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Introduction 

Aggregate losses in the networks of power systems and users comprise a 

considerable part of power supplied to the network from power station buses 

(Shidlovsky, 1985). Most losses are attributed to distribution networks (Barker & 

Mello, 2000; Harlow, 2004). Optimizing modes and modernizing power grids is the 

priority way of cutting technical losses of power (Lathrop et al., 2011; Dmitriev & 

Kokin, 2010). 
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ABSTRACT 
This research investigates the problem of estimating additional losses in 6 (10)/0.4 kV voltage 
rating double-wound power transformers caused by asymmetric active-inductive load with a 
delta connection. This research used the symmetrical components method, modern methods 
of analysis and synthesis of electric circuits, the theory of electric circuits, full-scale 
experiment, and comparative experiment. The research found a functional dependence that 
enables estimating additional losses in the transformer caused by asymmetric load, which 
differs from similar ones in that it uses phase resistance. The amperage, voltage, and active 
power was measured in each phase of the “distribution transformer – asymmetric load” 
model to confirm the discovered functional dependence. The experiments showed that the 
loss of active power, calculated according to the standard formula, should be corrected with 
regard to the discovered functional dependence. The practical value of the offered 
functional dependence for the estimation of additional losses is that it enables estimating 
the losses of active power in transformers due to asymmetry by measured voltage, amperage, 
and active power for each phase. This makes it universal: there is no need to build equivalent 

circuits and carry out calculations according to the symmetrical components method. 
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According to foreign (Aoki et al., 2002; Rao et al., 2013) and Russian experts 

(Tropin, Savenko & Perepechin, 2005; Tropin, Savenko & Maleyev, 2008), the 

main reason behind losses in excess of industry standards is the asymmetric load 

of distribution transformers. In addition, the investigation of the operation of 

distribution transformers at agricultural and municipal facilities found that their 

installed capacity is underused (Dondi et al., 2002; Semenov, 2011). 

A considerable growth of additional losses occurs when asymmetry exceeds 

the permissible limits. The main losses imply forced losses of power in symmetric, 

sinusoidal, even, and active nominal modes (Girshin et al., 2013). The research of 

R. Rao et al. (2013) shows that additional losses occur when power quality indexes 

deviate from standard values. 

If the high voltages of distribution transformers differ, then their low voltages 

cannot be identical either. This generates a shift of the neutral point, which causes 

considerable additional active losses in transformers with a Y-connection low 

voltage winding and Y-connection high voltage winding with a the neutral 

available, despite the fact that in symmetric mode, the characteristics of idling 

and short circuit losses in these transformers are better than in transformers with 

other types of connection (Olivares et al., 2003). 

For a transformer with a Y-connection high voltage winding and Z-connection 

low voltage winding with the neutral available to have similar characteristics of 

idling and short circuit losses, it is necessary to use a large amount of materials, 

since the Z-connection requires a greater number of coils (Kutin & Lagutin, 2008). 

It is worth noting that statistical treatment of the protocols of distribution 

transformer tests in a city and rural district (Kostinsky, 2009), as well as the 

results of studies carried out using a TSZ-2.5/220 transformer, used in a “double-

wound three-phase transformer – asymmetric load” physical model (Power 

Installation Design Manual, 2006), showed that in transformers that operated for 

an extended period of time, both idling and short circuit losses were greater than 

their rated values. At that, these indexes were higher in transformers of up to 

1000 kV•A than in higher capacity transformers. These data match the results 

presented in (Tsyruk & Kireyeva, 2008). 

According to the research of V. Zaugolnikov, A. Balabin & A. Savinkov (2006), 

after the rapid reduction of power consumption in the Russian Federation in the 

1990s, this index has not yet reached its pre-crisis level in many regions. 

Transformers operate under consideration underutilization, especially in 

rural areas. The economic efficiency of their operation is generally assessed by the 

energy conversion coefficient or relative losses, the charts whereof, depending on 

the load of a separate transformer, are essentially inverted charts of the energy 

conversion coefficient (Zaugolnikov, Balabin & Savinkov, 2006). 

The service life of power transformers is 25 years; it is established based on 

the assumption that thermal wear of the winding insulation can take place during 

this period, since said insulation determines the resource of the power 

transformer (Serban, 2015). Experience of operation showed that transformers 

can sustain serious damage before the insulation resource is exhausted. 

In addition to insulation, the magnetic structure is also exposed to wear, 

which is shown by increased idling losses. During maintenance tests of 

transformers with idling experiments, the idling losses should not differ from 

rated values by more than 5% (Shidlovsky & Kuznetsov, 1985). 
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Some studies give data, which show that the magnetic structure ages much 

earlier. Therefore, S. Tsyruk & E. Kireyeva (2008) offer doing repairs in 

accordance with the actual technical state based on diagnostic results, primarily 

using heat monitoring, instead of scheduled and preventive repairs, which are 

obligatory (Decree of the Ministry of Energy of the Russian Federation, 2003). 

With that, S. Tsyruk & E. Kireyeva argue that using additional monitored 

parameters in addition to conventional techniques is economically expedient 

(2008). 

Asymmetric operating modes have begun drawing more attention in recent 

years, since the municipal power consumption in a number of power systems has 

exceeded the industrial power consumption, which disrupted the symmetry and 

balance of current and power systems (Damjanovic, Integlia & Sarwat, 2016). This 

shows the relevance of improving the estimation and the cutting of power losses 

in distribution networks (Dogru, 2008). 

The purpose of this research is to determine the functional dependence for 

the estimation of additional losses of active power in a double-wound power 

transformer caused by asymmetric active-inductive load with a delta connection. 

Methods 

This research used the symmetrical components method, modern methods of 

analysis and synthesis of electric circuits, the theory of electric circuits, full-scale 

experiment, and comparative experiment. 

The amperage, voltage, and active power was measured in each phase of the 

“distribution transformer – asymmetric load” model to confirm the discovered 

functional dependence. The following measuring devices were used: 

- AR.5 CIRCUTOR portable power quality analyzer, factory No. 408612036. 

