-item Integer Test of Primary Operations cleanly separated into three constructs based on operations: addition, subtraction, 

and multiplication and division loading together as a single unidimensional construct. This answered RQ1: “What is the 
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dimensional structure of the ITPO?”. Linacre (2018) contended that PCAR can identify groupings of items that measure a “strand” 

of a dimension rather than a specific dimension. That is, multiplication and division are likely strands of the same dimension (i.e., 

measuring the same dimension in different ways) rather than individual dimensions.  

The Rasch person-fit results that overall the operation of integer addition was easiest, multiplication and division next easiest 

and subtraction most difficult was consistent with a pattern we noticed in the descriptive statistics of Ryan and Williams’ (2007) 

study that used only three integer items as part of a mathematics measure. Typical integer instructional sequences follow this 

same pattern: addition, then subtraction and then multiplication and division. Yet, consider that to promote elementary student 

understanding of relationships between whole number operations, current standards combine addition and subtraction (NGO & 

CCSSO, 2010). Additionally, middle grade students should already have prerequisite whole number multiplication and division 

knowledge and -a is really (-1) (a). Thus, we question whether integer learning must follow the same sequence of operations that 

students experience for whole number instruction and suggest future research compare instructional sequences. The Integer Test 

of Primary Operations provides one measure that could be used as part of research designs that intend to make such comparisons 

and determine if the Item-Person Maps differ when different instructional sequences are used.  

With regard to RQ1, notice that within each construct, same problem structures grouped together in terms of their difficulty. 

This was evident in the findings shown in Tables 6, 9 and 12 and due to placement on the item-person maps in Figure 1, Figure 2, 

and Figure 3. Table 14 summarizes these key findings about the item structures to make these patterns easier to discern and 

more practically useful for stakeholders to apply this information to their future work. As stated in the purpose of the study, if RQ1 

was satisfied, based on theoretical and practical reasons, then we would ask RQ2: “After instruction which integer problem 

structures did middle school students find most difficult or easiest?” Given their mathematical and instructional importance, the 

three subquestions of RQ2 are discussed next. 

 

Table 14. Summary of integer operation problem difficulty 

Rasch 

level 
Addition 

Multiplication 

& division 
Subtraction 

 
Integer 

structure 

Q# 

(Digit structure) 

Integer 

structure 

Q# 

(Digit structure) 

Integer 

structure 

Q# 

(Digit structure) 

4 --  --  p-N Q13 (SD-SD) Q18 (DD-DD) 

3 n+p Q4 (DD+DD) Division by -1 Q31& Q29 
n-P Q15 (SD-DD) 

N-p Q9 (SD-DD) 

2 

n+N 

 

n+P 

N+p 

p+N 

p+n 

Q7 & Q1 

(SD +SD) 

Q2 (SD + SD) 

Q3 (DD + SD) 

Q6 & Q11 (SD+SD) 

Q17(DD+DD) 

Products & quotients 

of two negative 

integers that are 

< -1 

Q27, Q24, Q23, Q28, 

Q21 
n-N Q16 & Q20 (SD-SD) 

1 p+n Q8 (DD+DD) 

Products of a 

positive integer and -

1 

Np 

pN 

Q26 & Q22 

Q30 

Q25 

N-n 

p-P 

Q10 & Q5 

(SD-SD) 

Q12 & Q14 (DD-DD) 

Note. This table summarizes the crucial findings from Tables 6, 9 and 12. Capital N or P indicates these integers have the greater absolute value. 

SD indicates single digit and DD indicates double digit regardless of magnitude comparisons. Levels indicate top to bottom most difficult Level 4 
to easiest Level 1 within each operation dimension. Similarly, difficulty of items retains the vertical map order of the figures with the most difficult 

items listed first within each Q# column. Left to right the operation dimension is organized from least to most difficult (addition, 

multiplication/division, and subtraction). 

