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 In this paper, we present parts of an online qualitative research project which lasted a whole semester about the 

understanding of real numbers by sixty first-year Greek mathematics undergraduate students during the COVID-
19 pandemic. We focus on the distinction between rational and irrational numbers and their location on the 

number line using straightedge and compass. The results, came of questionnaires, focused interviews and tasks, 

disclosed some gaps regarding real numbers that the students had from school and revealed confusion between 

irrational numbers and their decimal approximation. The results also led us to group students’ conceptions of 

rational and irrational numbers into five categories related to the number and pattern of decimal digits. Teaching 
practices and perspectives as well as the, negative, impact of the pandemic on teaching and learning mathematics 

are discussed. 
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INTRODUCTION 

The notion of number, in general, although seemingly simple, is one of the most fundamental and at the same time most 

complex mathematical concepts. The history of real numbers’ foundation begins in 300 BC with Euclid, who in his Elements saves 

the relevant work of the Pythagoreans, Theaetetus, and Eudoxus, and reaches up to the early 20th century and Dedekind cuts 

(Klein, 1972). Today, the teaching of real numbers and their subsets constitutes a fundamental part of the mathematical 

curriculum in elementary and high school as well as a standard section of core subjects (e.g., algebra or real analysis) in many 

university faculties. 

A deep knowledge of the structure of real numbers is a necessary condition for understanding the foundations of mathematics 

(NCTM, 2006) but also for many basic concepts of calculus such as ε-δ definitions, limits, continuity and derivatives. However, as 

has long been observed, the majority of both high school and university students face several challenges in understanding the 

above concepts (Adhikari, 2021; Adiredja, 2021; Artigue, 1997; Bansilal & Mkhwanazi, 2021; Biza et al., 2008; Cornu, 1991; Roh, 2008; 

Tall, 1992; Tirosh et al., 1998; Vinner, 1991). 

To the best of our knowledge there is no any comprehensive study on undergraduate students’ thinking about real numbers, 

which would focus on the identification of rational and irrational numbers in relation to their placement on the line of real 

numbers, with distance education methods during the COVID-19 pandemic (Pitta-Pantazi et al., 2020; Uegatani et al., 2021). 

The main aim of this paper is to explore the conceptions and reactions of first-year Greek mathematics students regarding real 

numbers and their representation on the number line, using only straightedge and compass, in a calculus course. Considering that 

the students’ understanding of the fundamental concepts of calculus presupposes the knowledge of rational and irrational 

numbers, this paper aspires to contribute to the existing literature, mainly with the “categories of conceptions”, which emerged 

from the analysis of the research results. In parallel, the effect of the adoption of information and communication technologies 

(ICT) within the COVID-19 pandemic era is mentioned. 

After this short introduction, we review the literature on students’ difficulties about rational and irrational numbers and we 

provide a view of the Greek educational reality. In the next paragraph we clarify our didactical approach and pose our research 

questions. Then we perform an overview of the research project, we analyze the results of the didactical experiment we conducted 

by remote methods, closing with the main implication of the study and some comments and suggestions. 
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THEORETICAL BACKGROUND 

Literature Review  

Students’ difficulties with rational numbers start already in primary school (Siegler & Lortie-Forgues, 2017; Smith et al., 2005; 

Tian & Siegler, 2018). Some of these difficulties are related to the extension of properties of natural numbers to rational numbers 

(Vamvakoussi & Vosniadou, 2004) like the existence of the “next” number (Merenluoto & Lehtinen, 2002) or bias connected to the 

multiplication and division of natural numbers (Christou & Vamvakoussi, 2021). 

This fundamental difference between the discreteness of natural numbers and the density of rational numbers creates a lot of 

misconceptions that follow students in high school (Vamvakoussi & Vosniadou, 2007). For example, they continue to manage the 

fraction p/q as two independent natural numbers p and q (Siegler & Pyke, 2013) or incline to the additive rather than the 

multiplicative expression of the relationship between p and q, i.e., they perceive 2/5 as 1/5 + 1/5 rather than 2 ∙
1

5
 (Stafylidou & 

Vosniadou, 2004). They also consider that the more decimal digits a decimal number has, the larger it is (Moskal & Magone, 2000; 

Roell et al., 2017) and that a fraction increases when its terms increase (Chinnappan & Forrester, 2014; van Hoof et al., 2013). Roell 

et al. (2019) claim that the whole number bias is at the root of errors in decimal magnitude comparison tasks. 