Measurement range: amperage – 0.05 … 5 A, 1 … 200 A; voltage 1 … 500 V; 

- K-540 measurement kit, factory No. 1213: nominal voltage of built-in 

voltmeter – 15, 30, 75, 150, 300, 450, 600 V; nominal amperage of built-in ammeter 

– 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50 A; nominal active power of built-in wattmeter 

– from 0 to 30 kW within the above limits of amperage and voltage measurement. 

These measuring devices have 0.5 accuracy and certificates of calibration. 

The research object was a TSZ-2.5 three-phase double-wound transformer 

with 2.5 kV ∙ A nominal power, 220 V at the high voltage winding, and 127 V at 

the low voltage winding. 

Loading rigs with active and inductive resistance were used to verity the 

discovered functional dependence. 

The rigs enabled modeling various operating modes of the “distribution 

transformer – asymmetric load” model: 

- active symmetric and asymmetric load; 

- active-inductive symmetric and asymmetric load. 

These rigs also enabled investigating the operating mode of the transformer 

with a delta-connection load. 
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Data, Analysis, and Results 

Thes “distribution transformer – asymmetric load” model is presented in the form 

of a system of symmetric EMF sources, in which jUEA  , to which the 

asymmetric active-inductive load can be connected using a delta-connection 

(Figure 1), where the complex resistance of phases is 

CAZBCZABZ  ; ABAB jXRABZ  ; BCBC jXRBCZ  ; 

CACA jXRCAZ  . 

This scheme requires determining: losses from negative phase-sequence 

currents when compared with losses from positive phase-sequence currents; full, 

active, and reactive power; reactive power factor; pulsed power. 

Due to the symmetry, electromotor forces of phases B and C, respectively, 

are: 
2ajUEB  ; ajUEC  . Here, 

2

3

2

1
ja  ; 

2

3

2

12 ja   are unit 

vectors of 120° and 240° counterclockwise rotation. 

 
Figure 1. Three-phase network with a symmetric system of EMF sources and asymmetric 
active-inductive load with a delta connection. 

Due to symmetric electromotor force sources, 

𝐸̇𝐵 = 𝐸̇𝐴 ∙ 𝒂2 = 𝑗𝑈 ∙ 𝒂2,  𝐸̇𝐶 = 𝐸̇𝐴 ∙ 𝒂 = 𝑗𝑈 ∙ 𝒂, 

where 𝒂 = 𝑒𝑗1200
= −

1

2
+ 𝑗

√3

2
; 𝒂𝟐 = 𝑒𝑗2400

= −
1

2
− 𝑗

√3

2
 – are rotation operators. 

The scheme in Figure 1 can use all the results of the study for the Y-

connection with an isolated neutral point, given a transition from this scheme to 

a delta-connection scheme. In this case, 

𝑍𝐴 =
(𝑅𝐴𝐵 + 𝑗𝑋𝐴𝐵)(𝑅𝐶𝐴 + 𝑗𝑋𝐶𝐴)

𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴 + 𝑗(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴)
=

𝑍𝐴𝐵 ∙ 𝑍𝐶𝐴

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴

;              (1) 

𝑍𝐵 =
(𝑅𝐴𝐵 + 𝑗𝑋𝐴𝐵)(𝑅𝐵𝐶 + 𝑗𝑋𝐵𝐶)

𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴 + 𝑗(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴)
=

𝑍𝐴𝐵 ∙ 𝑍𝐵𝐶

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴

;              (2) 

𝑍𝐶 =
(𝑅𝐶𝐴 + 𝑗𝑋𝐶𝐴)(𝑅𝐵𝐶 + 𝑗𝑋𝐵𝐶)

𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴 + 𝑗(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴)
=

𝑍𝐶𝐴 ∙ 𝑍𝐵𝐶

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴

.              (3) 
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According to Figure 1, 

                                            𝑈̇𝐴𝐵 = 𝐸̇𝐵 − 𝐸̇𝐴 = 𝑗𝑈(𝒂2 − 1);                                        (4) 

                                            𝑈̇𝐵𝐶 = 𝐸̇𝐶 − 𝐸̇𝐵 = 𝑗𝑈(𝒂 − 𝒂2);                                       (5) 

                                              𝑈̇𝐶𝐴 = 𝐸̇𝐴 − 𝐸̇𝐶 = 𝑗𝑈(1 − 𝒂).                                        (6) 

                                                    𝐼𝐴̇𝐵 =
𝑈̇𝐴𝐵

𝑍𝐴𝐵

=
𝑗𝑈(𝒂2 − 1)

𝑍𝐴𝐵

;                                        (7) 

                                                   𝐼𝐵̇𝐶 =
𝑈̇𝐵𝐶

𝑍𝐵𝐶

=
𝑗𝑈(𝒂 − 𝒂2)

𝑍𝐵𝐶

;                                         (8) 

                                                   𝐼𝐶̇𝐴 =
𝑈̇𝐶𝐴

𝑍𝐶𝐴

=
𝑗𝑈(1 − 𝒂)

𝑍𝐶𝐴

.                                           (9) 

According to equations for nodal currents of the scheme shown in Figure 1, 

{

𝐼𝐴̇ + 𝐼𝐶̇𝐴 − 𝐼𝐴̇𝐵 = 0;

𝐼𝐵̇ + 𝐼𝐴̇𝐵 − 𝐼𝐵̇𝐶 = 0;

𝐼𝐶̇ + 𝐼𝐵̇𝐶 − 𝐼𝐶̇𝐴 = 0;

→ {

𝐼𝐴̇ = 𝐼𝐴̇𝐵 − 𝐼𝐶̇𝐴;

𝐼𝐵̇ = 𝐼𝐵̇𝐶 − 𝐼𝐴̇𝐵 ;

𝐼𝐶̇ = 𝐼𝐶̇𝐴 − 𝐼𝐵̇𝐶 .

