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Introduction 

For years research on students’ understanding of algebra has focused on 

their procedural knowledge, normally defined as the command of a sequence of 

steps or actions that may help solve problems (Crooks and Alibali, 2014; Ross 

and Willson, 2012). Recent decades have brought a change in the approach to 

researching algebra teaching instruction, however, geared to conceptual 

understanding as well to determine in greater depth not only the steps followed 
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by students to solve problems, but also their understanding of the concepts 

implicit in the solution. Attendant upon this new approach has been a change in 

mathematics instruction in which curricular documents explicitly address the 

need for students to master both procedural and conceptual algebraic knowledge 

(Crooks and Alibali, 2014; Ross and Willson, 2012). 

This new outlook stems from the realisation of the importance of 

conceptual knowledge (Crooks and Alibali, 2014; Rittle-Johnson and Schneider, 

2015; Ross and Willson, 2012) and the shortcomings repeatedly detected in that 

regard in studies exploring students’ algebraic competence, especially around 

the use of algebraic symbols (Filloy and Rojano, 1989; Küchemann, 1981; 

Furinghetti and Paola, 1994; Booth, 1984; Filloy, Rojano and Puig, 2008). The 

persistence of errors throughout several years of algebra instruction is striking 

(Álvarez and Gómez-Chacón, 2015; Molina, Rodríguez-Domingo, Cañadas and 

Castro, 2016). 

These two circumstances informed the present study on the conceptual 

understanding of algebraic symbolism acquired by students as a result of 

mathematics instruction delivered throughout compulsory secondary education 

(abbreviated ‘ESO’ in Spanish). To narrow the field to be covered, the research 

focused on linear and quadratic equations with one unknown and systems of 

linear and quadratic equations with two unknowns. The meaning of literal 

symbols was restricted to the unknown only, for it is what last year ESO 

students are most familiar with, inasmuch as the instruction received fixes on 

such meanings.  

The task assigned, to pose problems that could be solved by using certain 

symbolic expressions, was chosen on the grounds of prior evidence (e.g. Lin, 

2004, Mestre, 2002; Sheikhzade, 2008) of the utility of problem posing for 

assessing students' mathematical skills. It was used in an earlier exploration of 

students’ conceptual knowledge of algebraic symbolism (Fernández-Millán and 

Molina, 2016) that identified the characteristics of the algebraic equations 

deployed (linear and quadratic equations with one unknown and systems of two 

equations with two unknowns in which the coefficients, independent terms and 

solutions were integers) that rendered problem-posing difficult. The meanings 

attributed to the unknown by students and the operations contained in such 

equations were also studied. This second study sought to confirm the findings of 

the earlier research with a new sample of students. It also aimed to delve 

further into last-year ESO students’ conceptual understanding of algebraic 

symbolism. For that reason, two forms of problem-posing were postulated, free 

and semi-structured, and the task variables characterising the equations and 

systems of equations considered were broadened. According to Stoyanova and 

Ellerton (1996), a problem-posing situation is considered as free when students 

are asked to generate a problem from a given contrived or naturalistic situation. 

It is referred to as semi-structured when students are given an open situation 

and are invited to explore the structure of that situation and to complete it by 

applying knowledge, skills, concepts, and relationships from their previous 

mathematical experiences. 

Conceptual Understanding of Algebraic Symbolism 

Many studies have addressed the distinction between conceptual and 

procedural knowledge in mathematics. The objectives pursued include reaching 
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a consensus on their definition, determining which should prevail in 

mathematics instruction and how they can best be evaluated (Castro, Prat and 

Gorgorió, 2016). 

The pervasive use of the terms conceptual and procedural can be 

attributed to Hiebert and Lefevre (1986). These authors’ characterisation of the 

two types of knowledge is applied throughout this article. Conceptual knowledge 

is based on a dense network of relationships among pieces of information that 

allow flexibility in information access and use. Procedural knowledge consists in 

two parts: the first is the system of symbolic representation in mathematics and 

the second the algorithms or rules used to perform mathematical tasks. More 

recent studies have confirmed that the aforementioned definition of conceptual 

knowledge as densely interconnected knowledge and the description of 

procedural knowledge as the ability to perform actions in sequence to solve 

problems continues to be valid (Rittle-Johnson and Schneider, 2015). 

Despite the dilemma posed in research papers over whether procedural or 

conceptual knowledge should prevail in mathematics instruction, the consensus 

opinion is that the two should go hand-in-hand. The benefits attributed to 

conceptual knowledge include support for decision-making about the most 

suitable procedure for a given situation, a more flexible approach to problem-

solving and evaluation of the solution (Crooks and Alibali, 2014).   

Conceptual knowledge can be evaluated using indicators for explicit or 

implicit conceptual knowledge (Castro, Prat and Gorgorió, 2016; Crooks and 

Alibali, 2014). For the former, the aforementioned authors cited concept 

definition. Implicit conceptual knowledge evaluation can be broached through 

the evaluation, judgement, justification and application of procedures (Castro, 

Prat and Gorgorió, 2016). For instance, in the specific case of the mathematical 

concepts equivalence (idea that the two members of an equation represent the 

same quantity), inversion (idea that inverse operations of the same quantity in 

an equation do not alter the initial value) and cardinality (ability to count), 

Crooks and Alibali (2014) suggested a variety of tasks to evaluate implicit 

conceptual knowledge. These include determining whether an operation is 

correct, reproducing the structure of an equation or operation viewed previously, 

identifying equivalent equations and interpreting the solution or explaining the 

procedure used to solve problems. The authors also stressed the importance of 

specifically identifying and measuring conceptual knowledge and the need for 

validated tools for its evaluation. 

Rittle-Johnson and Schneider (2015) and Ross and Willson (2012) defined 

the translation between different representation systems as a method for 

analysing the implicit conceptual knowledge acquired by students1. That idea 

has been endorsed by studies in which different representation systems are used 

to favour the development of conceptual knowledge in algebra (Cedillo, 2001; 

Charpell, 2001; Ferruchi, Kaur, Carter and Yeap, 2008; Fujii and Stephens, 

2008; Ng and Lee, 2009). Translation is the procedure whereby a mathematical 

object represented by one system of representation is represented in another 

(Gómez, 2007). This is a cognitively complex process. In addition to 

1 ‘Representation system’ is understood here to be a structured set of notations, symbols and graphs 

that, subject to rules and conventions, can be used to express the features and properties of a concept 

(Castro and Castro, 1997). 
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understanding the representation systems involved, it calls for the ability to 

identify and translate to the other system the essential information that defines 

the concept represented, ignoring superfluous particulars imposed by the 

representation system in which the concept is expressed (Molina, 2014).  

By algebraic symbolism is meant the representation system characterised 

by the use of written numerals, letters and signs typical of arithmetic and 

algebra. Algebraic symbolism is a compact and very precise representation 

system applicable to mathematics as well as other areas. With it, algebraic ideas 

can be represented independently of the initial specific context in which they 

arise (Arcavi, 1994) and expressions can be transformed with learned algebraic 

techniques, irrespective (temporarily) of the meaning of the constituent symbols. 

