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ABSTRACT 
This study explored how students develop meaning of functions by building on their 
understanding of expressions and equations. A teaching experiment using design research was 
conducted in a sixth-grade classroom. The data was analyzed using a grounded theory approach 
to provide explanations about why events occurred within this teaching episode and what these 
events mean in terms of student learning of functions (Corbin & Strauss, 2014; Gravemeijer & 
Cobb, 2006). The findings revealed that understanding functions involved integrating their 
understanding of different meanings of variables such as letters representing changing values and 
letters representing known values to model the situation using an expression, and seeing linear 
relationships between the independent and dependent variable through graphing. This paper 
provides a learning progression for supporting early understandings of functions. We discuss 
implications for research on students’ conceptions of variables and implications for fostering 
functional thinking. 
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INTRODUCTION 
What is a function? How do we represent a function? What do independent and dependent variables mean? 

What is the relationship between an algebraic equation and the graph of a function? These questions can be 
answered in a multitude of different ways depending on who is answering them (e.g. a student, a teacher, a 
mathematician, or a mathematics educator) (Thompson & Carlson, 2017). Figure 1, adapted from Markovits, 
Eylon, and Bruckheimer (1986), provides a framing for the components of a function and forms for 
representing functions. For students to understand functions, they must be fluent in these representations, 
meaning that they have “the ability to translate across representations, the ability to draw meaning about a 
mathematical entity from different representations of that mathematical entity, and the ability to generalize 
across different representations” (Zbiek, Heid, Blume, & Dick, 2007, p. 1192). 

There is currently a lack of consensus on the best place to introduce function components and 
representations in mathematics curricula (Stephens, Ellis, Blanton, & Brizuela, 2017). For instance, research 
suggests benefits for introducing algebraic representations of functional relationships early in elementary 
school (e.g., Blanton & Kaput, 2011); other research suggests middle-grades students’ generalizing and 
justifying is strengthened if they reason about quantities rather than (solely) numerical relationships (e.g., 
Ellis, 2007). The Common Core State Standards for Mathematics (CCSSM) prescribe a middle-ground: 
students are expected to represent quantitative relationships between independent and dependent variables 
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and relate these to an equation by sixth grade, with concepts of domain and range and understandings of the 
relationships between four representations of functions expected by eighth grade (National Governors 
Association Center for Best Practices, Council of Chief State School Officers [NGA/CCSSO], 2010).  

Function Components 
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Verbal Verbal rule Verbal rule Verbal 

Arrow 
Diagram/ 

Table 

A circle around the 
elements of the 

domain/Elements of the 
domain in a column form 

A circle around the 
elements of the 

range/Elements of the 
range in a column form 

 Arrows/Element in domain 
row corresponds to the 

element in the range of the 
same row 

Algebraic Mathematical notation Mathematical notation Formula 
Graphical 

 
     The horizontal or x-axis 

of a coordinate plane 
  The vertical or y-axis of 

a coordinate plane 
A set of points on the 

coordinate plane 
Figure 1. Function representations and function components 

The work presented in this article is part of a larger study whose overarching aim was to explore how sixth-
grade students develop understandings of algebraic expressions and equations (Moss & Lamberg, 2019). In 
the context of a whole-class teaching experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), we 
investigated how sixth-grade students developed early understandings of functions by extending their 
concepts of variables and their representations. The goal of the study was to document and understand how 
sixth-grade students think mathematically when presented with functional tasks in a teaching experiment. 
The aim of this paper is to present a realized learning trajectory that can be used by teachers and curriculum 
developers to support student understanding of representing and analyzing quantitative relationships 
between independent and dependent variables across different representations. 