 

Considering equations (7) … (9), the expressions for the calculation of linear 

currents will be as follows: 

𝐼𝐴̇ = 𝑗𝑈 (
𝒂2 − 1

𝑍𝐴𝐵

−
1 − 𝒂

𝑍𝐶𝐴

) = 𝑗𝑈 
𝑍𝐶𝐴(𝒂2 − 1) + 𝑍𝐴𝐵(𝒂 − 1)

𝑍𝐴𝐵  𝑍𝐶𝐴

;                        (10) 

𝐼𝐵̇ = 𝑗𝑈 (
𝒂 − 𝒂2

𝑍𝐵𝐶

−
𝒂2 − 1

𝑍𝐴𝐵

) =  𝑗𝑈 
𝑍𝐴𝐵(𝒂 − 𝒂2) + 𝑍𝐵𝐶(1 − 𝒂2)

𝑍𝐴𝐵  𝑍𝐵𝐶

;                   (11) 

𝐼𝐶̇ = 𝑗𝑈 (
1 − 𝒂

𝑍𝐶𝐴

−
𝒂 − 𝒂2

𝑍𝐵𝐶

) =  𝑗𝑈 
𝑍𝐵𝐶(1 − 𝒂) + 𝑍𝐶𝐴(𝒂2 − 𝒂)

𝑍𝐶𝐴 𝑍𝐵𝐶

.                        (12) 

Considering the values of equations for linear currents (10) … (12), using the 

Fortescue transformation, 

𝐼1̇𝐴 =
1

3
 (𝐼𝐴̇ + 𝒂 ∙ 𝐼𝐵̇ + 𝒂2 ∙ 𝐼𝐶̇) = −𝑗𝑈(𝑌𝐴𝐵 + 𝑌𝐵𝐶 + 𝑌𝐶𝐴), 

𝐼2̇𝐴 =
1

3
 (𝐼𝐴̇ + 𝒂2 ∙ 𝐼𝐵̇ + 𝒂 ∙ 𝐼𝐶̇) = 𝑗𝑈(𝑌𝐵𝐶 + 𝒂 ∙ 𝑌𝐶𝐴 + 𝒂2 ∙ 𝑌𝐴𝐵). 

The asymmetry factor with negative sequence is 

𝐾̇2 =
𝐼2̇𝐴

𝐼1̇𝐴

= −
𝑍𝐴𝐵𝑍𝐶𝐴 + 𝒂 ∙ 𝑍𝐴𝐵𝑍𝐵𝐶 + 𝒂2 ∙ 𝑍𝐵𝐶𝑍𝐶𝐴

𝑍𝐴𝐵𝑍𝐵𝐶 + 𝑍𝐴𝐵𝑍𝐶𝐴 + 𝑍𝐵𝐶𝑍𝐶𝐴

= −
𝑌𝐵𝐶 + 𝒂 ∙ 𝑌𝐶𝐴 + 𝒂2 ∙ 𝑌𝐴𝐵

𝑌𝐴𝐵 + 𝑌𝐵𝐶 + 𝑌𝐶𝐴

. 

Additional losses of power for the scheme presented in Figure 1 are in 

proportion to the squared modulus of the current asymmetry factor with negative 

sequence (Troitsky, 2001): 

                                 ∆𝑃∗ = |𝐾̇2|
2

= |−
𝑌𝐵𝐶 + 𝒂 ∙ 𝑌𝐶𝐴 + 𝒂2 ∙ 𝑌𝐴𝐵

𝑌𝐴𝐵 + 𝑌𝐵𝐶 + 𝑌𝐶𝐴

|

2

.                       (13) 

By comparing the right-hand side of equation (13) with the similar equation 

for the Y-connection scheme with an isolated neutral point, one can conclude that 

phase conductance is used hear instead of phase resistance. 

The following designations are introduced: 

𝜀 = 𝑌𝐵𝐶
2 + 𝑌𝐶𝐴

2 + 𝑌𝐴𝐵
2 − 𝐺𝐵𝐶𝐺𝐶𝐴 − 𝐺𝐵𝐶𝐺𝐴𝐵 − 𝐺𝐶𝐴𝐺𝐴𝐵 − 𝐵𝐵𝐶𝐵𝐶𝐴 − 𝐵𝐵𝐶 𝐵𝐴𝐵 − 𝐵𝐶𝐴𝐵𝐴𝐵 ; 

𝜖 = √3𝐺𝐵𝐶(𝐵𝐶𝐴 − 𝐵𝐴𝐵) + √3𝐺𝐶𝐴(𝐵𝐴𝐵 − 𝐵𝐵𝐶) + √3𝐺𝐴𝐵(𝐵𝐵𝐶 − 𝐵𝐶𝐴); 
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𝜁 = 𝑌𝐵𝐶
2 + 𝑌𝐶𝐴

2 + 𝑌𝐴𝐵
2 + 2(𝐺𝐵𝐶𝐺𝐶𝐴 + 𝐵𝐵𝐶𝐵𝐶𝐴) + 2(𝐺𝐵𝐶𝐺𝐴𝐵 + 𝐵𝐵𝐶𝐵𝐴𝐵) + 

+2(𝐺𝐶𝐴𝐺𝐴𝐵 + 𝐵𝐶𝐴𝐵𝐴𝐵). 

With the above designations, the equation for the estimation of additional 

losses of active power in arbitrary units (AU) for asymmetric active-inductive 

three-phase load with a delta-connection is a follows: 

                                                                 ∆𝑃∗ =
𝜀 + 𝜖

𝜁
.                                                  (14) 

In the special case when the inductive resistances of phases are equal, but 

active resistances differ, i.e. 𝑋𝐴𝐵 = 𝑋𝐵𝐶 = 𝑋𝐶𝐴 = 𝑋; 𝑅𝐴𝐵 ≠ 𝑅𝐵𝐶 ≠ 𝑅𝐶𝐴, according to 

equation (14), 

           ∆𝑃1
∗ =

𝐺𝐵𝐶
2 + 𝐺𝐶𝐴

2 + 𝐺𝐴𝐵
2 − 𝐺𝐵𝐶𝐺𝐶𝐴 − 𝐺𝐵𝐶𝐺𝐴𝐵 − 𝐺𝐶𝐴𝐺𝐴𝐵

𝐺𝐵𝐶
2 + 𝐺𝐶𝐴

2 + 𝐺𝐴𝐵
2 + 2𝐺𝐵𝐶𝐺𝐶𝐴 + 2𝐺𝐵𝐶𝐺𝐴𝐵 + 2𝐺𝐶𝐴𝐺𝐴𝐵 + 9𝐵2

.   (15) 