 

Multiply or divide by -1 items 

Given the ease that even young children have memorizing products of whole numbers that have the multiplicative identity as 

a factor, we would have expected that multiplying or dividing by -1 would be the easiest items in that construct. Thus, RQ2a 

investigated whether this was true: “Is -1(X) or X divide -1 a more difficult construct than other multiplication/division items?” Note 

in Table 14 that items involving multiplying by -1 loaded together along with other items that were the product or quotient of a 

positive and a negative number. These were the easier items, however multiplying by -1 was not the easiest structure. Moreover, 

contrary to expectations, division by -1 did not load with multiplication by -1. This means that for students, factoring by -1 was 

unrelated to multiplying by -1. Division by -1 were the most difficult items of any products or quotients (see Table 14). This finding 

has qualitatively practical importance for success in later mathematics. Algebraic proofs or justifications often involve factoring 

out -1, so this procedural skill and understanding the conceptual relationship that factoring -1 is the inverse of multiplying by -1 

are crucial for these learners of integer arithmetic to master prior to an algebra course.  

Additive inverses 

“How difficult were additive inverse items?” (RQ2b) was asked due to its use in proofs in disciplinary mathematics as well as 

the reliance on the sum of additive inverses as the basis of determining chemical charges. Across all three constructs (addition, 

subtraction and multiplication/division), the two additive inverse items were the easiest items (see Figure 1, Figure 2, and Figure 
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3). That is, after having learned integer arithmetic with multiple models, including a chip model and a number line model, almost 

all students in this sample were able to answer these additive inverse item structures. When interpreting any assessment, however, 

it is crucial to consider the purpose (Bond & Fox, 2015). Therefore, if someone wishes to claim that additive inverse items are 

easiest to learn, this will need to be investigated in future studies. A suggestion for future research would be to replicate the study 

here with both pre and posttests with a similar population. If the items load in similar ways on the posttest as they did here and 

differently for the pretest, then this information combined with qualitative analyses could provide additional insights about 

effective instructional sequences. 

Subtraction of negative integers 

Whereas our analysis for addition and multiplication/division discerned three levels of difficulty within each dimension, four 

levels of difficulty were discriminated for subtraction operations (see Table 14). The answer to RQ2c (Were items involving 

subtracting a negative number the most difficult items?) was less straightforward. As predicted, the most difficult problem 

structures were subtraction items in which a negative number was subtracted to yield a positive solution (p–N; Q13 and Q18). 

Although in terms of mathematical structure, each specific subtraction structure grouped together in reliable ways (e.g., Level 3 

n–P, N–p; Level 2 n–N, Level 1 N–n together before p–P; see Table 14), from a broader view the results do not allow us to claim 

that all problems in which subtracting a negative number yields a positive solution are most difficult for students. As Table 9 and 

the Item-Person Map in Figure 2 showed, beginning with a negative number and subtracting a positive (n–P or N–p) was less 

difficult than the structure of p–N, but more difficult than n–N. What is interesting and worthy of further consideration is that both 

of these items that seem contrary to theoretical and practical predictions were two items taken directly from existing measures 

and have about 40% accuracy in the Rasch subsample as well as the full sample. One of these items (Q9; -3–-2) was one of the 

anchor items appearing on every form taken from the Liebeck (1999) study. Although Liebeck’s (1999) study that compared 

instruction with a chip model to a number line model is frequently cited, the design had multiple threats to experimental validity 

as well as a troublesome reliance on an unvalidated instrument that intended to assess student competency of addition and 

subtraction using only the digits 3 and 2. Given that quantities within three are subitizable (Kaufman et al., 1949), Liebeck’s (1999) 

instrument limitation led us to predict that students would find these easy on the ITPO. After informally seeing the results of 

student accuracy across multiple implementations of the ITPO, we suspect that it may be the very size of the absolute values as 

subitizable that students in a sense take for granted and might passively answer this question quickly rather than actively using a 

learned strategy about how to subtract negative numbers. This supposition should be investigated with stratified interviews based 

on answers students provided to the open response items. For example, Liebeck’s Q9 (-3–-2, N–n structure) loaded as similar 

difficulty to Q15, which was a single digit-minus a double-digit number (n–N structure) modeled after an item from Periasamy and 

Zaman (2009). When Periasamy and Zaman (2009) analyzed this item difficulty using only descriptive statistics, this was the most 

difficult of the single-digit minus double-digit items. Thus, when rigorously assessed with Rasch analysis in our study, it was not 

surprising that this item structure was the third most difficult subtraction item on the ITPO. Therefore, the answer to question 

RQ2c, as to whether problems that require subtracting a negative number are most difficult, is that it depends on the structure. 