Consequently, an essential part of being algebraically competent is the ability to 

flexibly and opportunistically alternate, on the one hand, the use of actions 

devoid of meaning and on the other, the pursuit of meanings geared to 

questioning and choosing strategies, thinking reflectively, connecting ideas, 

drawing conclusions or formulating new meanings (Arcavi, 2005).  

Given the descriptions of conceptual and procedural knowledge adopted in 

this study, the first dimension of algebraic symbolism referred to by Arcavi is 

identified with the use of procedural knowledge, and the second with conceptual 

knowledge. This article focuses on the second dimension, asking students to pose 

problems that can be solved with given symbolic equations. This task requires 

translating symbolic to verbal representation and, therefore, it implies 

identifying quantities and possible relationships among them that may be 

represented by the starting equations. Letters and operations acquire meaning 

in a specific context (Wagner, 1981). The aim is to evaluate the implicit 

conceptual knowledge of the algebraic symbolism involved in each of the 

equations included in the study.  

Review of the Literature 

Studies addressing conceptual knowledge of algebraic symbolism do so 

from different perspectives. A short number of papers discusses teaching 

strategies or methods that may favour the acquisition of conceptual knowledge 

of algebraic symbolism. In one, Rittle-Johnson and Star (2007) taught their 

secondary school students to solve linear equations in three ways: comparing 

equivalent equations solved using the same method; comparing different types of 

equations solved with the same method; and comparing different methods for 

solving the same equation. They found that conceptual knowledge was acquired 

more effectively by comparing methods than by comparing different types of 

problems. In a study with secondary school teachers and students, Ross and 

Willson (2011) analysed the effect of three teaching models on the acquisition of 

conceptual and procedural knowledge of algebraic symbolism. After analysing 

the classes delivered by seven teachers, they concluded that the use of symbolic 

representations and participatory classroom instruction in which different 

meanings of mathematical ideas were shared by teacher and students helped the 

latter make connections between their ideas about a given concept, thereby 

favouring the acquisition of conceptual knowledge. These authors drew attention 

to the need for more studies on conceptual knowledge in algebra. Chalouh and 

Herscovics (1988), in turn, geared their research to helping students build 

conceptual knowledge of algebraic symbolism with models based on the area of 



  INT ELECT J MATH ED               803

rectangles, while Herscovics and Kieran (1988) deployed arithmetic identities to 

the same purpose. Both studies found that students interpreted equations 

correctly more readily than open expressions (with no equal sign).  

Along the same lines as addressed in this study, other studies have 

assessed implicit conceptual knowledge of algebraic symbolism acquired by 

secondary students. Filloy and Rojano (1989) identified conceptual obstacles in 

the move from operating with equations with one unknown on one side of the 

equal sign to operating with equations with unknowns on both sides. To work 

with this second type of equations students must understand that the 

expressions in both members are of the same nature and should attribute 

meaning to the equality of the expressions. That, the authors contended, would 

call for specific instruction in the context of traditional instruction in algebraic 

symbolism. Caprano and Joffrion (2006) conducted a study to explore secondary 

school students’ conceptual knowledge of algebraic symbolism with two multiple-

choice tasks, in which they were asked to translate verbal to symbolic 

representation. The conclusion drawn was that the ability to apply existing 

knowledge to a new situation constituted proof of the acquisition of conceptual 

knowledge. The authors highlighted the importance of developing conceptual 

knowledge in mathematics and the relevance of vocabulary in that development.  

Some studies that evaluate the conceptual understanding of algebraic 

symbolism acquired by students focus on literal symbols as components of such 

symbolism, more than on equations in general. In research on 13- to 15-year-old 

students, Küchemann (1981) observed that most found it difficult to interpret 

letters in algebra as unknowns or generalized numbers. Furinghetti and Paola 

(1994), studying higher education students, found that only a small minority 

could adequately describe the differences between parameters, unknowns and 

variables, and most tended to interpret letters as substitutes for objects or 

words. Both studies concurred with Booth (1984) in identifying the non-

equivalent use of letters in arithmetic and algebra as one of the reasons for such 

difficulties. Filloy, Rojano and Puig (2008) reported cases in which students 

assigned different meanings to the same letter (for instance, as an unknown and 

as a variable), when interpreting a single variable equation such as x + x/4 = 6 + 

x/4). In this same vein, Arnau and Puig (2013) reflected on the different 

meanings (variable vs unknown) that a letter may adopt depending on the 

semantic field from which the solution to a given problem is broached: functions 

or equations. The meanings of letters are associated with different algebraic 

conceptions (Usiskin, 1988). Bills (2001) and Álvarez and Gómez-Chacón (2001), 

among others, reported that students encountered difficulty in interpreting and 

distinguishing between the meanings that could be adopted by a letter in a 

problem and move flexibly from one to another. 

Two other groups of authors can be identified who specifically assessed 

secondary school students’ conceptual knowledge using the translation from 

symbolic to verbal representation as a tool. Resnick, Cauzinille-Marmeche and 

Mathieu (1987) asked 11- to 14-year-old students to translate algebraic 

expressions containing additive structures to texts with or without context. They 

found that none of the students was able to put forward a non-contextualised 

interpretation (such as a number plus double that number less five) without 

having previously built a specific story for the given expression. Taking their 
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data as a basis, they hypothesised that an effective predecessor to learning 

formal algebra would be to interpret equations with some specific reference.   

Molina et al. (2016) analysed the errors made by Spanish 2nd and 4th 

year ESO students in the non-contextualised translation of algebraic symbolism 

to verbal language and vice-versa. The errors were classified by the mathematics 

content involved, distinguishing three categories, associated with: 

complete/incomplete wording, arithmetic and the characteristics of algebraic 

symbolism. The last group was sub-divided into: errors in generalising the 

elements of expressions (translating -4, for instance, as ‘subtract an even 

number’), particularisation, assignment of different meanings to the same letter 

and structural errors. They found that translating symbolic to verbal 

representation was more accessible than the reverse for both the younger and 

older students. The most frequent errors in translating algebraic symbolism to 

verbal language were associated with the characteristics of algebraic symbolism, 

especially to the last two sub-types. Unlike the other types of errors, whose 

number declined in the older students, the number of errors related to algebraic 

symbolism committed by 2nd and 4th year students did not vary significantly. In 

light of the persistence of some errors with ongoing algebra instruction, the 

authors suggested the need for more research focusing on the characteristics of 

algebraic symbolism to acquire a deeper understanding of how students acquire 

that knowledge.  