If additionally, the reactive load in phases is compensated (Х = 0), then 

∆𝑃2
∗ =

𝐺𝐵𝐶
2 + 𝐺𝐶𝐴

2 + 𝐺𝐴𝐵
2 − 𝐺𝐵𝐶𝐺𝐶𝐴 − 𝐺𝐵𝐶𝐺𝐴𝐵 − 𝐺𝐶𝐴𝐺𝐴𝐵

(𝐺𝐵𝐶+𝐺𝐶𝐴 + 𝐺𝐴𝐵)2
; 

                  ∆𝑃2
∗ =

1
𝑅𝐵𝐶

2 +
1

𝑅𝐶𝐴
2 +

1
𝑅𝐴𝐵

2 −
1

𝑅𝐵𝐶𝑅𝐶𝐴
−

1
𝑅𝐵𝐶𝑅𝐴𝐵

−
1

𝑅𝐶𝐴𝑅𝐴𝐵

1
𝑅𝐵𝐶

2 +
1

𝑅𝐶𝐴
2 +

1
𝑅𝐴𝐵

2 +
2

𝑅𝐵𝐶𝑅𝐶𝐴
+

2
𝑅𝐵𝐶𝑅𝐴𝐵

+
2

𝑅𝐶𝐴𝑅𝐴𝐵

.              (16) 

By taking 𝑅𝐵𝐶 = 1, 𝑟𝑐𝑎 =
𝑅𝐵𝐶

𝑅𝐶𝐴
, 𝑟𝑎𝑏 =

𝑅𝐵𝐶

𝑅𝐴𝐵
, from equation (16), 

                                  ∆𝑃2
∗ =

1 +
1

𝑟𝑐𝑎
2 +

1
𝑟𝑎𝑏

2 −
1

𝑟𝑐𝑎
−

1
𝑟𝑎𝑏

−
1

𝑟𝑐𝑎𝑟𝑎𝑏

(1 +
1

𝑟𝑐𝑎
+

1
𝑟𝑎𝑏

)
2 .                            (17) 

Figure 2 shows the diagram of function (17) in rab and rcа variation interval 

from 0.01 to 1, in increments of 0.01. 

During the operation of networks, failures of one phase or phase-to-ground 

short circuits can occur. 

For an asymmetric active-inductive three-phase load with a delta-connection 

and the abovementioned limitations, if the reactive load in phases is compensated 

(Х = 0) and 𝑅𝐵𝐶 = 𝑅𝐶𝐴 = 1, а 𝑅𝐴𝐵 = ∞, excess loads will be 

∆𝑃2
∗ =

1
1

+
1
1

+
1
∞

−
1
1

−
1
∞

−
1
∞

(
1
1

+
1
1

+
1
∞

)
2 =

1

4
= 0.25. 

In addition to 𝑋𝐴𝐵 = 𝑋𝐵𝐶 = 𝑋𝐶𝐴 = 𝑋, consider that the active load in only one 

phase differs from the load of other phases 𝑅𝐴𝐵 ≠ 𝑅𝐵𝐶 = 𝑅𝐶𝐴, then, according to 

formulas (15) and (16), 

∆𝑃1
∗ =

(
1

𝑅𝐵𝐶
−

1
𝑅𝐴𝐵

)
2

(
1

𝑅𝐵𝐶
+

2
𝑅𝐴𝐵

)
2

+
9

𝑋2

=
(𝐺𝐵𝐶 − 𝐺𝐴𝐵)2

(𝐺𝐵𝐶 + 2𝐺𝐴𝐵)2 + 9𝐵2
;  𝑃2

∗ =
(

1
𝑅𝐵𝐶

−
1

𝑅𝐴𝐵
)

2

(
1

𝑅𝐵𝐶
+

2
𝑅𝐴𝐵

)
2, 

and according to formula (17), 
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                                                               ∆𝑃2
∗ =

(1 −
1

𝑟𝑎𝑏
)

2

(1 +
2

𝑟𝑎𝑏
)

2 .                                          (18) 

 
Figure 2. Function (17) diagram. 

Assume 𝑅𝐵𝐶 = 𝑛 ∙ 𝑅𝐴𝐵, then 

                                                               ∆𝑃2
∗ =

(
1
𝑛

− 1)
2

(
1
𝑛

+ 2)
2 .                                             (19) 

With equal active (𝑅𝐴𝐵 = 𝑅𝐵𝐶 = 𝑅𝐶𝐴 = 𝑅) and unequal inductive (𝑋𝐴𝐵 ≠ 𝑋𝐵𝐶 ≠
𝑋𝐶𝐴) phase resistances, formula (14) is as follows 

    ∆𝑃1
∗ =

𝐵𝐵𝐶
2 + 𝐵𝐶𝐴

2 + 𝐵𝐴𝐵
2 − 𝐵𝐵𝐶𝐵𝐶𝐴 − 𝐵𝐵𝐶𝐵𝐴𝐵 − 𝐵𝐶𝐴𝐵𝐴𝐵

𝐵𝐵𝐶
2 + 𝐵𝐶𝐴

2 + 𝐵𝐴𝐵
2 + 2𝐵𝐵𝐶𝐵𝐶𝐴 + 2𝐵𝐵𝐶 𝐵𝐴𝐵 + 2𝐵𝐶𝐴𝐵𝐴𝐵 + 9𝐺2

.         (20) 

If resistances in all phases are equal, then ∆𝑃1
∗ = 0. 