These items occurred in higher as well as lower difficulty levels on the item-person map. The Level 4 p–N items had about 30% 

accuracy. Whereas the other subtraction of a negative items was Level 2, which included the mean and about 50% accuracy, 

indicating these items were typical of students in the Rasch analysis (see Tables 9).  

The easiest subtraction structures (p–P; Q12 & Q14, see Table 14) were consistent with anecdotal experience that even without 

formal instruction learners find these problem structures more intuitive. Although after formal instruction, these were the easiest 

of the problem structures, the accuracy rates were below a criterion of competence. Each of these items had less than a passing 

criterion of accuracy for those in the Rasch subsample as well as when those with perfect scores on subtraction (i.e., full sample) 

were considered in the descriptive statistics. Moreover, even when we consider students with apparent conceptual understanding 

that these answers would be negative even if we disregard calculation errors, only 70% provided negative solutions. This was still 

barely competent against a typical classroom criterion of passing (see Table 9 correct sign Rasch subsample). One reason we 

suspect students were less accurate than expected on these items is that students may overgeneralize commutativity of addition 

and misapply it to subtraction. This hypothesis could be tested by analyzing student answers and strengthened with interviews 

that ask students to explain their thinking. Such research would be especially important to conduct on its own or include as a 

statistical control. Although a prior study (Young & Booth, 2019) asserted that inaccurate answers on algebraic equivalence tests 

(e.g., 4x – 3 is equivalent to 3 – 4x, p.6) were due to students misunderstanding the negative sign, we suspect that an additional 

reason for the errors reported in that study were due to student misconceptions that commutativity is independent of operation. 

Broader Implications and Future Research 

For ethical reasons, we strategically chose this journal that allows any stakeholder access to the ITPO: Classroom teachers 

who want a valid assessment of their students’ learning, researchers who need valid and reliable measures to assess instructional 

practices, as well as test developers who would create better tests of multiple constructs that include integer arithmetic if 

informed by this focused study of integer items. Teachers need valid and reliable no-cost assessments with low testing-time 

requirements. If teachers create their own unit tests or use textbook-provided assessments that primarily use items of the easiest 

structures, then they are likely to overestimate student proficiency with integer arithmetic that is crucial for later algebra. Practical 

needs of tests used in real classrooms must also always balance the time taken away from instruction for students to do the 

assessment with the information gained from the assessment. The ITPO provides this reasonable balance. 
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Integer test of primary operations is practical for teachers and scholars 

In addition to the findings of the Rasch analysis (recall this requires removal of students who had 0% after instruction as well 

as those students who demonstrated complete mastery with 100%), the descriptive statistics of the full sample in Table 6, Table 

9, and Table 12 provide evidence that these assessments have practical value. The participating students had learned all four 

integer operations as well as other integer constructs but had not yet experienced their unit review prior to taking the ITPO. 

Regardless, at the time-point of the test, item accuracy of the full sample demonstrated that for addition and 

multiplication/division students met a criterion typical of classroom learning (i.e., better than 70 or 75%), because these ranged 

from 72% to 88% and 71% to 86% respectively. Descriptive item accuracy for subtraction was consistent with the Rasch analysis 

that this was the most difficult integer operation construct. The full sample did not meet criterion for any subtraction item, with 

each item below 68% accuracy (see Table 9) and just 7.5% of students demonstrating mastery of all subtraction items (see Table 

3). Inspection of the Rasch subsample showed that integer subtraction item accuracy barely approached a passing criterion by 

ranging from 50% to 76%. Once negative sign accuracy was the criterion of competence to allow for simple errors during integer 

subtraction, students’ subtraction competency was still troubling, although it included the acceptable criterion in the range from 

62% to 80%. For teachers (or scholars) who offer partial credit for such calculation errors, this additional analysis we offered based 

on sign accuracy should provide confidence that the ITPO forms will be practically useful. 