One generally accepted requirement for successful translations between 

verbal and symbolic representation is an understanding of unknowns and the 

mutual dependence described in the verbal wording of the problem, as well as 

the syntactic characteristics of algebraic symbolism (Kaput, 1989). Those 

observations inform the distinction between two dimensions in the present 

analysis of students’ translations: a) the syntactic characteristics of equations 

and systems preserved by students; and b) the meanings assigned to unknowns 

and the operations relating such unknowns.  

Prior classifications of additive (Carpenter and Moser, 1982) and 

multiplicative (Castro, 2001) arithmetic problems were used to distinguish 

between the meanings of additive (addition and subtraction) and multiplicative 

(multiplication and division) structures. The additive situations defined were 

change, comparison, combination and equalisation and the multiplicative 

situations, simple proportionality, comparison and Cartesian product. 

An earlier study by the authors (Fernández-Millán and Molina, 2016) 

identified the characteristics of equations and systems of equations that 

hindered problem-posing and the meanings attributed by students to the 

operations and unknowns contained in the equations used. Such characteristics 

included the presence of more than one unknown, the same unknown on both 

sides of the equal sign, coefficients greater than two and the multiplication of 

two or more unknowns. Meanings were more readily attributed to operations 

involving additive structures, although comparison and equalisation structures 

appeared in very few of the word problems posed by students, while the 

Cartesian product was absent in multiplicative structures. The presence of 

multiplicative structures also heightened the difficulty to attribute meaning to 

unknowns. Those findings prompted further exploration of the characteristics of 
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equations that hinder problem-posing and the contexts in which students are 

liable to use additive and multiplicative structures absent in the earlier study.  

Empirical Study 

As noted earlier, the research problem addressed in this problem-posing-

based study was to analyse the implicit conceptual knowledge of linear and 

quadratic equations and systems of equations acquired by Spanish ESO 

students. More specifically, the problem was confined to specific objectives and 

certain symbolic expressions. The objectives were: 

1) to identify and compare the characteristics of equations and systems of

equations that hinder students’ ability to pose problems, establishing one free 

and one semi-structured (where a meaning for the unknowns was proposed) 

situation 

2) to distinguish and compare the meanings attributed by students to the

operations contained in the equations and systems in the free and semi-

structured situations. 

The symbolic expressions used were linear and quadratic equations with 

one unknown and systems of linear and quadratic equations with two 

unknowns, in which the coefficients, independent terms and solutions were 

rational numbers. Letters were used to symbolise unknowns.  

Participants 

The sample, intentionally selected on the grounds of student availability, 

comprised 32 last year Spanish ESO students enrolled at two schools. 

Socioeconomic and cultural levels were average in the area where one of the 

schools was located and low in the other. Both groups of students attended class 

in a regular basis. Student performance in mathematics was average and 

heterogeneous in both groups. The results for the two groups were pooled to 

create a more extensive dataset from a sample with a broader socio-economic 

spectrum.  

The two groups’ prior knowledge was theoretically the same. They had 

been solving equations and related problems from first year, beginning with 

first-degree equations with one unknown and progressing on to second-degree 

equations and systems of linear and non-linear equations with two unknowns. 

When the data were collected for this study they had concluded classroom work 

on the algebra-related content specified in compulsory education in Spain. More 

specifically, they had worked with first- and second-degree equations with 

brackets and denominators and systems of linear and non-linear equations (both 

with two equations and two unknowns), from both the theoretical and problem-

solving perspectives. They had no prior experience in problem-posing.  

Questionnaire design 

Two questionnaires, labelled 1 and 2, were used to collect the data for this 

study. Each consisted in seven tasks in which students were asked to pose a 

problem that could be solved by using the equation or system of equations 

specified in the task. The equations and systems of equations in the two 

questionnaires were the same and listed in the same order. The difference 
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between the two was that in the second, students were furnished a specific 

meaning for the unknown or unknowns in the equation. 

The instructions given to the students for each questionnaire were: 

Questionnaire 1: Write the statement of a problem posed by you that can 
be solved using the given equation or system of equations and that refers to a 
context of everyday life. 

Questionnaire 2: Write the statement of a problem posed by you that can 
be solved using the given equation or system of equations, taking into account 
the meaning of the unknowns that is indicated in each case, and that refers to a 
context of everyday life.  

The symbolic expressions used in this study were designed bearing in 

mind the three essential factors described below. The first two criteria had been 

addressed in the earlier study to select the equations set out in the tasks.  

1) The structure was to be familiar to students. That involved analysing 

the units on algebra in secondary school mathematics textbooks (including the 

book used by students in the year when the data were collected) and identifying 

the types of equations that prevailed. The equations included on the 

questionnaires consequently formed part of the ESO mathematics curriculum 

and had been the object of instruction.  

2) Problem-posing was to be feasible. To that end, the equations and 

systems of equations selected were taken from problem-solving exercises 

previously performed by students.   

3) The findings of the earlier study (Fernández-Millán and Molina, 2016) 

were taken into consideration. Table 1 lists the equations used in that study and 

for each, the number of problems posed by students, the number that were 

correct, the main characteristics of the equations that hindered student 

problem-posing and the decision to retain them or otherwise in the present 

study.  

Table 1: Equations used in Fernández-Millán and Molina (2016) 

#  

 

Equation No. of 

problems 

posed (n=20) 

No. correctly 

posed 

Characteristics of 

equations that hindered 

problem-posing 

Inclusion 

in present 

study 

1 68  x  
19 15 (79 %) None of significance No 

2 912 x  
16 8 (50 %) Coefficient 1 No 

3 xx 610  
17 6 (35 %) Unknown on both sides 

of equal sign 

Coefficient  1 

Yes 

4 216 x  
17 8 (47 %) Multiplication involving 

two unknowns 

Yes 

5 5 3 69

15

x y

x y

  


    

15 8 (53 %) System of equations 

Coefficients  1 

No 
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6 









10

7

xy

yx 12 6 (50 %) System of equations 

Multiplication involving 

two unknowns 

Yes 

7 20 ( 1)x x  13 6 (46 %) Multiplication involving 

two unknowns 

Yes 

The present study introduced a variable that distinguished between 

integers and decimals as coefficients of unknowns and independent terms. For 

that reason equations 1 and 2 from the earlier study were eliminated and new 

equations were introduced with decimals as coefficients and independent terms. 

System of equations 5 was modified to introduce coefficients different to one in 

both equations as in the earlier study it was identified as one of the 

characteristics that hindered problem-posing. 

Ultimately questionnaires 1 and 2 contained the same four equations and 

three systems of equations with single solutions, listed in Table 2 along with the 

variables studied. The order of the equations relative to the earlier study was 

varied to determine its possible role in the small number of problems posed in 

the equations listed in the latter positions.  