THEORETICAL FRAMEWORK 

Correspondence and Covariation 

Smith (2008) defines functional thinking as “representational thinking that focuses on the relationship 
between two (or more) varying quantities, specifically the kinds of thinking that lead from specific 
relationships (individual incidences) to generalizations of that relationship across instances” (p. 143). Consider 
the problem, “What is the relationship between the number of eyes that a group of dogs has and the number 
of dogs?” (Blanton, 2008). In this problem, one quantity is directly related through a specific correspondence 
to another quantity. The correspondence relationship in this problem is for every dog, there are two eyes, or e 
= 2d where e is the number of eyes and d is the number of dogs. Describing this relationship with words and 
variables is an important precursor for the study of algebra in the middle grades where students begin to more 
formally study linear functions (Blanton, Levi, Crites, & Dougherty, 2011). Another aspect of a transition to 
functional thinking is describing covariational relationships about how quantities change together. Describing 
a covariational relationship in this problem might involve reasoning that “if we add one more dog to the group, 
the number of eyes in the group increases by two”. 

Word problems with contexts that encourage students to engage in functional thinking contain explicit 
scenarios that determine and allow for unknown quantities in the problem to vary. The representations that 
are used to communicate relationships influence the functional reasoning employed by students (Caddle & 
Brizuela, 2011; Duvall, 2006). For instance, the variables in the eyes per dog algebraic representation (e=2d) 
might be interpreted as specific unknown or known values instead of variables that vary, depending on the 
representation. A function table representation may connote variables as known values, whereas in the 
algebraic representation (e = 2 d), the variables are interpreted as unknown values (see Figure 2). 

Table Representation 
d e 
1 2 
2 4 
3 6 
4 8 

Figure 2. Example of a table representing known values of a function 
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 The eye and dog task provides opportunity to reason about discrete covariation between two variables. If 
the problem were changed to, for example, “If Blake swims twice as fast as Adrienne, then how fast does Blake 
swim?”, then the context of the problem would allow the variables to vary continuously, meaning that when a 
quantity has different values, it changes from one to another by assuming all intermediate values (Saldanha 
& Thompson, 1998; Thompson, 1995). Thompson and Carlson (2017) offer the following meaning of function 
based on covariational reasoning: 

A function, covariationally, is a conception of two quantities varying simultaneously such 
that there is an invariant relationship between their values that has the property that, in 
the person’s conception, every value of one quantity determines exactly one value of the 
other. (p. 436).  

To develop this robust understanding of function needed for calculus, students must begin to coordinate a 
change in one continuously varying quantity with a change in another continuously varying quantity (Carlson 
& Oehrtman, 2005). 

Functional Thinking in the Elementary Grades 

Elementary mathematics teachers can help support children’s functional thinking by providing children 
with opportunities to think about variables as varying quantities (Blanton et al., 2011). Reasoning about 
unknown quantities, such as comparing equivalent or nonequivalent quantities, can begin as early as grade 3 
(Dougherty, 2008). For instance, comparing the number of kids in Class A to the number of kids in Class B as 
A>B, or B<A, or A=B, promotes students to think about properties of equality (a prerequisite to learning 
algebra) and provides practice in quantitative reasoning that is essential for understanding functions. 
According to Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015), young elementary students 
can represent function rules between covarying quantities. The National Research Council (2001) also report 
that children in the elementary grades “can observe that over time and across different circumstances, 
numerical quantities can vary in principled ways… They can learn about functions by studying how a change 
in one variable is reflected in the behavior of another” (p. 280). 

Representational Fluency in Functional Thinking 

Learning algebra includes relating symbolic systems to real-world situations, graphs and tables, or 
arithmetic patterns (Kirshner, 2001). Moreover, students in middle school should know how to use algebraic 
models or representations to symbolize quantitative relationships (NGA/CCSSO, 2010). Placing an algebra 
problem in context helps students make sense of the mathematics and supports conceptual understanding of 
abstract representations (Earnest & Balti, 2008). “An understanding of the meanings and uses of variables 
develops gradually as students create and use symbolic expressions and relate them to verbal, tabular, and 
graphical representations” (NCTM, 2000, p. 225). Thus, conceptions of variables are developed via connecting 
representations that will eventually symbolize functional relationships. 