To further ensure these test forms are practically useful, we provide these forms in the Appendix as 30-item tests rather than 

31 by omitting what was Q24, thus renumbering the remaining questions. An explanation for this follows. The multiplication and 

division construct consisted of 11 items, whereas addition and subtraction each have 10 items. There are two ways consideration 

of items could have been handled. First, as presented in results, 11 items diagnostically worked well with the other items, so based 

on the infit/outfit diagnostics as presented in the results there is no reason to dismiss or eliminate an item. Theoretically however, 

Q24 is the only item with a mathematical structure that loaded out of place in relation to the structure of other items. This may 

have been because each of these items had 9 as a factor such that students may have inaccurately calculated the magnitude due 

to errors in their whole number multiplication facts. Q24 was at the same location on the vertical ruler as Q27. This means they 

were at the same difficulty level and based on infit and outfit statistics of Q24, if we remove this item there would not be a large 

shift in the psychometric properties. Moreover, Q27 theoretically fits. Thus, given the practical interest that each construct might 

have exactly 10 items to offer a parsimonious test and so that qualitatively the problem structures load together in meaningful 

ways, we provide the test forms A, B, and C without item “Q24”. If future research uses these versions of the forms and needs to 

report exact Rasch statistics of the forms used, it would be prudent to verify this as part of the study design. 

Teachers or researchers can use the following approach to take best advantage of the affordances of these three forms that 

have been analyzed as sufficiently equivalent. A test-form sequence could be randomly assigned to each student. For example, 

prior to instruction one student might be assigned the form sequence BAC to use form B prior to instruction, form A after 

instruction, and form C either as a delayed test later in the same year or during a subsequent course within the same school to 

measure student growth and ensure students are retaining the necessary information for their algebra and science course work. 

When researchers use this three-form approach with random assignment of form sequence, this means that a researcher is 

implementing experimental controls to reduce threats to validity and more rigorous study designs that can assess learning growth 

as well as retention at three time points (Bhattacherjee, 2021, Chapter 10). Such a rigorous research design would promote 

stronger conclusions that matter over time than typical pre-post study designs (Nurnberger-Haag, 2018, 2020). 

There are research questions for which assessments other than binary calculations would be more valuable. Yet, the field of 

mathematics education could make faster and more cohesive progress to understand the learning of integer arithmetic if at least 

some studies use the same measures to allow for more direct comparisons or syntheses. Consider that a common measure means 

investigations of varied instructional methods or same methods across varied populations can be compared in meaningful ways 

to draw more effective conclusions (Campbell & Fiske, 1959; Wiersma & Jurs, 2009). Furthermore, better communication and 

building of knowledge across disciplinary borders such as mathematics education, educational psychology, and psychology are 

crucial to foster improvements in what we know about mathematics learning (Nurnberger-Haag, 2018). Common measures such 

as the ITPO have the potential to contribute to this important cross-disciplinary building. The instrument we provided with this 

study can now be used to raise the competitiveness of grant proposals about integer learning by fulfilling the criteria that at least 

some measures used in the data analysis plan have been psychometrically analyzed. For example, mathematics education 

researchers in the United States frequently apply for National Science Foundation DRK-12 funding, which require documentation 

of the planned instruments or measures and how these will validly and reliably serve the intended purpose of the study (Research 

on Learning in Formal and Informal Settings, 2020). 

Integer test of primary operations could be used to discriminate student performance 

From a psychometric perspective and if the purpose of using the test is to discriminate students from each other, then a 

limitation of the individual dimensions was low person reliability (i.e., .51 for AddD, .64 for SubD, .66 for MDdim). Low person 

reliability may suggest the measure would benefit from more person ability range or the addition of more items to the dimension 

(Linacre, 2019), but is also common for scales with less items. However, the reason for this low person reliability is consistent with 

goals of regular classroom instruction in which the goal is not to obtain a good spread of scores, but to ensure every student 

succeeds above a criterion. This assessment was administered after three weeks of integer arithmetic instruction, but before their 

unit review and test. At that time 66 (61.68%) students included in the Rasch analysis met a criterion of at least eight of 10 addition 

items and 46 (45.54%) students accurately answered at least nine of the 11 multiplication and division items correctly. In contrast, 

81 (54%) students on the SubD were low scoring (i.e., fewer than four of ten items correct). The uneven proportions of scores lessen 

concern that should be added to these dimensions. Although the MDdim was considered underfit to the model, Rasch 
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measurement is more concerned with the practicality of a set of items rather than those items statistical fit to the model (Linacre, 

2019).  