Table 2: Characterisation of equations and systems of equations used in the 

study 

# Equation 

No. of 

unknowns 

No. of 

members 

with 

unknowns 

Coefficient of 

unknown and 

independent 

term 

Operation with 

unknown 

1 5.1225.10 x 1 1 Decimal Addition with 

known quantity 

Multiplication with 

known quantity 

2 xx 610  1 2 Integer Addition with 

known quantity 

Multiplication with 

known quantity  

3 20)1( xx 1 1 Integer Addition with 

known quantity 

Multiplication with 

unknown quantity 

4 









20052

29025

yx

yx 2 1 Integer Addition with 

unknown quantity 

Multiplication with 

known quantity 



 
 
 
 
808                                         E. FERNÁNDEZ-MİLLÁN & M. MOLİNA 

5 









10

7

xy

yx

 

2 1 Integer Addition with 

unknown quantity 

Multiplication with 

unknown quantity 

6 









6.39.02.1

25.3

yx

yx

 

2 1 Integer / 

Decimal 

Addition with 

unknown quantity 

Multiplication with 

known quantity 

7 162 x  
1 1 Integer Multiplication with 

unknown quantity 

 Note: Shaded equations were carried over from the earlier study 

Table 3 lists the specific meanings proposed for each unknown in 

questionnaire 2 and the semantic additive and multiplicative structures inferred 

by such meanings. These meanings were used in pursuit of student familiarity 

with the exercise, for they were similar to the ones found in the textbooks 

reviewed.  

Table 3: Meanings for unknowns in questionnaire 2 

# Equation Meaning of unknowns Semantic structure inferred by the 

proposed meaning 

Additive Multiplicative 

1 5,1225,10 x
 

x: number of hours needed by 

a plumber to complete a task 

 Simple 

proportionality 

2 xx 610   
x: Álvaro’s present age Change or 

comparison 

Comparison 

3 20)1( xx
 

x: length of side of a rectangle Comparison  Cartesian product 

4 









20052

29025

yx

yx

 

x: number of cardboard boxes 

y: number of plastic boxes 

Combination Simple 

proportionality 

5 









10

7

xy

yx

 

x: width of floor in a 

rectangular room 

y: length of floor in a 

rectangular room 

Combination Cartesian product 

6 









6,39,02,1

25,3

yx

yx

 

x: kilogrammes of bananas 

y: kilogrammes of onions 

Combination  Simple 

proportionality 

7 162 x  
x: length of side of a square 

mirror 

-- Cartesian product 

Both groups answered questionnaires 1 and 2 in separate sessions on two 

consecutive days. One of the researchers, both groups’ official mathematics 

teacher, was present. Students solved the problems individually with pencil and 

paper on the grounds of the following instructions provided in writing and read 

aloud by the teacher:  
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“Use each space to pose a problem from everyday life that can be solved 

with the equation or system of equations provided. You’ve worked with this sort 

of word problems in the classroom and others involving only numbers and their 

relationships, such as: ‘Twice the value of a number minus one is nine: figure out 

what that number is’. Here we’re asking you to pose problems that can arise in 

everyday situations. YOU DON’T HAVE TO SOLVE THE PROBLEMS. If you 

don’t know what to answer in one, you can skip it and come back to it later, after 

posing problems for the other equations. Please work individually and silently. If 

you have any questions, raise your hand and I’ll help you.”  

Students were asked to pose problems from everyday situations to 

encourage them to attribute meaning to the unknowns and additive and 

multiplicative structures. The students posed no significant doubts during this 

data collection. 

Data Analysis 

The problems2 posed by students were analysed first by translating them 

to algebraic symbolism, referred to here as ‘symbolic translation’. That involved 

proceeding from left to right and word for word wherever possible. Where it was 

not, the word problem was translated to algebraic symbolism by building a 

mental scheme of the mathematical relationships described.  

A problem was regarded as ‘correct’ if its symbolic translation concurred 

with the initial equation or system of equations and ‘incorrect’ otherwise. 

Problems in which the symbolic translation was equivalent to the initial 

equation were regarded as incorrect, for the aim was to assess the conceptual 

understanding not of the equations as a whole, but rather of each component.  

Two types of categories were defined: ‘syntactic’ and ‘semantic’, depending 

on whether they referred to the form or the meaning of the problems posed. The 

syntactic categories (Table 4) were the outcome of identifying the elements that 

differed between the initial equations and the symbolic translations of the 

problems posed by students. These categories served as the basis for meeting the 

first specific objective of this study. Their definition was inspired by but did not 

concur with the syntactic categories used in the earlier study, for the latter were 

refined to establish more precisely how students’ word problems diverged from 

the initial equations. The semantic characteristics (Table 6), which did concur 

with those in the earlier study, were designed to meet the second specific 

objective.  

Table 4: Syntactic categories 
Category Name Definition 

A Operating unknowns In the symbolic translation of the problem posed, the unknowns 

operated with other elements of the algebraic expression.  

B Coefficient-unknown 

relationships  

In the symbolic translation of the problem, the coefficients of 

the unknowns present were the same as in the initial algebraic 

expression and operated with such unknowns.  

C Number of unknowns The number of unknowns operating with other elements in the 

symbolic translation was the same as in the initial algebraic 

expression.  

2 The word ‘problem’ is used here to mean word problems posed by students, irrespective of whether 

they meet certain minimum requirements to be regarded as problems further to a pre-established 

definition. 
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D Terms with 

unknowns 

The unknown was found in the same number of terms in the 

symbolic translation of the problem as in the initial algebraic 

expression. 

E Structural elements  Brackets were not added or deleted (equation 3) nor were the 

terms transposed in the symbolic translation of the problem. 

F Polynomial algebraic 

expression with equal 

sign 

The symbolic translation of the problem yielded a polynomial 

algebraic expression with an equal sign. 

 

The two possible values for category A for the word problems posed by 

students were ‘yes’ and ‘no’. In the first example given in Table 5, in the 

symbolic translation of the problem posed by a student the unknown did not 

operate with any other element of the equation, but rather was isolated on one 

side of the equal sign. Category A was consequently coded as ‘no’ in this case. 

The other syntactic categories included a third value, ‘not analysable (N/A)’, 

inasmuch as a ‘no’ in category A would preclude analysis in the rest of the 

syntactic categories (see example 1 in Table 5). The remaining syntactic 

categories were not mutually exclusive, as shown in examples 2, 3, 4 and 5 in 

Table 5. Category E was coded as ‘no’ whether or not the brackets were removed 

correctly (see example 5 in Table 5). 

Table 5: Examples of syntactic categories 

# Initial equation Word problem posed Symbolic 

translation 

Code 

A B C D E F 

1 162 x  
Pedro has two sons. The 

younger, Marcos, is 4 

years old. The older is 

twice the age of the 

younger. How old is the 

older? 

x24  
no n/a n/a n/a n/a n/a 

2 {
5x + 2y = 290
2𝑥 + 5𝑦 = 200

 
If I have 5 tonnes of 

cardboard boxes and 2 

tonnes of plastic boxes, I 

have 290 boxes. If 

instead I had 200 boxes, 

how many boxes of each 

type would I have?  

