
	
	
	
	
	
	
	

	

	

	
 

Introduction 

Examples are an integral part of mathematical thinking, learning and teaching, 
particularly with respect to conceptualization, generalization, abstraction, 
argumentation, and analogical thinking. By examples we mean a particular case 
of a larger class, from which one can reason and generalize. In our treatment of 
examples, we also include non-examples, that are associated with 
conceptualization and definitions, and serve to highlight critical features of a 
concept; as well as counter-examples that are associated with claims and their 
refutations. Both non-examples and counter-examples can serve to sharpen 
distinctions and deepen understanding of mathematical entities. It should be 
noted that examples may differ in their nature and purpose. An example of a 
concept (e.g., a rational number) is quite different in nature from an example of 
how to carry out a procedure (e.g., finding the least common denominator). 

KEYWORDS ARTICLE HISTORY 
Example, non-example, geometry class  Received 22 July 2016 

Revised 30 October 2016  
Accepted 12 November 2016 

 

Students’Awareness on Example and Non-Example 
Learning in Geometry Class  

Wanda N. Yanuartoa  

aThe University of Muhammadiyah Purwokerto, INDONESIA  
 

ABSTRACT 
The main goal of the study reported in our paper is to characterize teachers’ choice of 

examples in and for the mathematics classroom. Our data is based on 54 lesson 
observations of five different teachers. Altogether 15 groups of students were observed, 

three seventh grade, six eighth grade, and six ninth grade classes. The classes varied 
according to their level—seven classes of top level students and six classes of mixed—

average and low level students. In addition, pre and post lesson interviews with the 
teachers were conducted,and their lesson plans were examined. Data analysis was done in 

an iterative way, and the categories we explored emerged accordingly. We distinguish 
between pre-planned and spontaneous examples, and examine their manifestations, as 

well as the different kinds of underlying considerations teachers employ in making their 
choices, and the kinds of knowledge they need to draw on. We conclude with a dynamic 

framework accounting for teachers’ choices and generation of examples in geometry class 
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Moreover, the purpose for presenting an example may vary. Thus, a teacher may 
illustrate how to find a common denominator of two proper fractions for adding 
fractions, or s/he may illustrate it as a basis for generalizing the procedure to 
algebraic fractions in order to be able to solve more advanced equations  
Studies on how people learn from worked-out examples point to the contribution 
of multiple examples, with varying formats (Atkinson, Derry, Renkl and Wortham 
2000). Such examples support the appreciation of deep structures instead of 
excessive attention to surface features. Studies dealing with concept formation 
highlight the role of carefully selected and sequenced examples and non-examples 
in supporting the distinction between critical and non-critical features and the 
construction of rich concept images and example spaces (e.g., Vinner 1983; 
Zaslavsky and Peled 1996; Petty and Jansson 1987; Watson and Mason 2005). In 
spite of the critical roles examples play in learning and teaching mathematics, 
there are only a small number of studies focusing on teachers’ choice and 
treatment of examples. Rowland, Thwaites and Huckstep (2003) identify three 
types of novice elementary teachers’ poor choice of examples: choices of instances 
that obscure the role of variables (for example, in a coordinate system using points 
with the same values for both coordinates); choices of numbers to illustrate a 
certain arithmetic procedure when another procedure would be more sensible to 
perform for the selected numbers (for example, using 49×4 to illustrate 
conventional multiplication); and randomly generated examples when careful 
choices should be made. These findings concur with the concerns raised by Ball, 
Bass, Sleep, and Thames (2005) regarding the knowledge base teachers need in 
order to carefully select appropriate examples that are useful “for highlighting 
salient mathematical issues” (p. 3).  bviously, the choice of examples in secondary 
mathematics is far more complex and involves a wide range of considerations 
(Zaslavsky and Lavie 2005; Zodik and Zaslavsky 2007; Zaslavsky and Zodik 2007). 
This paper provides a close look at the underlying considerations that experienced 
secondary school teachers employ. 
The specific choice of examples may facilitate or impede students’ learning, thus 
it presents the teacher with a challenge, entailing many considerations that 
should be weighed. Yet, numerous mathematics teacher education programs do 
not explicitly address this issue and do not systematically prepare prospective 
teachers to deal with the choice and use of instructional examples1 in an educated 
way. Thus, we suggest that the skills required for effective treatment of examples 
are crafted mostly through one’s own teaching experience (Leinhardt 1990; 
Kennedy 2002). It follows, that there is much to learn in this area from 
experienced teachers. Our study proposes to make a step towards learning from 
experienced teachers—their strengths and difficulties associated with 
exemplification in the mathematics classroom. 