Due to limited test-taker time and capacity, textbook developers who create unit tests and especially standardized test 

developers select a few or even just one item to represent an entire aspect of knowledge. Thus, this study provides necessary 

insights for these developers to choose which one to three item structures would best serve the intended purpose of the 

assessment. If the purpose of the assessment is to use limited items to identify whether a large group of students has mastered 

integer operation knowledge, such as on mathematics placement tests, then choose the most difficult items. In contrast, the 

purpose of standardized measures as used for college admissions and so forth is to intentionally ensure that some people will be 

viewed as lower-performing and others ranked highest. In the words of the statistical methods themselves person-discrimination, 

that is to separate persons based on their test performance. For these purposes, test developers should use a range of item 

difficulty: select one item that the majority can get correct (low negative logit), one item that is around the mean difficulty level, 

and one item that is difficult for most students (highest positive logit).  

A mathematics coach in a school district or a classroom teacher could use the results of our study to create quick formative 

assessments of just a few items. Given that the purpose of formative assessment is to gauge overall class and individual student 

learning in order to inform changes to instruction during the unit (Black & William, 2010), we suggest reserving our test forms for 

summative assessments and create formative assessments by using Table 14 as a guide to select different numbers than provided 

on the ITPO but with a range of the same problem structures. For example, early in the unit, a teacher might choose one item 

structure within Level 1 for each of addition and subtraction, and one item from Level 3 of each construct. Later in the unit after 

all four primary operations have been taught, it might be important for a formative assessment to ensure that a range of difficulty 

is included within the necessarily short ungraded formative assessment, such as: one Level 2 addition structure such as p+N, one 

subtraction item from each Level 1 to 4 (see Table 14), a multiplication item of the form n x N and an item of the form X divided by 

-1. Other item structures could be selected. We simply offered these detailed examples to support busy practicing teachers or 

mathematics curriculum specialists and coaches within school districts who might be responsible for creating such assessments. 

If the purpose of an assessment is to identify those with typical knowledge, then based on this analysis, item structures located 

around the mean on each Item-Person Map might best serve this purpose, such as single digit p+N, n–N, and nn. We will use the 

integer items in Ryan and Williams’ (2007) study of 15,000 students ages 4 to 15 and interpret these using our study findings to 

explain this more clearly. The addition item 4 + -5 (Ryan & Williams, 2007, p.212) would serve the purpose of identifying typical 

addition knowledge, because this addition problem structure of p + N was located around the mean on the ITPO Item-Person Map 

(see Figure 1). Ryan and Williams’ (2007) findings that about 66% of students correctly answered this suggests it was a good item 

for this purpose. As Ryan and Williams (2007) explained the accuracy rates of the subtraction and division items were quite 

troubling at 35% and 44%, respectively. Yet, these items probably overestimated actual integer knowledge when we interpret the 

item structures in terms of our study. Their subtraction item of -6–3 with a structure of N–p was slightly above the mean, which 

might discriminate slightly above average performing students. The division item, however, -24 divided by 6 has the easiest 

division structure (N ÷ p), which means the same students who answered this item correctly if given the most difficult structure of 

N divided by -1 (-24 ÷ -1), fewer than 44% would accurately answer this. 

One practical limitation of Rasch analysis is that to meet the assumptions requires that those students with perfect scores (at 

ceiling) are eliminated along with those who scored 0 (at floor). Consequently, we discourage researchers from conducting a study 

of integer performance using Rasch to analyze student performance in ways that have any stake for the individual student or 

teacher. Similarly, this type of analysis would be problematic if used to determine the efficacy of an instructional method, because 

after instruction our goal would be that every student meets a criterion of 100% and no students 0%. If one instructional method 

had a disproportionate number of students at ceiling and another a disproportionate number with 0, the students kept in the 

analysis would therefore lead to faulty interpretations and conclusions about method efficacy for real classroom learning. Thus, 

we agree with Stacey and Steinle (2006) that Rasch analysis must be applied judiciously. As they stated, “Rasch theory has helped 

us see that different aspects of learning need to be tracked with fundamentally different tools” (Stacey & Steinle, 2006, p. 91). That 

is, scholars must recognize for what purposes this tool is useful and make appropriate interpretations to avoid any untoward 

outcomes both theoretically in research and practically in the field. 