{
 

 
5

𝑥
+
2

𝑦
= 290

2

𝑥
+
5

𝑦
= 200

 

yes yes yes yes yes no 

3 {
x + y = 3.25

1.2𝑥 + 0.9𝑦 = 3.6
 
Adding the kg of bananas 

and the kg of onions 

gives 3.25 kg and I have 

a bag with 1.2 kg of one 

and 0.9 kg of the other 

that adds up to 3.6. 

Calculate the system 

{
x + y = 3.25
1.2 + 0.9 = 3.6

 yes no yes no yes yes 

4 10.5x + 2 = 12.5 A man pushes 10.5 kg of 

potatoes in a 

wheelbarrow along a 

road and finds two more 

potatoes before leaving 

the field. How many kilos 

of potatoes does he have? 

10.5 + 2x = y yes no no no yes yes 
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5 x(x + 1) = 20 I have a box with a 

number of rubbers and 

the same number plus 1 

of pencil sharpeners and 

a total of 20 objects. How 

many rubbers are there?  

x + x + 1 = 20 yes yes yes yes no yes 

As the syntactic categories provided information on incorrect problems 

only, those are the only results shown. In correct problems, all the categories 

would be coded as ‘yes’. In incorrect problems, at least one of the syntactic 

categories was coded ‘no’, as Table 5 shows. 

Two non-mutually exclusive semantic categories were defined as listed in 

Table 6. Both could be coded as either ‘yes’ or ‘no’. Category G was not analysed 

in equation 7, which had no additive structure, whereas category H was 

analysed in all the equations, for they all involved a multiplicative structure.  

Table 6: Semantic categories 

Category Name Definition 

G Meaning of additive 

structures  

The additive part of the problem exhibited at 

least one of the following semantic structures: 

change, combination, comparison or 

equalisation.  

H Meaning of 

multiplicative 

structures 

The multiplicative part of the problem 

exhibited at least one of the following semantic 

structures: simple proportionality, comparison 

or Cartesian product.  

In this analysis, problems that could not be translated to a symbolic 

equation (such as “Several pairs of cats have 16 kittens. How many pairs of cats 

are there?”) were omitted and labelled as ‘omitted problem’.  

Results 

This section discusses the classification of the problems posed by students 

as correct or incorrect and the use of the categories set out in the preceding 

section to code them. The largest number of analysable (not omitted) problems 

were posed for equations 2 and 7 in both questionnaires, whereas the largest 

number of omitted problems were posed for equation 3 in questionnaire 1 and 

equations 1 and 3 in questionnaire 2 (Table 7).  

Table 7: Frequency of non-analysable problems (n=32) 

Code 

Equation/ System of equations 

1 2 3 4 5 6 7 

Questionnaire 1 

Unanswered 3 1 13 4 3 10 0 

Omitted 4 1 1 0 0 0 1 

Total 7 2 14 4 3 10 1 
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 Questionnaire 2 

Unanswered 7 0 4 2 4 2 1 

Omitted 1 0 4 0 1 2 0 

Total 8 0 8 2 5 4 1 

 

As Figure 1 shows, equations 2, 4 and 5 were the object of the largest 

number of correctly posed problems in both questionnaires, along with equation 

7 in the second. In all these cases, the coefficients and independent terms were 

integers and equations 5 and 7 involved multiplication between two unknowns. 

The largest number of incorrect problems were posed for equations 1 and 7 in 

questionnaire 1 and 1 and 6 in questionnaire 2, all of which involved decimals as 

coefficients and independent terms. More problems were correctly posed in 

questionnaire 2 than questionnaire 1 for all the equations, with the widest 

variation in equations 3 (7 correct problems in questionnaire 1 and 19 in 2) and 

7 (17 correct in 1 and 27 in 2). 

Syntactic categories 

The syntactic categories described the differences detected between the 

symbolic translation of the problems incorrectly posed by students and the 

initial symbolic expressions. Figure 2 shows the frequencies of word problems 

coded as ‘no’ in each syntactic category. In this figure results related to each 

category are placed inside a rectangle. Each bar corresponds to one of the 

questionnaires and shows the number of problems coded as ‘no’ in each 

expressions. The divergence in students’ problems from the initial equations 

tended to involve the relationship between coefficients and unknowns (category 

B), the number of unknowns defined (category C) and the number of terms in 

which they appeared (category D).  
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The following is a discussion of the problems posed, category by category. 

Category A: Operating unknowns  

In both questionnaires, the vast majority (96 %) of the (non-omitted) 

problems posed by students involved an unknown operating with other terms. 

The number of problems with no unknown operating with other members of the 

equation was slightly higher in questionnaire 2, specifically in connection with 

equations 1 and 2. Often, in the symbolic translation of the problems coded as 

‘no’ in category A, the unknown was isolated on one side of the equal sign. That 

was not the case in only four omitted problems, two each on questionnaires 1 

and 2, in which the answer was included in the word problem itself, obviating 

the unknown. One example of such instances was posed for equation 1 in 

questionnaire 1: “How many hours would a plumber take to finish his work if, in 

addition to the 10.5 hours he’s already devoted, we add 2 to get 12.5?” (the 

symbolic translation was 10.5 + 2 = 12.5).  

Category B: Relationship between coefficients and unknowns 

At least one word problem was coded no in this category in all seven 

equations. The equations involving decimal coefficients (equations 1 and 

system 6) exhibited a fairly high number of problems with a ‘no’ in this category 

in both questionnaires. Where system 6 problems were coded ‘no’ under this 

category, the relationship between coefficient and unknown was incorrect in the 

equation containing decimals. By way of example, one problem posed for 

system 6 in questionnaire 2 read as follows: “How many kg of bananas are 

there? and onions? If the sum of the kilogrammes of bananas and onions is 

3.25 kg. In addition the shop’s lorry brings 1.2 kg more bananas and 0.9 kg more 

onions”, the total comes to 3.6 kg, and was translated symbolically as: 
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{
𝑥 + 𝑦 = 3.25

𝑥 + 1.2 + 𝑦 + 0.9 = 3.6
.  Note that the coefficients were not treated as such, but 

as independent terms.   

Equation 7 stood out in this respect, with six problems in questionnaire 1 

and two in questionnaire 2 in which the coefficients were not maintained. In 

most cases (five in questionnaire 1 and two in questionnaire 2), the difficulty 

was associated with the presence of exponents, for the solution to the problems 

posed did not involve operating with powers. In these cases students added 

coefficients, with the symbolic translation yielding a linear equation. The 

following problem from questionnaire 1 serves as an example: “A person bought 

four articles, but can’t remember the price of each. Calculate the price knowing 

she spent €16 in all and that all the articles had the same price” (symbolic 

translation: 4x = 16). 

Generally speaking, the number of problems in which coefficients were 

incorrectly related to unknowns was smaller in questionnaire 2 than in 

questionnaire 1. The decline was steepest in equations 2 and 7. 