Particularly for rational and irrational numbers and their properties (representation, ordering, density, and operations), many 

studies show that both high school and university students encounter various difficulties (Arcavi et al., 1987; Giannakoulias et al., 

2007; Kidron, 2016; O’ Connor, 2001; Patel & Varma, 2018; Zazkis & Sirotic, 2004, 2010). For example, they find it difficult to define 

rational and irrational numbers accurately, resorting to incorrect interpretations and models related to their grade (Fischbein et 

al., 1995) or they base their understanding about irrational numbers on intuition, rather than on formal knowledge (Guven et al., 

2011). Besides, the tendency of students to oversimplify problems when they find it difficult to elaborate a subject mathematically 

by constructing imaginative models and naive interpretations even where they are not applied is well known (Rizos et al., 2017). 

But even prospective mathematics teachers who can render the exact definition of irrational numbers and know their basic 

characteristics, face serious difficulties in handling tasks relative to the different representations of irrational numbers, as well as 

in placing them on the number line (Peled & Hershkovitz, 1999; Sirotic & Zazkis, 2007; Tall, 2013). 

Especially for placing numbers on the number line, the ancient Greek tradition of geometric constructions with straightedge 

and compass offers students a good opportunity to work with classical methods (Gulikers & Blom, 2001). The value of this historical 

tradition lies (and) in the plethora of mathematical problems that can be solved with this technique. After all, according to Arcavi 

et al. (1987), a view that we also share, the historical origin of irrationals in general, and the connections to geometry in particular, 

can provide an insightful understanding of the concept of irrationality as well as teaching ideas for the introduction of the topic in 

the classroom. 

The Greek Educational Reality 

In Greek educational system, the real numbers are taught successively in elementary and secondary education, according to 

a spiral extension of the basic subsets that compose the set of real numbers (natural, integers, rational, irrational) equipped with 

operations and relations and their properties. Nevertheless, the teaching and the textbooks have essentially a formalistic 

character, namely are focused on solving techniques of theoretical exercises (Tzekaki et al., 2003). In this way, however, students–

all over the world–acquire fragmentary knowledge (Moseley, 2005) and lose the opportunity to get the feeling of the beauty of 

mathematics as a fundamental human achievement (Fischbein et al., 1995). 

Compared with the teaching of real numbers and, in general, algebra and calculus, the teaching of geometry in the Greek 

school has been limited and arithmetized, meaning it is taught as an axiomatic presentation which presupposes the system of real 

numbers (Patronis & Thomaidis, 1997). Especially in recent years, geometry has been degraded mainly to comparison of triangles, 

geometric calculations, and analytic geometry. There is no discussion on historical and cultural contexts that influenced the 

formation of Euclid’s Elements and the evolution of geometry up to the analytic geometry of Descartes and Fermat. Of the plane 

loci, only the circle, the bisector, and the perpendicular bisector appear sporadically in some paragraphs of the textbooks, while 

the geometric constructions with straightedge and compass are no longer part of the daily school practice. 

In contrast to other countries (e.g., Netherlands, Sweden, and Finland) which do not apply control over textbooks and in which 

the main responsibility for selecting the most appropriate textbook on the market lies with the teachers, in Greece the educational 

system is highly centralized, there is a national mathematics curriculum and one mathematics textbook for each year (Potari et 

al., 2019), thus making the official textbook particularly important. At the end of each chapter there is a historical note, which 

however is not part of the examinable material, so it is usually ignored by both students and teachers. After all, most math teachers 

have very little historical experience, since there is essentially lack of history of mathematics in pre- and in-service experiences of 

teachers. 

The transition from secondary to tertiary education for Greek students who had taken mathematics as a major subject in high 

school, in order to study mathematics at university, faces several challenges. The main ones are the increase in the difficulty of the 

curriculum (e.g., the rigor of the mathematical language), as well as the pursuit for a new identity of studying mathematics (Bampili 

et al., 2019). 

In the first semester of studies, in all mathematics departments of Greek universities, students are taught calculus, usually six 

hours per week. The basic concepts included in the curriculum are: real numbers and their subsets, sequences, real functions of 

one variable, limits, continuity, and derivatives. The school knowledge of real numbers is taken for granted and students should 

be familiar with them in order to face the fundamental calculus concepts (Giannakoulias et al., 2007). Most university calculus 
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books contain short historical notices regarding geometric constructions with straightedge and compass, but experience has 

shown that few students read them, as is the case with school textbooks. 

During the closure of universities and schools in Greece due to the pandemic (March 2020–August 2021), the teaching model 

that almost all of university teachers followed consisted of live distance lectures using digital communication platforms like MS-

Teams and WebEx (synchronous distance learning), in combination with the e-courses management system eClass (asynchronous 

distance learning). From March 10, 2020, when the first lockdown was announced, universities across Greece have been working 

to convert their face-to-face classes to online, without, of course, ignoring technical problems, at least in the beginning. Besides, 

a similar situation prevailed in higher education during lockdown period of pandemic all over the world (Mishra et al., 2020). Thus, 

distance education using ICT became from a very rare choice to a common practice. In particular ICTs was de facto established as 

the basic and in many cases the only tool of synchronous and asynchronous teaching and learning (Karalis & Raikou, 2020), saving 

the interaction, at least in part, between teachers and students. 