Students’ Thinking about Variables 

Research in algebra shows that students have difficulty interpreting letters as variables that represent 
more than one value, and studies have focused on how students’ symbolizing becomes more abstract (Moss & 
Lamberg, 2019; National Research Council, 2001; Radford, 2014). Letters that represent unknowns or 
constants are used in algebraic equations where the main goal is to simplify or solve. Variables as varying 
quantities are seen in equations where variables are arguments such as in y = x + 2. A person can use a symbol 
to represent a quantity that never varies (a constant), as having a value that changes from setting to setting 
(a parameter), or has a value that varies within a setting (a variable) (Thompson & Carlson, 2017). Often, 
students ignore a variable completely (Küchemann, 1978), treat a variable as a label for an object or icon 
(McNeil et al., 2010; Stacey & Macgregor, 1997), and frequently believe a variable is a specific unknown 
(Kuchemann, 1978; Stacey & Macgregor, 1997). These conceptions can impact students’ functional thinking. 

Understanding the different meanings of variables is not a natural process. When students encounter 
different problem types that have different meaning of variables embedded in the context they become 
confused. Therefore, explicitly addressing the meaning of the variable helps students make sense of the 
problem context and meaningfully use the variable to solve problems (Moss & Lamberg, 2019). Therefore, two 
research questions that guided this study are: (a) What was the realized learning trajectory that emerged 
when learning functions? and (b) What is the role of student conceptions of variables in functional thinking? 
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METHODOLOGY 
Twenty-two students from a sixth-grade classroom in an urban elementary school in the western region of 

the United States participated in the study. The students included a total of 22 predominately Latino(a) 
students, ages 11 to 12. There were 11 female and 11 male students. The majority of the students were from 
lower to middle socioeconomic backgrounds. The classroom teacher had a master’s degree in education and 
had taught fifth and sixth grades for two years. 

We conducted a four week whole class teaching experiment in a sixth-grade classroom using a design 
research approach (Lamberg & Middleton, 2009). Design research has been increasingly used in research in 
education to “deal with messy situations, multiple dependent variables, and develop theories about domain 
specific learning processes within a social context using flexible design revisions” (Lamberg & Middleton, 2009, 
p. 233). The goal of design research is to address a problem in practice through an intervention, and it strives 
to inform the work of others through building theory and developing systematic investigations (Anderson & 
Shattuck, 2012; McKenney & Reeves, 2013; Walker, 2006). 

The design for students’ learning can involve a few lesson plans, a unit plan, or a whole curriculum. Design 
research relates to a classroom setting as it is flexible, allowing for daily adjustments to the lessons and micro-
experiments. Design research in a mathematics classroom allows researchers to directly study how students 
reason and learn mathematics (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). 

A hypothetical learning trajectory (Simon, 1995) is a model of student learning that consists of the goal for 
students’ learning, the tasks that will be used to promote students’ learning, and hypotheses about the process 
of this learning. A learning trajectory explains what occurred in the research with respect to the goal of 
promoting learning, why it happened, and how it happened. The outcomes are the learning trajectories that 
specify critical understandings of the mathematical content and map out tasks that hypothetically move 
students to deeper understandings of that content (Lamberg & Middleton, 2009). 

The first author designed a curriculum unit on expressions, equations and functions based on a review of 
research and laid out a hypothetical learning trajectory for learning expressions, equations, and functions 
(Moss, 2014). The teacher taught the lessons and worked collaboratively as a research team member to provide 
input and debrief daily about the lesson. To introduce an equation containing two variables (up until this 
point, students had been working with one-variable equations), the class was presented with a task with the 
context of a soccer square, where soccer players decide the distance between each cone and create a square to 
practice kicking the ball. The Soccer Square Problem is in Figure 3. 