CONCLUSIONS 

The primary practical and theoretical contribution of this study is the measure itself. Although rare in mathematics education, 

the development of reliable and valid instruments is such an important foundation of rigorous research designs that entire funding 

sources are dedicated to supporting the development of measures for mathematics knowledge (Callingham & Bond, 2006; 

Research on Learning in Formal and Informal Settings, 2020). Moreover, we ensured that this instrument is ethically accessible to 

any stakeholder and given that only the directions are written in words, translations would be simple and are unlikely to impact 

the validity of the assessment. Therefore, this test should be broadly useful to teachers and scholars across the world in any 

language that uses Arabic numerals.  

Three Forms Strengthen Practical Value and Statistical Conclusion Validity 

The Integer Test of Primary Operations is unique in that it consists of three forms. The contribution of three forms is 

psychometrically and practically important. Psychometrically, the three forms strengthen the statistical content validity of the 

instrument. Published tests for mathematics knowledge typically rely on a single form, which means the numbers used in specific 

items do not have the variability needed to make strong claims about why the particular items might be more or less difficult 
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(Wiersma & Jurs, 2009). Hence, due to the variability of the numbers used within each item across forms of the ITPO, the statistical 

conclusion validity evidence of the ITPO is stronger than most published measures of mathematics learning. This increases the 

interpretability that the similar loadings of items with the same structure are due to the underlying mathematical structure (e.g., 

p–N) rather than due to the particular numbers chosen for the item (e.g., 2 – -5, or 3 – -8). Practically, the studies of learning that 

scholars most care about in education is dependent on the quality of the measures used to assess and interpret that learning. The 

ITPO consists of the three forms necessary to conduct rigorous pre-post-delayed assessments of learning in future study designs.  

Moreover, even if the ITPO is not used in its entirety, the findings of this Rasch analysis inform learning, teaching and 

assessment of integer knowledge in detailed ways. This study provided a critical and empirically based lens with which to critique 

existing items on classroom tests as well as higher-stakes instruments. Our study provides guidelines about the structures of items 

to include on other assessments that textbook developers, standardized test developers, teachers or school districts create. To 

ensure that students can complete such an assessment of mathematics within a reasonable time, only a few items or sometimes 

a single item are included for each topic or learning objective. For example, if a stakeholder reviews an assessment and finds 

problem structures located in Level 1 of Table 14, these are the easiest problem structures. This means that the test overestimates 

students’ integer operation competence that is so crucial for their future algebraic and other STEM learning. 

Future Research Needed with Particular Populations 

Due to the nature of the ITPO questions as straightforward calculation problems without words or contexts, we anticipate the 

measure would be reliable with other learners and populations. Nevertheless, in order to claim this, this study should be replicated 

with these populations. A priority for next analyses should be high school students taking introductory STEM courses such as 

algebra, chemistry, and physics who should have already mastered the integer arithmetic that is crucial for success in these fields. 

Similarly, given the importance of integer knowledge to subsequent success, this should also be replicated with adult learners in 

varied mathematical contexts such as classes in which integer arithmetic is retaught (i.e., developmental mathematics) or 

introductory collegiate mathematics courses (e.g., Precalculus or Calculus I). Moreover, given the importance of teachers having 

accurate mathematics content knowledge and recent studies about the difficulties prospective teachers have with negative 

numbers (Rosyidah, et al., 2021), it would be important to replicate this study with mathematics content courses for prospective 

teachers of all levels (i.e., early childhood, elementary, special education, as well as middle school and high school STEM). 

Moreover, the ITPO could now be used in studies that assess the relationships between integer skills and later applications within 

mathematics such as algebraic expressions (e.g., Is -4x + 3 equivalent to 3 – 4x?) as in Young and Booth (2019). Furthermore, the 

ITPO could enhance practice and research to ask what relationship is there between integer knowledge and success in STEM 

disciplines more broadly? 