OUR DIDACTICAL APPROACH  

The traditional sequence “definition→theorem→proof→exercise” does not seem to have didactic success neither historical 

basis. For example, the concept of function, when taught in junior high school (grades 7-9) as a “box” with input and output, gives 

students the impression that in general mathematics is a “black box” with input and output, which processes numerical data and 

observations (no matter how it does) and feeds the next similar process. But also in high school (grades 10-12), where only the set-

theoretic definition of the function is taught, the students remain uninvolved in the wonderful evolution of the concept of the 

function from the ancient Babylonians (Neugebauer, 1957) to Euler (Valiron, 1971). Consequently, students cannot appreciate the 

generality and power of the concept of function. In fact, the set-theoretic definition of this concept does not tell them anything 

(Sierpinska, 1989).  

Our didactical approach combines mathematical with historical components, by taking advantage of an introductory 

mathematical course (calculus) together with elements from the History of mathematics, namely the ancient Greek tradition of 

geometric constructions with straightedge and compass, offered to students. In this way historical documents can be integrated 

in teaching and learning of mathematics (Fried, 2001; Furinghetti, 2020); thus, making the history of mathematics a tool, that is, a 

means of learning the content of Mathematics (Jankvist, 2009; Tzanakis et al., 2000). 

We designed the project in order to investigate students’ conceptions and strategies on real numbers. At the same time, we 

wish to involve students in activities that encourage them to expand their notion of mathematics as a human activity, as Tirosh et 

al. (1998) did, since we consider it crucial for the education. Additionally, we took seriously into account that a historical approach 

to specific topics from calculus can provide valuable insights to the students and helps to introduce them to the relationship 

between mathematics and other aspects of our culture (Katz, 1993). 

The participating students had mathematics as the main subject in high school and had already been taught the school 

definitions of rational (as a number which can be put in the form p/q, where p, q are integers and q is not zero) and irrational (as a 

real number that is not rational). In addition, they should know from their school experience, already from the 10th grade, that, 

given the length unit, every number has a position (exactly one point) on the real number line. Nevertheless, one may find it 

difficult to believe, especially if one has never seen an irrational point located on the number line (Sirotic & Zazkis, 2007). So, 

locating numbers on the number line might help undergraduate students understand the density of both rational and irrational 

numbers. 

Our research questions are about the way of thinking and the reactions of first-year Greek mathematics students on particular 

mathematical topics. The questions are interrelated and are focused on real numbers and their geometrical representation. More 

specifically, we are interested to find out: 

1. By what criteria do first-year Greek mathematics students distinguish numbers into rational and irrational, and what 

thinking strategies do they follow in order to find their exact place on the line of real numbers? 

2. To what extent can the contribution of geometric constructions in a calculus course increase the engagement of students? 

DESCRIPTION OF THE RESEARCH PROJECT 

During the research project we used the communication platform “MS-Teams”, the e-course management system “eClass”, 

the online survey creator “MS-Forms”, the presentation program “MS-PowerPoint”, email and of course a stylus pen and tablet, 

where we wrote and sketched the necessary figures. In parallel a web camera came in handy when we had to present to students’ 

geometric constructions with straightedge and compass. 

In the winter semester of the academic year 2020-2021, about one hundred and ten first-year mathematics students of a 

university department in Greece, who had taken the calculus course (two-hour lectures three times a week), were invited to 

participate voluntarily in a project. The invitation was made with an announcement on the eClass platform, as well as verbally 

during the first online meeting. At this point, it should be mentioned that the specific department is a new institution (founded in 

2019), which is located in central Greece and attracts students of all economic and social backgrounds from all over the country. 

Thus, in a sense, one could say that the sample of our research is representative. 
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60 students who accepted the invitation were given an e-questionnaire on MS-Forms. This happened in the middle of the first 

week of the course, that is, after the second meeting, before there was a substantial effect of the university teaching. The students 

(34 girls and 26 boys 18-19 years old) were of different educational and sociocultural levels and had been taught calculus 

(arithmetic and geometric sequences, functions of one variable, limits, continuity, derivatives, the rules, and the basic theorems 

of differentiation) in the 11th and 12th grade for two and five hours per week, respectively. In addition, all students were familiar 

with technology, had social media profiles, were able to use their mobile phones and tablets easily, and had quickly adapted to 

the distance learning process (Rizos & Gkrekas, 2022). 