 
Figure 3. The Soccer Square Problem and questions for students 

The context of the soccer square was chosen because many of the students in the class enjoyed and 
regularly played soccer at recess. Because functional thinking involves “generalizing relationships between 
quantities; representing those relationships, or functions, in multiple ways using natural language, formal 
algebraic notation, tables, and graphs; and reasoning fluently with these representations” (Stephens et al., 
2017, p. 144), it is important that students were familiar with how quantities vary in the task. The context of 
the soccer square also promoted students to think about writing a formula for the perimeter of a square in 
which the distance between the cones is unknown and recognize that there is more than one way to represent 
this relationship. The goals of this activity were to help students see a relationship between two variables and 
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to represent the perimeter of the soccer square verbally, with an arrow diagram, algebraically, and graphically 
(see Figure 1, Markovits et al., 1986). As a whole class, the teacher and students discussed questions 1 
through 3 in the Soccer Square Problem. Students worked in groups to find a formula for the perimeter of a 
square without knowing the distance between each cone through using an arrow diagram, a algebraic formula, 
and a graph. Then, the teacher facilitated a whole class discussion among the students.  

Data sources for this teaching episode included field notes (Maxwell, 2005), video recordings, and 
documentation of anything that occurred in the classroom such as students’ work and researchers’ reflections. 
The data was analyzed prospectively throughout the whole class teaching experiment and retrospectively after 
the teaching experiment was complete. The data was analyzed using a grounded theory approach to provide 
explanations about why events occurred within this teaching episode and what these events mean in terms of 
student learning of functions (Corbin & Strauss, 2014; Gravemeijer & Cobb, 2006). The following coding 
scheme (Table 1) emerged from the data in the larger context of the whole class teaching experiment on how 
students made sense of the meaning of letters and variables (Moss & Lamberg, 2019). 

Table 1. Types of Thinking about Letters that Emerged from the Larger Context 
Types of Thinking about Letters and 
Variables 

Examples of problem contexts that show these Types of 
Thinking 

Letters represents labels of categories, where each 
letter represents a categorical unit 
 

and 
 

Letters represent labels of known quantities  

Students count the total number of M&M’s from a small bag. Write an 
expression to find the total amount of red and green M&M’s. 
 

3 red and 2 green expression 3r+2g 
 

3 red and 2 green expression r+g 
Letters represent changing values  Find the price for 4 packs of cupcakes and a single gallon of milk (e.g., 

4c+s) at different stores (given that the prices are different at each 
store) 

Letters represent known values.  Given c=2 and s=3, substitute values to solve the problem 4c + s (e.g., 
4(2) +3=11) 

Letters represent an unknown value 
 

and 
 

Letters represent a known value 

Given x +5=11, balance the equation to solve for x 
 

x= 6 

Letters represent a varying quantity  
 

and  
 

Letters represent a co-varying quantity 

Find a formula for the perimeter of a square. Substitute a value for 
the side distance of the square to find the perimeter of the square. 
4s =p, when s=1, then p=4, when s=2, then p=8, etc. As s increases by 
1, P increases by 4. 

 

RESULTS 
The learning trajectory that emerged included visualizing and modeling the problem context with an 

equation, exploring the relationship between an independent and dependent variable by creating an arrow 
diagram, graphing the data, and making connections that a function represents a relationship between the 
independent and dependent variable as illustrated in Figure 4. The large rectangle is the target CCSSM for 
sixth-grade expressions and equations that introduces the relationship between independent and dependent 
variables (NGA/CCSSO, 2010). The smaller rectangles represent the realized learning trajectory that emerged 
to make sense of functions. The next section expands on this learning trajectory and provides examples of the 
learning activities. 

 
Figure 4. The Soccer Square Problem and questions for students 
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Modeling a Problem Context with an Equation 

Students modeled the problem context and wrote an equation to represent how they visualized the 
situation. They determined that since the soccer field is a square, it has equal side lengths. Modeling the 
problem context contributed to their sense making. The understanding emerged as students engaged in a 
discussion in relation to the problem context of the square soccer field that must have sides of the same length. 
In addition, they needed to figure out that they were trying to find the perimeter. This process involved 
integrating how to represent the concept of perimeter, as experienced in the problem context, as an expression 
of 4s that determined the total length of the perimeter. The independent variable was the length of the side 
(s). The dependent variable was the perimeter (p). Students wrote an equation to represent the relationship 
between the side lengths and the perimeter. Exploring this relationship involved thinking about the length of 
a side of the soccer field that can change its value and impact the size of the perimeter. The following discussion 
among the teacher and students shows students coming to an understanding that the side lengths have to be 
equal in a soccer square.  