When the system of symmetric electromotive forces is connected only to an 

inductive load, then a formula for ∆𝑃2
∗ is obtained, which is similar to formula (16), 

the only difference being that it uses inductive phase conductance instead of active 

ones: 

∆𝑃2
∗ =

𝐵𝐵𝐶
2 + 𝐵𝐶𝐴

2 + 𝐵𝐴𝐵
2 − 𝐵𝐵𝐶𝐵𝐶𝐴 − 𝐵𝐵𝐶𝐵𝐴𝐵 − 𝐵𝐶𝐴𝐵𝐴𝐵

(𝐵𝐵𝐶+𝐵𝐶𝐴 + 𝐵𝐴𝐵)2
; 
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                     ∆𝑃2
∗ =

1
𝑋𝐵𝐶

2 +
1

𝑋𝐶𝐴
2 +

1
𝑋𝐴𝐵

2 −
1

𝑋𝐵𝐶𝑋𝐶𝐴
−

1
𝑋𝐵𝐶𝑋𝐴𝐵

−
1

𝑋𝐶𝐴𝑋𝐴𝐵

1
𝑋𝐵𝐶

2 +
1

𝑋𝐶𝐴
2 +

1
𝑋𝐴𝐵

2 +
2

𝑋𝐵𝐶𝑋𝐶𝐴
+

2
𝑋𝐵𝐶𝑋𝐴𝐵

+
2

𝑋𝐶𝐴𝑋𝐴𝐵

.             (21) 

Assume 𝑋𝐵𝐶 = 1, 𝑥𝑐𝑎 =
𝑋𝐵𝐶

𝑋𝐶𝐴
, 𝑥𝑎𝑏 =

𝑋𝐵𝐶

𝑋𝐴𝐵
. In this case, formula (21) is identical to 

formula (17), i.e. 

                                ∆𝑃2
∗ =

1 +
1

𝑥𝑐𝑎
2 +

1
𝑥𝑎𝑏

2 −
1

𝑥𝑐𝑎
−

1
𝑥𝑎𝑏

−
1

𝑥𝑐𝑎𝑥𝑎𝑏

(1 +
1

𝑥𝑐𝑎
+

1
𝑥𝑎𝑏

)
2 .                         (22) 

When the reactive load in only one phase, for instance, BC, differs from the 

reactive loads of two other phases, then, according to formulas (20) and (21), 

∆𝑃1
∗ =

(
1

𝑋𝐵𝐶
−

1
𝑋𝐴𝐵

)
2

(
1

𝑋𝐵𝐶
+

2
𝑋𝐴𝐵

)
2

+
9

𝑅2

=
(𝐵𝐵𝐶 − 𝐵𝐴𝐵)2

(𝐵𝐵𝐶 + 2𝐵𝐴𝐵)2 + 9𝐺2
;  ∆𝑃2

∗ =
(

1
𝑋𝐵𝐶

−
1

𝑋𝐴𝐵
)

2

(
1

𝑋𝐵𝐶
+

2
𝑋𝐴𝐵

)
2,  

and according to formula (22), 

                                                            ∆𝑃2
∗ =

(1 −
1

𝑥𝑎𝑏
)

2

(1 +
2

𝑥𝑎𝑏
)

2 .                                           (23) 

If 𝑋𝐵𝐶 = 𝑛 ∙ 𝑋𝐴𝐵, then equation (19) is obtained. The diagram of function (12) 

is similar to that of function (17), the only difference being that the X-axis shows 

inductive resistances. 

If the load is present only in one phase, for instance, BC, i.e. 𝑅𝐵𝐶 + 𝑗𝑋𝐵𝐶 ≠ 0,
𝑍𝐴𝐵 = 0, 𝑍𝐶𝐴 = 0,, then (see formula (14)) 

∆𝑃∗ =
𝑌𝐵𝐶

2

𝑌𝐵𝐶
2 = 1. 

This special case confirms the “validity” of the general formula for additional 

losses from negative phase-sequence currents. 

The full power of the asymmetric load under consideration equals the sum of 

phase powers: 

                           𝑆̇ = 𝑆̇𝐴 + 𝑆̇𝐵 + 𝑆̇𝐶 = |𝐼𝐴̇|
2

∙ 𝑍𝐴 + |𝐼𝐵̇|
2

∙ 𝑍𝐵 + |𝐼𝐶̇|
2

∙ 𝑍𝐶 .            (24) 

The following designations are introduced: 

𝑙 = 𝑍𝐴𝐵
2 + 𝑍𝐶𝐴

2 + 𝑅𝐴𝐵𝑅𝐶𝐴 + 𝑋𝐴𝐵𝑋𝐶𝐴 + √3(𝑅𝐶𝐴𝑋𝐴𝐵 − 𝑅𝐴𝐵𝑋𝐶𝐴); 

𝑚 = 𝑍𝐴𝐵
2 + 𝑍𝐵𝐶

2 + 𝑅𝐴𝐵𝑅𝐵𝐶 + 𝑋𝐴𝐵𝑋𝐵𝐶 + √3(𝑅𝐴𝐵𝑋𝐵𝐶 − 𝑅𝐵𝐶𝑋𝐴𝐵); 

𝑡 = 𝑍𝐵𝐶
2 + 𝑍𝐶𝐴

2 + 𝑅𝐵𝐶𝑅𝐶𝐴 + 𝑋𝐵𝐶𝑋𝐶𝐴 + √3(𝑅𝐵𝐶𝑋𝐶𝐴 − 𝑅𝐶𝐴𝑋𝐵𝐶); 

𝜈2 = 𝑍𝐴𝐵
2 + 𝑍𝐵𝐶

2 + 𝑍𝐶𝐴
2 + 2𝑅𝐴𝐵𝑅𝐵𝐶 + 2𝑅𝐴𝐵𝑅𝐶𝐴 + 2𝑅𝐵𝐶𝑅𝐶𝐴 + 2𝑋𝐴𝐵𝑋𝐵𝐶 + 2𝑋𝐴𝐵𝑋𝐶𝐴 + 

+2𝑋𝐵𝐶𝑋𝐶𝐴; 

𝛼2 = 𝑅𝐴𝐵
2 𝑅𝐶𝐴 + 𝑅𝐴𝐵𝑅𝐶𝐴

2 + 𝑅𝐴𝐵𝑋𝐶𝐴
2 + 𝑅𝐶𝐴𝑋𝐴𝐵

2 − 𝑋𝐴𝐵𝑋𝐶𝐴(𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴) + 

+𝑅𝐴𝐵𝑅𝐵𝐶𝑅𝐶𝐴 + +𝑋𝐴𝐵𝑋𝐶𝐴(𝑅𝐴𝐵 + 𝑅𝐶𝐴) + 𝑅𝐴𝐵𝑋𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐶𝐴𝑋𝐴𝐵𝑋𝐵𝐶 ; 