Category C: Number of unknowns 

The number of unknowns diverged from the initial equation in at least one 

of the problems posed for all the equations in questionnaire 1, although it was 

infrequent in the systems of equations. The flaws in the word problems for 

equation 1 consisted in including more than one unknown or replacing one of the 

independent terms with an unknown quantity. In equation 2, with unknowns in 

two members, the five divergent problems assigned the unknowns different 

meanings. In equation 3, three students posed problems requiring more than 

one equation, apparently as a result of eliminating the brackets. In equation 7 

some students cited the area of a lot but without specifying that it was square.  

The number of problems with a divergent number of unknowns declined 

substantially in questionnaire 2 (to 9, down from the 23 in questionnaire 1). In 

equation 7, none of the students included a different number of unknowns than 

in the initial equation. In both questionnaires, divergence from the number of 

unknowns tended to be upward. By way of example, the following problem was 

posed for system of equations 4 in questionnaire 1: “I have 290 euros saved in 

five-euro notes and coins, but I’ve spent 90 euros. How many bills and coins do I 

have now?”, translated symbolically as: {
5𝑥 + 2𝑦 = 290
5𝑧 + 2𝑡 = 200

. The number of 

unknowns was reduced in only one of the problems posed for this same system of 

equations in questionnaire 1.  

Category D: Terms with unknowns  

In most cases students tended to add terms with unknowns: that 

happened in 20 of the 25 instances in questionnaire 1 and 6 of 10 cases in 

questionnaire 2. In equation 1, whenever unknowns were added (category C), 

the number of terms with unknowns also rose. Students also made this change 

in an attempt to remove the brackets in equation 3. Here and in system 5, when 

the multiplicative structure was replaced by an additive structure, the number 

of terms with unknowns was increased.   

In questionnaire 1, the number of terms with unknowns was raised most 

frequently in equations 1, 3 and 5. The number of problems in which the 
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symbolic translation yielded a larger number of unknowns than the initial 

equation was much smaller in questionnaire 2, particularly in the 

aforementioned equations.  

System 6 merits mention here, as it had the highest frequency of problems 

coded ‘no’ in questionnaire 2, where it was higher than in questionnaire 1. In 

this system, when the number of terms with unknowns diverged, it was smaller 

than in the initial system, either because a single equation was proposed or all 

the decimal coefficients were included as independent terms, unrelated to 

unknowns. 

Category E: Structural elements 

This category was coded ‘no’ in only a few problems. The frequency of 

negatives was highest for equation 3, the only one with brackets, and was lower 

in questionnaire 2 than in questionnaire 1. In all cases with a ‘no’ code under 

this category in equation 3, the problems posed by students translated 

symbolically to an equation without brackets. In the other word problems coded 

negatively in this category students transposed terms (questionnaire 1) or added 

brackets (questionnaire 2). 

Category F: Polynomial algebraic expression with equal sign 

The symbolic translation of students’ word problems failed to yield an 

algebraic polynomial with an equal sign in questionnaire 2 only. In the sole case 

involving system 4 and one of the cases involving system 6, in the symbolic 

translation of the students’ problem the unknown was located in the 

denominator and therefore did not define a polynomial. In the other two cases 

involving system of equations 6 the symbolic translation exhibited no equal sign.  

Semantic categories 

The following is a discussion of the classification of the problems into the 

semantic categories defined. These results provided insight into the meanings 

attributed by students to the operations contained in the initial symbolic 

expressions. The findings are listed for each equation and correct and incorrect 

problems are discussed jointly. 

Category G: Meaning of additive structures 

Further to the findings for category G (Table 8), most of the word 

problems posed by students attributed meaning to these structures (86 % in 

questionnaire 1 and 89 % in questionnaire 2)3. Notably, students found it 

hardest to attribute meaning to the additive structure in equation 2 in 

questionnaire 2, where an age context was suggested. In equation 3 students 

encountered difficulties even when a meaning was proposed for the unknown. In 

both questionnaires, the difficulties were ostensibly greater in equations than in 

systems.  

Table 8: Word problem coding for category G 

Code Semantic structure Equation Total 

3 Percentages relative to analysable problems involving additive structures 
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1 2 3 4 5 6  

  Questionnaire 1  

YES Combination 16 (9) 12 (11) 6 (0) 28 (22) 27 (22) 21 (15) 110 (79) 

Change 2 (0) 12 (9) 1 (1) 0 (0) 0 (0) 0 (0) 15 (10) 

Comparison 3 (0) 0 (0) 2 (1) 0 (0) 0 (0) 0 (0) 5 (1) 

Equalisation 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 

NO  4 (3) 5 (2) 9 (5) 0 (0) 2 (1) 1 (0) 21 (11) 

  Questionnaire 2  

YES Combination  22 (16) 6 (6) 1 (0) 30 (27) 27 (26) 28 (17) 114 (92) 

Change  0 (0) 15 (13) 0 (0) 0 (0) 0 (0) 0 (0) 15 (13) 

Comparison 0 (0) 2 (0) 16 (16) 0 (0) 0 (0) 0 (0) 18 (16) 

Equalisation 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

NO  2 (0) 9 (7) 7 (3) 0 (0) 0 (0) 0 (0) 18 (10) 

Note: The values in brackets denote the number of correct problems. The shaded cells 

indicate the semantic structure prompted by the meanings proposed for the unknowns. 

Equation 7 was excluded because it had no additive structure.  

The occurrence of additive semantic structures in the problems posed is 

shown in Figure 3 for questionnaires 1 and 2. Problems involving combination 

prevailed in both questionnaires for both correct and incorrect answers, whereas 

problems involving equalisation were nearly absent and the other types 

exhibited a very low frequency. Combination was also observed to predominate 

in each algebraic expression separately, with the exception of equation 2, in 

which change was also frequently found in both questionnaires. The small 

number of problems involving comparison were proposed in the first three 

equations, where this category was appropriate.   

More problems involving combination and comparison, most correct, were 

detected in questionnaire 2. The frequency of problems involving combination 

was particularly high in equations 4, 5 and 6 and especially low in equation 3. 

The meanings proposed for equations 2 and 3 in questionnaire 2 led to problems 

involving change or comparison, depending on the case. 
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Category H: Meaning of multiplicative structures 

As the data in Table 9 show, most of the word problems for 

questionnaires 1 (62 %) and 2 (75 %) attributed meaning to multiplicative 

structures4 (category H), although the percentages were lower than for additive 

structures. The findings for equation 3 were particularly striking, with only one 

problem attributing meaning to multiplicative structures in questionnaire 1, 

compared to 15 in questionnaire 2. A similar difference was observed for 

equation 5, which also involved multiplying two unknowns.  