Teacher:  Based on the picture and the video, how far away should the cones    
  be placed? 

Jenn:  Equal sides. a square has equal sides. 
Teacher:  So, what does this mean? 
Chris:  Same distance 
Teacher:  And that makes it equal sides. And why do they have to be equal? 
Chris:  Because a square has equal sides. 
Teacher:  Anyone else? 
Lisa:  I think the cones should be 10 ft away from each other? 
Teacher:  Like 10 ft on one side and 12 on another? 
Lisa:  No, like 10 ft, 10 ft, 10 ft, and 10 ft 
Teacher:  Why should they all be 10? 
Mary:  It’s like a square. 
Eric:  It has to be equal sides because otherwise it would be another    

  shape.  
Teacher:  What is a perimeter of a square? 
Owen:  Around the outside 
Teacher:  So those distances around the outside.  
Students made meaning of the soccer square as having four equal sides and the length of the sides had to 

be the same because it is a square. For example, another student in the class, Ingrid, illustrated how each side 
of the soccer field was represented by an s (see Figure 5). The s represented the length of one side of the soccer 
field. 

 
Figure 5. Ingrid’s work of modeling with an equation 
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In Ingrid’s representation of the equation, she used a formula with the letters s and P to label side and 
perimeter. The s represented the category of the side length of the field. When she wrote s+s+s+s=P and 
2s+2s=P. She used the letter s as representing the length of a side that is a changing value depending on the 
context. The equation represented how to calculate the perimeter of a particular soccer square by replacing 
each letter s with the same number in the equation. The equation also indicates that a relationship exists 
between the quantities of side length and perimeter. 

Students in the class indicated that there was more than one way to represent the perimeter of the square 
using an equation. Therefore, they had a flexible understanding of the meaning of the variable and how to 
model the problem. The following dialog represents how students modeled the problem situation and wrote an 
equation. 

Teacher:  What is one of the equations you came up with? 
Jake:  4s = P 
Chris:  n times four equals p 
Eric:  a + a + a + a equals P 
Mary:  Also known as 4a 
Lisa:  4x = P 
Teacher:  Are there any others without just changing the variable? 
Ingrid:  2x + 2x = P 
Although Ingrid used s and P in her written work, she called out that her equation is 2x + 2x = P. This 

suggests that Ingrid understands the equivalence of the formulas 2s + 2s = P and 2x + 2x = P and 4x = P and 
also confirms that Ingrid did not use s solely as a label for side.  

In Figure 6, Eric drew a square with side lengths of 20 and wrote the equations A + A + A + A = D and 4A 
= D. Eric assigned a specific value of 20 for each side length. Therefore, his initial drawing indicated that he 
was thinking about a particular soccer square. However, he wrote the formula below to model the problem 
situation. He was also thinking abstractly about the problem context representing changing values that he 
could find using his equation. 

 
Figure 6. Eric’s work of modeling with an equation 

Arrow Diagram 

As a whole class in the next phase of the instructional sequence, students came to an agreement to use the 
equation for a perimeter of a square of 4s = P. The teacher introduced the components of an arrow diagram 
(i.e. inputs, outputs, domain, range). Students were asked to create an arrow diagram for the equation of the 
perimeter of a square. To create the arrow diagram, students conceptualized a letter as representing a known 
value, an unknown value, and a changing value. Students began reasoning about known and unknown values 
through thinking about inputs and outputs. Eric’s work is shown in Figure 7. 
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Figure 7. Eric’s work of determining inputs and outputs 

Eric labeled the s as the input and the p as the output. He wrote input=1. He understood that if s=1, it can 
be substituted into the problem to figure out the output of four (4 times 1=p). This required understanding 
that the letter s can represent the known value of 1. When the value is known, it no longer needs to be 
represented with a letter and could be substituted to solve for p. The letter p represented an unknown value 
and, subsequently, a changing value, in the problem. The p also represented the output. The students were 
connecting that the domain represented the inputs that impacted the outputs. 