𝛽2 = 𝑋𝐴𝐵
2 𝑋𝐶𝐴 + 𝑋𝐴𝐵𝑋𝐶𝐴

2 + 𝑅𝐴𝐵
2 𝑋𝐶𝐴 + 𝑅𝐶𝐴

2 𝑋𝐴𝐵 − 𝑅𝐴𝐵𝑅𝐶𝐴(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴) + 

+𝑋𝐴𝐵𝑋𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐴𝐵𝑅𝐶𝐴(𝑋𝐴𝐵 + 𝑋𝐶𝐴) + 𝑅𝐴𝐵𝑅𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐵𝐶𝑅𝐶𝐴𝑋𝐴𝐵; 
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𝛾2 = 𝑅𝐴𝐵
2 𝑅𝐵𝐶 + 𝑅𝐴𝐵𝑅𝐵𝐶

2 + 𝑅𝐴𝐵𝑋𝐵𝐶
2 + 𝑅𝐵𝐶𝑋𝐴𝐵

2 − 𝑋𝐴𝐵𝑋𝐵𝐶(𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴) + 

+𝑅𝐴𝐵𝑅𝐵𝐶𝑅𝐶𝐴 + 𝑋𝐴𝐵𝑋𝐵𝐶(𝑅𝐴𝐵 + 𝑅𝐵𝐶) + 𝑅𝐴𝐵𝑋𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐵𝐶𝑋𝐴𝐵𝑋𝐶𝐴; 

𝛿2 = 𝑋𝐴𝐵
2 𝑋𝐵𝐶 + 𝑋𝐴𝐵𝑋𝐵𝐶

2 + 𝑅𝐴𝐵
2 𝑋𝐵𝐶 + 𝑅𝐵𝐶

2 𝑋𝐴𝐵 − 𝑅𝐴𝐵𝑅𝐵𝐶(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴) + 

+𝑋𝐴𝐵𝑋𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐴𝐵𝑅𝐵𝐶(𝑋𝐴𝐵 + 𝑋𝐵𝐶) + 𝑅𝐴𝐵𝑅𝐶𝐴𝑋𝐵𝐶 + 𝑅𝐵𝐶𝑅𝐶𝐴𝑋𝐴𝐵; 

𝜆2 = 𝑅𝐵𝐶
2 𝑅𝐶𝐴 + 𝑅𝐵𝐶𝑅𝐶𝐴

2 + 𝑅𝐶𝐴𝑋𝐵𝐶
2 + 𝑅𝐵𝐶𝑋𝐶𝐴

2 − 𝑋𝐵𝐶𝑋𝐶𝐴(𝑅𝐴𝐵 + 𝑅𝐵𝐶 + 𝑅𝐶𝐴) + 

+𝑅𝐴𝐵𝑅𝐵𝐶𝑅𝐶𝐴 + 𝑋𝐵𝐶𝑋𝐶𝐴(𝑅𝐵𝐶 + 𝑅𝐶𝐴) + 𝑅𝐶𝐴𝑋𝐴𝐵𝑋𝐵𝐶 + 𝑅𝐵𝐶𝑋𝐴𝐵𝑋𝐶𝐴; 

𝜇2 = 𝑋𝐵𝐶
2 𝑋𝐶𝐴 + 𝑋𝐵𝐶𝑋𝐶𝐴

2 + 𝑅𝐶𝐴
2 𝑋𝐵𝐶 + 𝑅𝐵𝐶

2 𝑋𝐶𝐴 − 𝑅𝐵𝐶𝑅𝐶𝐴(𝑋𝐴𝐵 + 𝑋𝐵𝐶 + 𝑋𝐶𝐴) + 

+𝑋𝐴𝐵𝑋𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐵𝐶𝑅𝐶𝐴(𝑋𝐵𝐶 + 𝑋𝐶𝐴) + 𝑅𝐴𝐵𝑅𝐵𝐶𝑋𝐶𝐴 + 𝑅𝐴𝐵𝑅𝐶𝐴𝑋𝐵𝐶 . 

By using the complex values of phase currents from equations (10) – (12) and 

the above designations, the squares of their moduli can be determined: 

                                                                  |𝐼𝐴̇|
2

=
3𝑈2 ∙ 𝑙

𝑍𝐴𝐵
2  𝑍𝐶𝐴

2 ;                                           (25) 

                                                                  |𝐼𝐵̇|
2

=
3𝑈2 ∙ 𝑚

𝑍𝐴𝐵
2  𝑍𝐵𝐶

2 ;                                           (26) 

                                                                   |𝐼𝐶̇|
2

=
3𝑈2 ∙ 𝑡

𝑍𝐶𝐴
2  𝑍𝐵𝐶

2 .                                          (27) 

The full resistances of phases from equations (1) – (3), with regard to the 

introduced designations, are presented in the form of a real and imaginary part: 

                                                  𝑍𝐴 = 𝑅𝑒𝑍𝐴 + 𝑗𝐼𝑚𝑍𝐴 =
𝛼 + 𝑗𝛽

𝜈
;                              (28) 

                                                  𝑍𝐵 = 𝑅𝑒𝑍𝐵 + 𝑗𝐼𝑚𝑍𝐵 =
𝛾 + 𝑗𝛿

𝜈
;                               (29) 

                                                  𝑍𝐶 = 𝑅𝑒𝑍𝐶 + 𝑗𝐼𝑚𝑍𝐶 =
𝜆 + 𝑗𝜇

𝜈
.                                (30) 

According to equation (24), with regard to equations (25) – (30), the full power 

of the asymmetric load is 

𝑆̇ =
3𝑈2

𝑍𝐴𝐵
2  𝑍𝐵𝐶

2 𝑍𝐶𝐴
2 ∙ 𝜈2

(𝑍𝐵𝐶
2 ∙ 𝑙(𝛼2 + 𝑗𝛽2) + 𝑍𝐶𝐴

2 ∙ 𝑚(𝛾2 + 𝑗𝛿2) +  

                                                              +𝑍𝐴𝐵
2 ∙ 𝑡(𝜆2 + 𝑗𝜇2)),                                       (31) 

while its orthogonal components – active and reactive powers, respectively, 

are 

             𝑃 =
3𝑈2

𝑍𝐴𝐵
2  𝑍𝐵𝐶

2 𝑍𝐶𝐴
2 ∙ 𝜈2

∙ (𝑍𝐵𝐶
2 ∙ 𝑙 ∙ 𝛼2 + 𝑍𝐶𝐴

2 ∙ 𝑚 ∙ 𝛾2 + 𝑍𝐴𝐵
2 ∙ 𝑡 ∙ 𝜆2);        (32) 