The Method of Research 

In our research, we had two preliminary stages in analyzing teachers’ choices of 
examples, corresponding to two dimensions: Conditions for an example (that is, 
whether a particular object/case qualified as an example according to our criteria), 
and mathematical correctness (that is, whether the example satisfied what it was 
intended/supposed to from a mathematical perspective). This enabled us to focus 
on the collection of mathematically correct examples for further analysis and 
characterization according to other categories that emerged as we repeatedly 
looked into the data, in the spirit of the grounded theory approach (Strauss and 
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Corbin 1998). We report on these categories in the findings section. One of the 
insights we gained as we examined the data relates to the unit of analysis. It 
turned out that it made a lot of sense to analyze the underlying considerations 
that led to a particular example, rather than to try to characterize an example in 
itself. These considerations reflected not only the mathematics, but also the 
pedagogy that was employed, including the teacher’s goals, available tools, 
interpretation of the situation, etc.  
In order to provide a stronger and unbiased picture of the data, and to better 
understand the phenomena that were examined, we used some simple statistics 
following Miles and Huberman (1987) and Wiersma (2000). There is no claim 
about generalizing beyond the scope of the study. However, given the limited 
number of studies that examined teachers’ use of examples in and for their 
classrooms, this analysis may help form some hypotheses for future research. 
For internal consistency we followed Wiersma (2000), who claims that “If two or 
more researchers independently analyze the same data and arrive at similar 
conclusions, this is strong evidence for internal consistency” (p. 211). Thus, for 
each stage that required some sort of coding according to a classification system 
that we applied, we had two researchers code independently at least 15% of the 
relevant data. In all cases we got at least 90% agreement, with no discussions 
between these researchers. In addition, in cases of that were vague, the validity 
was enhanced by stimulated recall interviews with some of the teachers, in which 
they were asked to reason about their choice of examples and react to the 
researchers’ interpretations. 
Result and Findings 

Examle and Non Example Learning Process 
Provide guided practice with whole class or small group or partners  
• Put a blank Frayer Model transparency on the overhead/IWB and distribute 

blank Frayer Model sheets to partners.  
• Write the key content-specific word in the middle of the graphic organiser 

and ask students to do the same.  
• Tell students that they will complete the graphic organiser together as they 

read the text. Before reading the text, provide clear “student-friendly” 
definitions of the key content-specific word and any other key vocabulary and 
have students quickly preview the selection, examining illustrations, 
headings, subheadings and diagrams. Previewing should take no longer than 
1–2 minutes. Ask students what they think they will learn in the selection. 
Allow no more than 3–5 minutes for this discussion.  

• Have students read the first part of the text with their partners.  
• After students have read the first section of the text, work as a class to 

complete any part of the Frayer Model graphic organiser that can be finished 
based on that section. Ask students to tell why the terms they identify are 
examples and non-examples of the selected concept/word.  

• Read the next section of text and continue to add to the graphic organiser.  
Provide independent practice  
When students are proficient with the process, have them continue to work in 
partners, reading and adding to their graphic organisers. Monitor student work 
carefully and provide scaffolding and feedback as needed.  
Generalisation  
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Discuss with students how might writing down examples and non-examples of 
words and using the graphic organiser help you learning the meanings of words 
in this and other KLAs. 
Example and Non Example of Geometry Concepts 

Often enough, elementary school children will identify these figures  as 
"triangles" even though they can say that triangles have three sides. Why? Partly 
because children (and, for the most part, adults, too) learn words more from 
context than from definitions and explanations. Especially when we have no other 
word for this shape, we choose a best-fit category. These shapes look more like the 
concept image of triangles that children build up from examples 

like  than they look like any other shape for which the child has 
a name, so that is the category the child lumps them into. 