After most students had completed their own arrow diagrams, the teacher provided the students with the 
inputs and asked for the outputs during a whole class discussion to clarify the idea of inputs and outputs for 
all students in the class. Figure 8 shows a class representation of the arrow diagram for the function p = 4s 
that emerged through a discussion of inputs and outputs. Eric again substituted the input, 2, for s and found 
8 for p. 

 
Figure 8. The class representation of an arrow diagram for the function p = 4s 

Teacher:  I’m going to tell you what the input is, and you raise your hand if you   
  know what the output is. My input is 1, what is my output? 

Gina:  4 
Teacher:  My input is 2, what is my output? 
Eric:  8 
Teacher: My input is 3, what is my output? 
Lisa:  12 
Teacher:  My input is 4, what is my output? 
Britney:  16 
[Teacher and students continue through input of 6] 
With the arrow diagram, the context of the soccer square is further removed and letters are replaced with 

a different (verbal) label: “input” means x, s, or a, and “output” means p. In this scenario, there is an implicit 
rule for the inputs given by counting numbers: 1, 2, 3, 4, 5. At this point, students were performing calculations 
to find outputs for known values. They were not explicitly thinking about the functional relationship between 
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the numbers (inputs and outputs) and were not necessarily reasoning about the letters as representing varying 
quantities. 

Graph 

In a subsequent teaching session, students were given a table of points and asked to plot the points on a 
Cartesian plane and draw a line through the points. Then, students were asked to explain why the line that 
they drew is represented by y = x+3. The students were tasked with graphing the ordered pairs (0, 3), (2, 5), 
(4, 7), and (6, 9) and then connecting them with a line. Figure 9 displays Frank’s, Eric’s, and Chris’ answers 
about why the graph of a set of ordered pairs corresponds with the equation y = x + 3. 

This (the graphed line) is the line y = x + 3. Can you explain why? 
(Students’ responses are replicated below:) 

Frank y = x + 3 
y = 0 + 3 

Eric This line is y = x + 3 because x is 0 and 0 + 3 = 3 and y = 3 
3=3 

Chris This is because If x is 0 y is 3, if x is 2 y is 5. This can keep going with the same operation. 
This is why the line is y = x + 3 

Figure 9. Frank’s, Eric’s, and Chris’ answers about why the graph of a set of ordered pairs corresponds with 
the equation y = x + 3 

Frank, Eric, and Chris each correctly plotted the four points and connected the points with a line. In 
Frank’s explanation of why the equation y= x+3 represents the line, he indicated that he substituted the input 
of 0 for x into the equation. Eric’s explanation includes further justification that the output value of 3 in the 
equation y = x + 3 after substituting x=0 agrees with the line including the point (0, 3). 

When students graphed the points and explicitly looked at the trends in the data they started to engage in 
functional thinking as a covarying (Confrey & Smith, 1994; Saldanha & Thompson, 1998) relationship between 
the numbers. These students noticed that the larger the input, the greater the perimeter and thought about 
the relationship between the changing values, the input, and the output that represented an unknown value. 
This process of noticing trends reinforced the meaning of the letter for the input as a varying quantity. 

Chris’ explanation (Figure 9) describes his reasoning about a correspondence between multiple input and 
output values. He focused on the relationship between known x-values and known y-values (that the y-values 
were three larger than the x-values), a correspondence relationship. Chris wrote, “keep going with the same 
operation”, which suggests that he has begun to generalize the relationship between inputs and outputs. For 
example, if Chris was provided with the input value of 7, then he would be able to find the output value of 10 
using the equation y = x + 3.  

The points that Chris plotted each have the x-values increasing by 2. If he were considering variation in 
the y-values (that they increase by 2), he would be engaging in (discrete) variational reasoning (Thompson & 
Carlson, 2017). Despite drawing the line, his explanation certainly does not suggest he has considered 
continuous variation, as he does not explain what would happen if x were not an integer, such as the decimal 
1.3. 