             𝑄 =
3𝑈2

𝑍𝐴𝐵
2  𝑍𝐵𝐶

2 𝑍𝐶𝐴
2 ∙ 𝜈2

∙ (𝑍𝐵𝐶
2 ∙ 𝑙 ∙ 𝛽2 + 𝑍𝐶𝐴

2 ∙ 𝑚 ∙ 𝛿2 + 𝑍𝐴𝐵
2 ∙ 𝑡 ∙ 𝜇2).        (33) 

Equations (32) and (33) are used to obtain the expression of the reactive 

power factor for the special case of asymmetric active-inductive three-phase load: 

                                tan 𝜑 =
𝑍𝐵𝐶

2 ∙ 𝑙 ∙ 𝛽 + 𝑍𝐶𝐴
2 ∙ 𝑚 ∙ 𝛿 + 𝑍𝐴𝐵

2 ∙ 𝑡 ∙ 𝜇

𝑍𝐵𝐶
2 ∙ 𝑙 ∙ 𝛼 + 𝑍𝐶𝐴

2 ∙ 𝑚 ∙ 𝛾 + 𝑍𝐴𝐵
2 ∙ 𝑡 ∙ 𝜆

.                       (34) 

Functions (14), (31) - (34) in expanded form, expressed via their six 

arguments, are too bulky. For a specific network, it is possible to use them with 

numerical methods. Finding the global extreme points of these functions is a 

complicated task, which is why investigations were carried out for special cases 
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encountered during operation. 

The pulsed power of a three-phase asymmetric system equals the sum of the 

pulsed powers of its phases: 

                                        𝑁̇ = 𝑈̇𝐴𝐵 ∙ 𝐼𝐴̇𝐵 + 𝑈̇𝐵𝐶 ∙ 𝐼𝐵̇𝐶 + 𝑈̇𝐶𝐴 ∙ 𝐼𝐶̇𝐴 .                              (35) 

The values of phase-to-phase voltage and amperage from equations (4) - (9) 

were inserted into formula (35). After certain transformations, one obtains the 

following: 

                                𝑁̇ = 3𝑈2 ∙
𝑍𝐴𝐵𝑍𝐶𝐴 + 𝒂 ∙ 𝑍𝐴𝐵𝑍𝐵𝐶 + 𝒂2 ∙ 𝑍𝐵𝐶𝑍𝐶𝐴

𝑍𝐴𝐵𝑍𝐵𝐶𝑍𝐶𝐴

.                   (36) 

According to equation (36), N = 0 if 

𝑍𝐴𝐵𝑍𝐶𝐴 + 𝒂 ∙ 𝑍𝐴𝐵𝑍𝐵𝐶 + 𝒂2 ∙ 𝑍𝐵𝐶𝑍𝐶𝐴 = 0, 

which is equal to 𝑍𝐴𝐵 = 𝑍𝐵𝐶 = 𝑍𝐶𝐴. 

A set of experiments was conducted on the “distribution transformer – 

asymmetric load” model to confirm the discovered functional dependence for the 

estimation of additional losses of active power in a double-wound power 

transformer caused by asymmetric active-inductive load with a delta connection. 

The dependences of active power losses and errors of measurement of active 

power loss on the load factor were built based on the measurements and 

calculations. Below is the analysis of experimental data for a delta-connection load 

scheme (Figure 1). Obtained experimental dependences approximate well with 

polynomials of degree 5 (Figures 3 - 8). 

 
Figure 3. Dependence of active power loss in the transformer on the load factor: 1 – with 
asymmetric active-inductive load; 2 – with symmetric active-inductive load; 3 – dependence 
of active power loss in the transformer with asymmetric active-inductive load on the pulsed 
power of three phases. 

In the 0.5 – 1.1 interval, the difference of losses with asymmetric and 

symmetric modes remains relatively constant – 4.9% on average. 

Calculations according to the standard formula (ΔP = ΔPх + Kc · ΔPk) give 

underestimated losses rather than actual ones; the offered functional 
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dependences for the estimation of active power losses from asymmetric active-

inductive load have the smallest error (Figure 4). 

 
Figure 4. Dependence of active power loss in the transformer with asymmetric active-
inductive load on the load factor: 1 – experimental; 2 – calculated according to the standard 
formula; 3 – with regard to the asymmetric active-inductive load (the discovered functional 
dependence was used). 

 

Figure 5. Dependence of the errors of measurement of active power loss on the load factor 
with asymmetric active-inductive load: 1 – according to the standard formula; 2 – according 
to the standard formula, with regard to the discovered functional dependence. 

In the entire measurement interval from 0.5 to 1.1, the measurement error 

according to the standard formula, with regard to the discovered functional 

dependence, was negative; at that, the maximum error of -8.23% was with 0.5 load 

factor (Figure 5). The mean error with a load factor of 0.5-1.1 with the standard 

formula is 6.24%; with the offered functional dependences, it is -3.42%. 

The diagram of dependences of active power loss on pulsed power (Figures 3 

and 6, Curve 3) on a certain scale matches the diagram of the dependence of active 

power loss on the load coefficient with asymmetric active load, i.e. it is a 

characteristic of the asymmetric mode. 
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When the load factor changes in the interval of 0.5 – 1.1 (Figure 6), the 

difference of losses in symmetric and asymmetric modes is 4.2% on average. 

 

Figure 6. Dependence of active power loss in the transformer on the load factor: 1 – with 
asymmetric active load; 2 – with symmetric active load; 3 – dependence of active power loss 
in the transformer with asymmetric active load on the pulsed power of three phases. 

 
Figure 7. Dependence of active power loss in the transformer with asymmetric active load 
on the load factor: 1 – experimental; 2 – calculated according to the standard formula; 3 – 
with regard to the asymmetric active load (the discovered functional dependence was used). 