By contrast, it is common enough for children not to recognize as a triangle, 
despite its fit with the definition, because it is visually so different from the 

common examples . Similarly, people often enough refer to as 

an "upside down triangle" (even though nothing about the definition of a 
triangle specifies what way it must sit) because the common image of a triangle 
sits on its base. 
Examples help people "get" an idea in the first place, or extend or clarify an idea. 
But examples, as you have seen, can also create misunderstanding. This article 
shows ways in which examples are essential, risks of poorly chosen examples, 
ways to make the best of examples, and some limitations of examples. 
Creating clear examples in geometry class 
Clear examples illustrate the essential elements of an idea without distracting 

the learner with irrelevant patterns. The picture  limits the 
learner's image-of-triangle with three irrelevant patterns: all figures sit 
comfortably on a horizontal side at their bottom (triangles don't have to sit that 
way); all figures have symmetry or right angles or both (triangles are more 
varied); and all figures can be packaged in a box that is roughly as long as it is 

wide (triangles can be "extreme"). Including and helps the learner see the 
essential idea (three sides) and not inadvertantly include irrelevant ideas 
(orientation on the page, symmetry, or extreme skinniness). 
Although those extra examples can correct wrong first impressions after they've 
occurred, presenting those examples first helps avoid students jumping to wrong 
conclusions. It takes more work to correct misunderstandings than to avoid them. 
Order matters. The first examples are especially influential when you are 
teaching without talking ("silent teaching"), and the examples you use are your 
only way of communicating. Those first three or four examples must contain 
enough information to help students not jump to wrong conclusions. 
Non-examples in geometry class 

Even with  as examples, a learner does not have enough 
information to know what is not a triangle. Selected non-examples, 

like , help focus attention on details that might otherwise 
be missed. The "three sides" must be straight, not curved; there can be no extra 
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frills or bows or hanging-over bits of line (line segments must intersect only at 
their endpoints); the "points" can't be "cut off" (the shape is bounded by only three 
segments); the figure must be closed (all endpoints must be joined). 
These non-examples were selected to be "near-misses," very close to the image 
people have of triangles. When children give verbal descriptions of triangles, they 
often mention "three lines" or "three corners," but omit the details that eliminate 

even fairly distant misses, like , which may sometimes be useful non-
examples to help children improve their verbal descriptions. 

Discussion 

In everyday conversation, definitions are of little real help. Try to think, for 
example, how you would define "chair" to include all the different kinds of objects, 
wooden, plastic, stuffed, formal, etc., that are "chairs," and how to exclude 
superficially similar objects that are not chairs. Or think how to define "cat." 
Alternatively, imagine that you did not know these words; then look in a 
dictionary to see how much you must already know in order to understand the 
definition! Finally, think how little that definition really contains of the "cat" in 
your head. Definitions are not easy routes to meaning, even for adults, until one 
already has a fair idea what the word means from use in context—that is, from 
examples! It's not uncommon for adults to notice, when asked (perhaps by a child) 
the meaning of a word that they've long understood and used, that they don't 
really know, and have to look it up. For casual use, context and experience are 
enough to give us "the general idea" of a word, and make it useful even if we can 
not give a definition. 
In a way, examples are bits of context -- ways to give information other than 
"saying what the word means" -- allowing children to acquire vocabulary in school 
a bit more the way they do out of school, at which they are so adept. Examples 
allow teachers to use a word communicatively until students are able to use it as 
well. Teachers can use the word rather than explaining it because the example 
provides the context and carries the meaning. Only then, when the students 
already have a rough meaning from communicative use in context can one 
effectively clarify the meaning formally with other words, through discussion 
and/or definition. 
But examples are not enough. Even after a rough idea is acquired from examples, 
extreme examples, and non-examples, it is still the case that definition is needed. 
It is easiest to show why by example, using a whimsical category called 
"smanglings." Imagine developing this category inductively, through examples. 
 