Function 

In the last stage of the instructional sequence, students began to understand that how the dependent 
variable, y, changes depends on the independent variable, x. The short excerpt below shows how students 
began to reason about correspondence with functions in a whole class discussion facilitated by the teacher. 

Teacher:  What if I tell you that my x coordinate is 1. What am I going to do? 
Joanna:  Add 
Teacher:  Add what? 
Joanna:  Add the x 
Teacher:  So I have y = 1 + 3. Can I solve? 
Class:  y = 4 
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Gina:  Um, so I just don’t get how you got the numbers for x. 
Eric:  The coordinates. If this is a variable for 0 then y is a variable for 3 
Teacher:  Gina, if I look at this and let’s say I pick x is 1, and we chose x is 1, then Joanna  

  said 1 + 3 equals 4. Does that fall onto the line that I drew? If I plot that and plug  
  that into my equation, so y equals 4, does that plot on the same line? 

Class:  Yes 
Teacher:  What if I say x is 3? 
Gina:  That would be 6 
Teacher:  6, right. If I go up 6, does that fall on that line? 
Class:  Yes 
Teacher:  Do I see a pattern here? 
Class:  Yes 
Teacher:  If I pick any number for x and plug it into my equation for y, will it fall on my  

  line? 
Class:  Yes 
Teacher:  So, if I say x equals 5 and I plug it into my equation over there so x equals 5, and  

  y is x + 3, what would y equal? 
Jake:  y would be 8 
Teacher:  Let’s see if that falls on my line here. Do you see that pattern? Does anyone know  

  what that is called? When we have an equation and use it for this? 
Eric:  Function 
Most students made arrow diagrams with inputs and outputs and understood how to graph a line through 

the coordinates. The context lent itself to continuous data; however, students only worked with discrete data. 
Chris (Figure 9) understood the generality of the relationship between independent and dependent variables, 
varying and co-varying quantities, espousing a view of a relation as a repeatable input-output process 
(Dubinsky & Harel, 1992; Smith, 2008). 

CONCLUSIONS AND IMPLICATIONS 
The progression of learning functions involved learning to model the problem context and represent the 

situation as an equation. During this process students had to understand the different meanings of letters: 
letters represents changing values, known values, unknown values, varying quantities, and co-varying 
quantities. Students reasoned about these representations in different ways depending on their conceptions of 
letters and variables within the problem context as described in Table 1. 

Learning functions involved integrating these different types of thinking about letters and variables. The 
phases of functional development involved being able to model a situation and represent it as an equation. 
The ability to calculate input and output in the problem context involved a correspondence relationship 
(Blanton, 2008; Rizzuti, 1991). This process involves substituting numbers for the independent variable in the 
equation in order to calculate the dependent value. Functional thinking occurred when patterns and trends 
between the input and output became apparent through graphing. In the graph of the line y = x +3, as the 
input, x, increases, the output, y also increases. 

Functional thinking was introduced after learning about expressions and equations. During the teaching 
of expressions and equations, students developed an understanding of how to model situations using letters 
and variables and also explicitly thought about the meaning of variables. Therefore, when they encountered 
functions, they were attending to multiple meanings of letters and variables. The understanding of the 
different meanings of letters and variables in expressions and equations (see Figure 3) was critical for sixth-
grade students to successfully understand functions. Students that thought about letters as representing labels 
of categories did not engage in thinking about functions where letters represent changing, known, unknown, 
and varying and covarying quantities. Using the function for perimeter of a square, P=4s, Table 2 shows types 
of thinking about letters and variables in P=4s for sixth-grade students. 
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Table 2. Types of thinking about letters and variables in P=4s for sixth-grade students 
Types of Thinking about 
Letters and Variables 

Types of Thinking about Letters and 
Variables in P=4s 

Example of Mathematical 
Behavior 

Letters represent labels of 
categories 

P is Perimeter and s is side 
 

Perimeter is equal to 4 sides 
None 

Letters represent labels of 
known quantities  
 

Perimeter (P) is 8 and side (s) is 2  
 

Perimeter is equal to 4 sides or 8 is equal to 4 
sides of length 2 

Replacing Perimeter (P) with 8 and 
sides (s) with 2 

Letters represent changing 
values  
 

Letters represent known values 

If P=4s,  
s P 
1 4 
2 8 
3 12 

 

The side lengths of a given square can change, 
which changes the perimeter of the square.  
 