Calculations according to the standard formula give underestimated losses 

rather than actual ones; the offered functional dependences for the estimation of 

active power losses from asymmetric active load have the smallest error (Figure 

7). 
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Figure 8. Dependence of the errors of measurement of active power loss on the load factor 
with asymmetric active load: 1 – according to the standard formula; 2 – according to the 
standard formula, with regard to the discovered functional dependence. 

In the entire measurement interval from 0.5 to 1.1, the measurement error 

according to the standard formula, with regard to the discovered functional 

dependence, was negative; at that, the maximum error of -2.9% was with 0.93 load 

factor (Figure 8). The mean error with a load factor of 0.5-1.1 with the standard 

formula is -4.59%; with the offered functional dependences, it is -1.8%. 

Thus, the loss of active power, calculated according to the standard formula, 

should be corrected with regard to the discovered functional dependence. 

Discussions 

The accuracy of obtained results was confirmed through experiments and by using 

modern highly accurate measuring devices. 

Research (Zaugolnikov, Balabin & Savinkov, 2006) shows diagrams of 

relative losses, obtained experimentally after repairs and based on reference data 

for TM-250/10 and TM-400/10 transformers, as well as systematic data on the 

increase of idling losses for various types and lifetimes of transformers. During 

operation, idling losses increase significantly when compared with rated 

characteristics. By taking this factor into consideration, it was possible to specify 

their values by 15% on average for a power network facility. In some cases, they 

were two times higher. The sampling was representative: performed for 2425 

distribution transformers from 11 districts of power networks. Almost 80% of 

distribution transformers continue to operate after exceeding the standard service 

life period of 25 years. The highest relative increase in losses is found in low-power 

transformers. This can be explained by the fact that the technological errors in 

the manufacturing of winding coils for three-leg low-power transformers creates 

2-3% asymmetry of phase voltage. 

V. Tropin, A. Savenko, and O. Maleyev (2008) analyzed an adequate model of 

a 0.4 kV power network with set variable load parameters and obtained a 

practically convenient equation for the amount of power losses of one phase in 

symmetric mode, depending on the load power factor, degree of compensation for 

reactive power load, and amount of power losses in the network. 
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In the equivalent scheme under consideration, the parameters of one phase 

are substituted by parameters of one phase of a transformer combined with the 

resistance caused by the load. In order to determine the effect on the load with a 

bridging capacitor bank and, ultimately, the losses in the transformer, the 

absolute value of active power loss that was prevented by the compensation of 

reactive power is calculated according to the following equation: 

∆𝑃C = (tan φ)2 ∙ δ𝑈 ∙ (1 + δ𝑈) ∙ (2β − β2) ∙ 𝑃L, 

where     𝑃L,  tan φ are the active component and load power factor; 

δ𝑈 is the loss of power in the network phase; 

β =
𝑄C

𝑄L
 is the factor of reactive load power compensation, which equals the 

ratio of the capacitor bank power (QC) that is activated in parallel with the load 

to the reactive power of the load (QL). At β ≥ 0.6, the sensitivity to loss reduction 

is insignificant (Tropin, Savenko & Maleyev, 2008). 

The research of A. Arutyunian (2012) offers a method for determining 

additional losses in 6 (10)/0.4 kV transformers with regard to changes in high 

voltage caused by uneven distribution of loads across phases. The calculations 

that were performed for 400 and 630 kV according to this method confirmed the 

increase in losses with asymmetric load, when compared with the symmetric load. 

When using the method for estimating additional losses of active power 

(Shidlovsky & Kuznetsov, 1985), it is necessary to measure phase power at the 

high voltage winding. However, this is technically impossible when it comes to 

main lines, because measuring transformers are installed only in finished lines. 

It is also worth noting that in research (Arutyunian, 2012), the absolute value 

of additional losses in the distribution transformer caused by asymmetric loads is 

calculated according to the following equation: 

∆𝑃 = (𝑃XX + 𝑃SC 𝑈SC
2⁄ )(𝐾2𝑢

2 + 𝐾0𝑢
2 ), 

where  𝑃XX, 𝑃SC, 𝑈SC are the rated characteristics of the transformer; 

𝐾2𝑢, 𝐾0𝑢 are the values of 6(10) kV power asymmetry factor moduli with 

negative and zero phase-sequence. 

For distribution transformers with a delta-connection scheme, it is no longer 

necessary to calculate the voltage and asymmetry factor for the zero component 

of the winding; the equation for the absolute value of additional losses in 

distribution transformers caused by asymmetric loads is simpler: ∆𝑃 = (𝑃XX +
𝑃SC 𝑈SC

2⁄ ) 𝐾2𝑢
2 . 

The idea set forth in the above research is relevant for practical engineering; 

however, the algorithm of calculations is bulky. Furthermore, the authors do not 

give information about methodological errors. 

Using databases based on measurements with portable devices and repeated 

measurements on their basis are bound to cause errors in measurements, which 

have to be assessed by programming specialists. 

Thus, the conclusion is that further research of asymmetric modes of power 

transformers is required. 
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Conclusion 

Obtained experimental data from measurements in the “distribution transformer 

– asymmetric load” model confirmed the need for correcting the standard formula 

for power loss in the transformer. 

This research offers a functional dependence for the estimation of additional 

losses of active power in a double-wound power transformer caused by asymmetric 

active-inductive load with a delta connection. 

The error of the measurement of active power loss in the transformer when 

using the offered functional dependence for a delta-connection scheme ranges 

from 0 to -5%. 

It is expedient to take into consideration the idling and short circuit losses in 

transformers with regard to additional losses caused by asymmetric loads both 

when calculating process losses and when substantiating the economic effect of 

transformation replacement. 

The practical value of the offered functional dependence for the estimation of 

additional losses is that it enables estimating the losses of active power in 

transformers due to asymmetry by measured voltage, amperage, and active power 

for each phase. This makes it universal: there is no need to build equivalent 

circuits and carry out calculations according to the symmetrical components 

method. 

The developed functional dependence, which is based on the “distribution 

transformer – asymmetric active-inductive load” model, can be used by 

organizations that design, replace, and modernize transformer substations in city 

and industrial distribution networks of power systems to increase their energy 

efficiency. 
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