 
 

 
 

Figure 1. Example in smangling concept 
 

So far, it would seem that smanglings are squares of any size or orientation. When 
we learn that these are also smanglings, we realize that the category is 
broader, and might decide that smanglings are probably four-sided shapes of any 

Examples: 

Each of these is a smangling:  
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kind. But even these are smanglings. So, now what do smanglings appear 
to be? 
For pedagogical purposes – maybe for any purposes other than sheer perversity – 
the order in which the examples were presented was terrible. In order for 
examples not to be misleading (as we deliberately were in this case), it is 
important that they be as varied as the category permits (so, not just squares, not 
even just four-sided figures, if in fact, more variety is permissible). As stated 
above, it is often (but not always) the case that the variation should come quite 
early, so that the first impressions are not misleading, as they were here. 

 
 
 
 
 

Figure 2. Extreme example in smangling concept 
 

It is tempting, now, to conclude that smanglings can be any closed two 
dimensional shape. But it is not logical to draw that conclusion, just as we could 
not (logically) conclude, before the circle was included, that smanglings could be 
any polygon. The correct answer to "What is a smangling?" is "We can't tell, 
because we haven't seen anything yet that isn't a smangling." 
 
 
 
 

 
Figure 3. Non-example in smangling concept 

 
Without these non-examples, how could we have guessed that color 

mattered? In fact, it would also have been illogical to make such a guess, as there 
was no evidence one way or the other. 

 
 
 

 
 
 

Figure 4. Exteme non-example in smangling concept 
At this point we do have a lot of information. Let's see how far it gets us. 
 
 
 
 
 

 
 
 
 

Figure 5. Testing the concept in smangling 

Extreme examples: 

We cheated. This, too, is a smangling:  
	

Non-examples: 

So, here are a few non-smanglings:  

 	

Extreme non-examples: 

Here is another non-smangling:  Apparently the border must be visible 

 	

 Testing the concept: 

Which of these is a smangling?  
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Conclusion 
We can be fairly sure that a and d are smanglings; we can be equally sure that g 
is not. But what about the rest? Case c is the right color and has a black border, 
but we don't know whether decorations on the inside are allowed. No non-example 
rules them out, but no example shows them. This exercise (because it is purely 
inductive, without definitions) is more like science than mathematics: we can 
hypothesize pending further testing, but we cannot decide. It seems likely that 
case e should be ruled out as it has no black border, but case f is harder to rule 
out. It has the black line, and though it is not the right color on the "inside," it 
can't be because it doesn't have an inside! We have no evidence about this case. It 
certainly doesn't fit the examples, but it isn't ruled out by the non-examples, 
either. We have the same problem with case b. It is the right color on the inside, 
and the border is visible, but we've learned that color matters. Maybe the color of 
the border matters, too, and we simply don't know. 
In fact, no matter how numerous and varied our examples and non-examples are, 
unless they are exhaustive (i.e., the set of smanglings is finite, and we have 
encountered every one of them as an example), examples alone are insufficient to 
allow us to decide all cases, because they provide no way of knowing whether or 
not some perverse exception lurks among the cases that have not been seen. But 
the examples -- and especially the task of trying to choose among the unknowns 
and then defend that choice -- make it much easier to understand a definition now 
than it might have been at the start. One advantage for students of encountering 
this meta-mathematical idea is that it helps motivate what otherwise often seems 
like bizarre over-particularity in the wording of definitions. There is a lot we must 
say to define a smangling in a way that allows us to decide, definitively and 
without question, which of the unknowns is and isn't a smangling. 
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Appendices 

Appendix 1. Examples using the Frayer Model 

Definition (in own words) 
• a clause which expresses a complete 

thought 

Characteristics 
• has a subject and verb 
• can stand alone as a sentence 

INDEPENDENT CLAUSE 
Examples (from own life) 
• She laughed 
• I love to read 

Non-Examples 
• Left our house 
• Because she was late 
• In the room 

 

Definition (in own words) 
• A whole number with only two different 

divisors (factors), 1 and itself 

Characteristics 
• 2 is the only even prime number 
• 0 and 1 are not prime 
• Every whole number can be written as a 

product of primes 
PRIME NUMBER 

Examples (from own life) 
• 2,3,5,7,11,13,... 

Non-Examples 
• 4,6,8,9,10,12,14 

 

 
 
Appendix 2. Frayer Model Graphic Organiser 

Definition (in own words) 
 

Characteristics 
 
 
 
 

TARGET WORD/ CONCEPT 
Examples (from own life) 

 
Non-Examples 

 
 
 
 

 

 

 