Instruments to Assess Integer Knowledge Needed 

This study provided an instrument to assess knowledge of the four primary operations with negative numbers, which are an 

important set of constructs of integer knowledge. Additional measures are needed to assess other constructs of integer knowledge 

such as ordering numbers, using a number line, conceiving of the negative sign as an operation, and real-life applications 

(Nurnberger-Haag, 2018; Vlassis, 2008). Many researchers study these integer constructs from varied theoretical perspectives and 

with diverse ages. If the field were to have several reliable measures of integer constructs such that researchers from diverse 

perspectives could use and compare results with varied populations, scholars could better build on each other’s work to advance 

the field’s understanding about ways to facilitate integer arithmetic learning across levels of schooling. Indeed, to be competitive 

for grant funding, agencies such as the National Science Foundation and Institute for Education Sciences are increasingly requiring 

evidence that proposals use valid and reliable measures (Institute of Education Sciences & National Science Foundation [NSF], 

2013; Research on Learning in Formal and Informal Settings, 2020). Thus, we offer the three forms of the Integer Test of Primary 

Operations as an important step toward this ideal state of the field. 
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APPENDIX: PRINTABLE TEST FORMS 

Printable Test Forms 

The three forms (A, B, and C) of the 30-item Integer Test of Primary Operations (ITPO) are included here in 

a printable format to facilitate their practical use. Recall that Q24 was removed from the 31-item test for 
reasons explained in the discussion section. Thus, if cross-referencing these forms with data in the results 

section, Q1-Q23 will match; however, Q24-Q30 on these printable forms should be compared to items Q25-
Q31 reported in the results section. 
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Integer Test of Primary Operations (Form A) 

Directions: Please answer the addition and subtraction problems. 

1. -2 + -5 = 

2. -2 + 3 = 

3. -13 + 8 = 

4. -16 + 23 = 

5. -3 – -2 = 

6. 3 + -6 = 

7. -2 + -3 = 

8. -12 + 12 = 

9. -3 – 2 = 

10. -5 – -2 = 

11. 2 + -3 = 

12. 16 – 23 = 

13. 2 – -3 = 

14. 12 – 15 = 

15. -8 – 13 = 

16. -2 – -5 = 

17. 15 + -15 = 

18. 17 – -25 = 

19. -5 + 7 = 

20. -3 – -6 = 
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Directions: Please answer the multiplication and division problems. 

21. -5  -7 = 

22. -1  19 = 

23. -20  -4 = 

24. 5  -7 = 

25. 22  -1 = 

26. -30  -10 = 

27. -2  -11 = 

28. -24  -1 = 

29. -12  6 = 

30. 28  -1 = 
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Integer Test of Primary Operations (Form B) 

Directions: Please answer the addition and subtraction problems. 

1. -3 + -5 = 

2. -2 + 3 = 

3. -15 + 9 = 

4. -18 + 25 = 

5. -3 – -2 = 

6. 2 + -5 = 

7. -2 + -3 = 

8. -17 + 17 = 

9. -3 – 2 = 

10. -4 – -3 = 

11. 2 + -3 = 

12. 17 – 25 = 

13. 2 – -3 = 

14. 11 – 16 = 

15. -6 – 11 = 

16. -4 – -5 = 

17. 13 + -13 = 

18. 16 – -23 = 

19. -4 + 8 = 

20. -2 – -4 = 
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Directions: Please answer the multiplication and division problems. 

21. -5  -9 = 

22. -1  18 = 

23. -20  -5 = 

24. 5  -6 = 

25. 23  -1 = 

26. -20  -10 = 

27. -2  -12 = 

28. -22  -1 = 

29. -12  4 = 

30. 24  -1 = 
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Integer Test of Primary Operations (Form C) 

Directions: Please answer the addition and subtraction problems. 

1. -2 + -6 = 

2. -2 + 3 = 

3. -12 + 7 = 

4. -14 + 21 = 

5. -3 – -2 = 

6. 4 + -7 = 

7. -2 + -3 = 

8. -19 + 19 = 

9. -3 – 2 = 

10. -6 – -2 = 

11. 2 + -3 = 

12. 15 – 22 = 

13. 2 – -3 = 

14. 12 – 16 = 

15. -8 – 12 = 

16. -3 – -5 = 

17. 14 + -14 = 

18. 18 – -23 = 

19. -4 + 7 = 

20. -2 – -6 = 
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Directions: Please answer the multiplication and division problems. 

21. -5  -6 = 

22. -1  17 = 

23. -16  -4 = 

24. 5  -8 = 

25. 25  -1 = 

26. -20  -5 = 

27. -2  -13 = 

28. -21  -1 = 

29. -12  3 = 

30. 26  -1 = 
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