Table 9: Word problem coding for category H 

Code 

Semantic 

structure 

Equation Total 

1 2 3 4 5 6 7 

Questionnaire 1 

YES Comparison 1 (0) 18 (17) 0 (0) 4 (4) 0 (0) 4 (3) 3 (0) 30 (24) 

Simple 

proportion 

13 (6) 5 (2) 1 (0) 24 (18) 2 (0) 11 (10) 4 (0) 60 (36) 

Cartesian 

product 

1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 12 (7) 13 (8) 

NO 10 (5) 7 (4) 17 (7) 0 (0) 27 (23) 7 (2) 12 

(10) 

63 (51) 

4 Percentages relative to analysable problems, all of which included multiplicative structures. 
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Questionnaire 2 

YES Comparison 0 (0) 22 (19) 0 (0) 3 (3) 0 (0) 3 (2) 0 (0) 28 (24) 

Simple 

proportion 

19 (15) 0 (0) 0 (0) 25 (23) 0 (0) 19 (15) 2 (0) 65 (53) 

Cartesian 

product 

0 (0) 0 (0) 15 

(14) 

0 (0) 15 (15) 0 (0) 23 

(22) 

53 (51) 

NO  5 (1) 10 (7) 9 (5) 2 (1) 12 (13) 6 (0) 6 (5) 50 (31) 

Note: The values in brackets denote the number of correct problems. The shaded 

cells indicate the semantic structure prompted by the meanings proposed for the 

unknowns. 

The frequency of multiplicative semantic structures for questionnaires 1 

and 2 is graphed in Figure 4. Simple proportionality prevailed in both 

questionnaires. The difference in the number of comparison structures between 

the two questionnaires was nearly negligible, whilst a greater number of 

problems involving simple proportionality was found in questionnaire 2 (50 vs 

65). The widest gap was found for the Cartesian product (13 vs 55), however, 

associated with the equations involving the multiplication of two unknowns (3, 5 

and 7). In questionnaire 1, students proposed problems involving the Cartesian 

product for equation 7 only. 

 

Discussion 

Analysis based on the aforementioned syntactic and semantic categories, 

the vehicle for meeting the two objectives of this study, provides insight into the 
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conceptual knowledge of algebraic symbolism acquired by compulsory secondary 

school students. 

Although students found it difficult to pose problems that would translate 

in algebraic expressions concurring with the initial expressions, in most of these, 

over 50 % of the analysable problems posed were correct (the exceptions being 1 

and 3 on questionnaire 1, where correct answers accounted for 48 % and 39 % of 

the totals, respectively). These difficulties eased significantly when meanings 

were furnished for unknowns (questionnaire 2), with over 60 % correctly worded 

problems in all the equations, and over 80 % in four (2, 4, 5 and 7).  Students 

exhibited good conceptual understanding of algebraic symbolism in this second 

questionnaire, enabling them to attribute meaning to the equations. The 

presence of decimals as coefficients and equation 3, [ 𝑥(𝑥 + 1) = 20], with 

brackets and multiplication of two unknowns, revealed certain gaps in that 

knowledge.  

The presence of decimal coefficients conditioned students’ ability to pose 

problems. The lowest proportion of correct problems was found for equation 1 

(and equation 3, analysed below) on questionnaire 1 and 1 and 6 on 

questionnaire 2, both bearing decimals as coefficients and independent terms. 

When broaching this task students failed to relate the coefficient to the 

unknown, tending to construe it as an independent term. Furnishing a specific 

meaning to the unknowns (questionnaire 2) improved performance in terms of 

the number of correctly worded problems for both equations, although no decline 

was observed in the number of problems that failed to correctly relate the 

coefficient to the unknown (category B). Further to that finding and given the 

prevalence of simple proportionality in the meanings assigned to multiplicative 

structures, students may be conjectured to associate multiplication with 

repetitive addition. That would explain why they found it hard to formulate 

word problems for these equations. For instance, problems such as '1.2 kilos of 

bananas plus 0.9 kilos of onions’ or ‘1.2 bananas plus 0.9 onions’ for the symbolic 

expression ‘1.2x+0.9y’ in system of equations 6 are indicative of students’ limited 

ability to put into words the precision characteristic of algebraic symbolism.  

Earlier studies exploring translation in the opposite direction (from verbal 

to symbolic language) described several phenomena indicative of this same 

difficulty. Cerdán (2010) noted that students focused only on some of the words 

in the problem that referred to amounts, regarding amounts sharing a given 

word in their description to be equal. González-Calero, Arnau and Puig (2013) 

found students to be imprecise when specifying the meanings of letters in an 

algebraic expression (e.g., x=cars). Mitchell (2001) coined the term ‘wordwalking’ 

to mean changing the words in a problem in ways that affect their meaning, 

leading to interpretations that diverged from the relations described in the word 

problem. Rodríguez-Domingo (2015) observed that some students regarded as 

acceptable translations in which part of the equation was expressed more 

generally (e.g., an even number instead of 2). Such findings, along with the 

difficulties in dealing with decimals as coefficients and independent terms 

attested to in this study, denote a need for a sharper focus in secondary school 

classrooms on the importance of precision in algebraic contexts and the 

concomitant differences between verbal and symbolic language. Students’ 

linguistic competence should also be developed to enable them to grasp such 

precision verbally.  
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Equation 3 stood out for its complexity, with the highest proportion of 

omitted problems, the smallest number of correct answers in questionnaire 1 

and a substantial percentage of students who failed to attribute meaning to the 

additive and multiplicative structures in both questionnaires. This equation had 

a more complex structure than the others expressions. Divining the solution to 

an algebraic problem solvable with this equation would probably be more 

accessible to students if expressed as the system 

 







20

1

xy

xy

  

and deriving equation 3 in a subsequent step in the process. Posing a 

problem solvable with equation 3 is cognitively demanding in terms of students’ 

sense of structure (Vega-Castro, Molina and Castro, 2012; Hoch and Dreyfus, 

2005). That notion refers to a suite of skills requiring the combined use of 

conceptual and procedural knowledge, including dealing with a compound term 

as a whole, recognising familiar structures and identifying relationships 

between equations or parts of an equation. To successfully pose a problem 

solvable with equation 3 students had to recognise x and x+1 as two separate 

unknowns, whose product is 20. That would entail understanding the expression 

x+1 as a whole. It would also involve identifying relationships between parts of 

the equation. The difficulties revealed in this task therefore provide insight not 

only into students’ conceptual knowledge but also into their sense of structure.  

The presence of multiplication of two unknowns had a heavy impact on 

students’ ability to pose problems. Proof of that can be found in questionnaire 1 

primarily in the number of incorrectly worded problems for equation 1, and in 

equation 7, where barely 50 % of the problems posed were correct. Students 

posed problems calling for solutions with linear equations, attesting to greater 

ease in attributing meaning to multiplicative structures involving coefficients 

and unknowns than those involving two unknowns, as observed by Fernández-

Millán and Molina (2016). That difficulty was also present in terms of the 

meaning attributed to multiplicative structures involving unknowns. In 

questionnaire 1, meaning was attributed least frequently to this type of 

structure in equations 3, 5 and 7. Students found it easier to deal with the 

multiplication of two unknowns when asked to pose problems for the equations 

in the second questionnaire. There, where the meanings proposed for the 

unknowns were related to the areas of plane geometric figures, prompting the 

use of the Cartesian product, the number of correct problems for equations 3, 5 

and 7 rose significantly.  