If s is 1, and P=4s, then P=4. s and P are known 
values. 

Given a sequence of values for s, 
filling in an arrow diagram or table 
with the corresponding value of P by 
successively substituting the values 
into the equation P=4s and 
simplifying.  

Letters represent unknown 
values 
 

Letters represent known values 

Given P = 12 and P=4s, then 12= 4s, so s = 3.  
 

In the equation 12= 4s, s is an unknown value. P = 
12 and s = 3 are known values. 

Solving for a previously unknown 
value, s, in 12= 4s, so that s becomes 
equal to 3, a known value.  

Letters represent varying 
quantities  
 

Letters represent co-varying 
quantities 

Substituting any value for the side length of the 
square to find the perimeter of the square. 
 

In the equation 4s =P, when s=1, then P=4, when 
s=2, then P=8, etc. As s increases by 1, P increases 
by 4. 
 

The Perimeter of a square (P) varies as the side 
length of the square (s) varies. 

Filling in both sides of an arrow 
diagram or table for s and P in the 
equation P=4s. 
 

Graphing the line of P=4s by plotting 
points.  

 

Teachers can anticipate students’ mathematical behavior and types of thinking about letters and variables 
to plan and modify lessons (e.g. Table 2). Although objectives for teachers of what students are expected to 
learn are provided in the CCSSM (NGA/CCSSO, 2010), teachers need to know the big mathematical ideas and 
be able to present these as interconnected topics (Ma, 2010). In our results, the anticipated mathematical idea 
was learning the different representations of functions: modeling with an equation, arrow diagram, graph, 
and function (Figure 4), as determined by the CCSSM (NGA/CCSSO, 2010). However, the findings of this 
study suggest that the types of thinking about letters and variables strongly influenced students’ thinking of 
functions. Teachers need to help students to make connections between the types of thinking about letters and 
variables in order to learn functions.  

We offer two ways in which prior research identifying the importance of learning about the different 
meanings of variables (Blanton, 2008; McNeil et al., 2010; Phillip, 1992) might be leveraged to improve upon 
the design described in this study. One area for potential improvement is being cognizant of whether the 
context of a problem engages students in a discussion of discrete functions versus continuous functions. Van 
de Walle, Karp, and Bay-Williams (2015) states that “the discussion of functions, especially graphical 
representations, should include a discussion of whether the points plotted on the graph should be connected 
or not and why” (p. 353). The context of the problem dictates whether or not the points should be connected. 
In the graphing example of the learning progression, all values along the line were solutions to the function. 
However, since the students were only exposed to isolated or selected values in the context for the sides of the 
soccer square, they did not consider whether the function is continuous. Future teaching experiments should 
explore a similar context, but expose students to rational numbers as well as whole numbers and have students 
determine if the rational numbers make sense with the context of the problem. Students’ use of rational 
numbers throughout the learning progression may support this understanding. 

A second area of the instructional sequence that should be further explored is the sequencing of including 
and excluding context and in allowing letters to represent quantities that vary and co-vary. In the learning 
progression, letters first represent labels of categories. Letters also represented labels of known quantities 
and later as known, unknown, and changing values. When arrow diagrams were introduced, the 
understanding of letter representing a varying and co-varying quantity was emphasized. If students make 
connections among representations of functions through quantitative reasoning throughout the progression, 
they may be more likely to develop a robust understanding of functions demanded by K-12 national standards 
and requisite for success in college mathematics courses. 
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