Whole number coefficients other than 1 were also observed to render 

problem-posing difficult for students, corroborating findings reported by 

Fernández-Millán and Molina (2016). In equations 2 and 4, with coefficients 

other than 1, the meanings of coefficients diverged more frequently from the 

original than in the other equations with integers as coefficients (3 and 4). In the 

earlier study the authors noted that this finding might be related to a greater 

difficulty to verbally express multiplicative relationships with natural numbers. 

This circumstance was less prominent in questionnaire 2, for furnishing 

meaning for the unknowns helped students associate the problem with a given 

context.   
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When students experienced difficulties in posing a problem, the factors 

primarily affected by the divergence introduced were: the relationship between 

coefficients and unknowns, the number of unknowns defined and the number of 

terms in which they appeared. The problems posed tended to include operating 

unknowns. In the scant instances where that was not the case, the equations 

affected were the ones with the simplest structure, which were either solved or 

rearranged to isolate the unknown. That divergence was not observed in 

systems of equations, in all likelihood due to the greater complexity of the 

process to be followed to do so. In the earlier study, however, it was detected in 

the problems posed for all the equations. Other more sporadically occurring 

types of divergence, not detected in the earlier study, included the omission of 

the equal sign or of brackets, the inclusion of brackets and the positioning of 

unknowns in the denominator of a fraction. 

Variations in the number of unknowns tended to be upward, as observed 

in the earlier study. Detected primarily in questionnaire 1, this divergence was 

attributed a number of causes depending on the type of equation. Particularly 

prominent were flawed verbal expression when the equations contained 

decimals or the product of equal unknowns, which induced students to include 

more than one unknown. In such cases and where multiplicative were replaced 

with additive structures, students tended to raise the number of terms with 

unknowns.   

Further to the information gleaned from the semantic categories, students 

attributed meaning to additive structures in nearly 90 % of the problems posed, 

exhibiting greater uncertainty in dealing with multiplicative structures, 

primarily in questionnaire 1. Combination followed by change prevailed in 

additive structures, as in the earlier study.  These two are the types of additive 

structures most frequently found in primary school textbooks, according to a 

review by Orrantia, González and Vicente (2005). The paucity of problems 

involving comparison or equalisation was common to this and the earlier study.  

When a specific meaning was furnished for the unknowns 

(questionnaire 2), students attributed meaning to multiplicative with the same 

ease as to additive structures (146 problems vested meaning in multiplicative 

and 147 in additive structures). That did not translate into a significant overall 

rise in the number of problems attributing meaning to additive structures in 

questionnaire 2 relative to questionnaire 1, although some of the semantic 

structures were impacted: in equation 2 there were more additive problems 

involving change and in equation 3 more involving comparison.  

Although students did not tend to pose additive problems involving 

comparison, when induced to do so by the meaning furnished for the unknowns, 

comparisons (e.g., age) were frequently used and most of the problems posed 

were correct. Findings on the use of the Cartesian product in multiplicative 

problems were analogous. That multiplicative structure was scantly present in 

questionnaire 1 and absent altogether in equations 3 and 5, which involved 

multiplying two unknowns. No more than two students assigned meaning based 

on that product in both. Nonetheless, when meanings associated with lengths 

were proposed for the unknowns, all students used the Cartesian product in 

both equations, and nearly all correctly.  
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On the whole, simple proportionality and comparison were the prevalent 

multiplicative semantic structures in questionnaire 1, as was also reported in 

Fernández-Millán and Molina (2016).  

The questionnaire 1 results concurred with the earlier study in detecting 

specific meanings for the operational structures that were weakly associated 

with such operations: Cartesian product and additive comparison. Thinking of 

the context of area of plane rectangles, for instance, would have helped students 

to pose problems for equations involving the multiplication of two unknowns in 

questionnaire 1. In the absence of situations associated with the Cartesian 

product, students found it difficult to pose problems correctly in these cases. The 

use of simple proportionality and comparison to attribute meaning to such 

equations is artificial, for it entails posing a situation in which a) both the 

scaling factor and one of the quantities for comparison is unknown or b) the 

number of elements in each group and the number of groups is unknown.  

Such difficulties were drastically reduced, however, when a meaning was 

furnished for the unknowns, suggesting that conceptual knowledge was partially 

connected. The results inferred that such knowledge lies in the zone of proximal 

development and inaccessible to students if unaided. Although the equations 

used were all familiar to them, students needed help to connect them to the 

classroom contexts to which they were accustomed.  

Lastly, the order in which the equations were presented was found to be 

unrelated to both the number of problems posed and the number of correctly 

worded problems (Table 7 and Figure 1). 

Conclusions 

This article, the continuation of an earlier study by Fernández-Millán and 

Molina (2016), compares the findings from both studies while further exploring 

the conceptual understanding of algebraic symbolism acquired by two groups of 

students in the last year of compulsory secondary school. The results of this 

second study, which are more promising, suggest the potential for compulsory 

algebra instruction to develop students’ conceptual knowledge, although greater 

attention should be paid to the semantic aspects of algebra if students are to 

access such knowledge unaided. 

The findings gleaned from the first questionnaire used (free problem-

posing) corroborated the results of the earlier study in terms of the difficulties 

experienced by students in posing problems for equations involving the 

multiplication of two unknowns and coefficients other than 1. In both studies 

problem-posing was particularly difficult for equation 3, which was interpreted 

to signify shortcomings in students’ sense of structure. Limitations were also 

detected in students’ ability to grasp the precision expressed with algebraic 

symbolism in verbal language. The tendency to isolate the unknown detected in 

the earlier study was not corroborated here, however, suggesting that students’ 

concept of algebraic expressions was more relational than operational. In both 

studies, the predominant semantic categories were combination followed by 

change, in additive structures, and simple proportionality followed by 

comparison in multiplicative structures. The least prevalent additive semantic 

structures were comparison and equalisation and the least multiplicative 

structure was the Cartesian product.  
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The findings ratified the need to pay greater attention to expression 

through verbal representation of relationship schemes that can be modelled 

using equations and systems of equations, as well as to decimal coefficients and 

coefficients other than 1. The development of linguistic competence in algebraic 

contexts calls for steady work that can be undertaken in arithmetic contexts, 

given the wealth of elements and meanings shared by algebraic and numerical 

symbolisms.  

From the educational standpoint, the shortcomings identified provide 

insight for the design of instructional proposals geared to developing students’ 

understanding of the meaning of arithmetic operations and algebraic symbolism. 

The study ratifies the utility of problem-posing as a useful tool for evaluating 

student’s implicit conceptual knowledge, whether for educational or research 

purposes. 
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