The e-questionnaire aimed to reflect students’ pre-existing knowledge and perceptions about rational and irrational numbers 

as they move from secondary to tertiary education and it consisted of six sets of questions (with justification) regarding the 

representation, ordering, density and operations of real numbers. Similar questions have been asked by Arcavi et al. (1987), 

Fischbein et al. (1995), Giannakoulias et al. (2007), Mamona (1987), Vamvakousi & Vosniadou (2004), Voskoglou & Kosyvas (2012), 

Zachariades et al. (2013), and Zazkis & Sirotic (2010). Some typical questions were, as follows: 

1. Q1-What is the ratio of the diagonal (d) of a square to its side (a)? 

2. Q2-Is the quotient of two rationals always a rational number? 

3. Q3-Can you find the rational number immediately following the number 2/5?  

A few days later, after studying the answers collected from the e-questionnaires, we called a restricted number of participating 

students and in addition we conducted focused interviews through the MS-Teams platform, devoting one day to each interviewee. 

Taking into consideration all the above, we designed and implemented two two-hour meetings with about a week difference 

between them, which can be said to have played the role of didactic intervention. This happened halfway through the semester. 

In those meetings, we first set a historical and philosophical framework for rational and irrational numbers, starting with the 

discovery of incommensurability by Hippasus of Metapontum (von Fritz, 1945). We outlined the evolution of the foundation of real 

numbers from Eudoxus’ synthetic definition of proportionality to Dedekind cuts. Integrating primary sources (Jahnke et al., 2000), 

mainly Euclid’s Elements, involved the participants into geometric constructions with straightedge and compass and carried out 

the construction of an equilateral triangle (Elements, I.1), the division of a finite straight line into two and three equal parts 

(Elements, I.10 and VI.9, respectively) and the construction of the fourth proportional when three straight lines are given (Elements, 

VI.12). Then, using elementary mathematics we proved (by contradiction) that √2 is irrational and located it on the number line 

using only straightedge and compass. We also referred in brief to the three famous geometric problems of antiquity (circle 

squaring, cube duplication, and angle trisection), explaining why they are insoluble using only straightedge and compass. In other 

words, we tried to cultivate a positive attitude in our students towards geometric constructions, thus providing them with an 

additional tool in supporting the learning of rational and irrational numbers (Helfgott, 2004; Kleiner, 2001). Finally, we encouraged 

the students to experiment and try to make the same or similar constructions themselves. 

Due to the pandemic, our experiment classroom was virtual and consisted of students we had never met up close. It is obvious 

that in such an environment the teaching model changes radically. Although digital learning in Mathematics education was a 

positive response to the COVID-19 closure period (Mulenga & Marbán, 2020), the interaction between teacher and students is 

significantly reduced. This parameter seems to be essential because, no matter if somebody values online teaching or not, one 

cannot deny that face-to-face interaction is fundamental to any learning that occurs in Mathematics education (Borba, 2021). 

The next phase of our experiment was implemented at the end of the semester. With an announcement in eClass and oral 

information, we invited the 60 students who participated in the project to attend one last hourly meeting. We gave them a task in 

order to take feedback for our research, namely, to find out what the students acquired during the entire process. The task we set 

was the following: 

For the numbers given as 2/5, 1/3, 𝜋, √5, √2/2, find the exact location on the number line. For any number that is not possible to 

locate, fully explain the reason. For any number that is possible to locate, indicate the exact location, describing in detail the process. 

The students dealt with the task in their notebooks, which they scanned with proper application and emailed us their answers 

in .pdf format. In general terms we would say that most students converted the given numbers to decimals in order to place them 

on the number line. So it seems that unlike square roots and fractions, decimal numbers provide a certainty. 

The majority of students do not have a clear criterion as to whether a real number can be placed exactly on the number line 

and in what exact way; what seemed to be crucial was the number of decimal digits. This issue is detailed in the next paragraph. 

However, there have been some responses that tend to justify, at least to some extent, our didactical approach. For example, some 

students combined the geometric construction of √2 with the bisection of a linear segment in order to construct the number 

√2/2. 

Finally, after the task, we asked the students who participated in the teaching experiment to evaluate the project by writing 

their thoughts in a paragraph. The texts we have collected undoubtedly show that regardless of the difficulty of the subjects, the 

students acquired a more positive attitude towards geometric constructions and mathematics generally. 

ANALYSIS 

During the project, which lasted a full semester, we collected data sets with several methods: e-questionnaire at the beginning 

of the semester, focused interviews (Merton & Kendall, 1946; Stewart & Shamdasani, 1990) with five students a few days later, a 

main task and written comments from all the participants towards the end of the semester. We basically followed Denzin’s (2009, 
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p. 310-311) multiple triangulation strategy, which encourages several data collection methods at various time periods, and the 

involvement of investigators with diverse expertise and roles. Particularly for the investigators, they were the first author of the 

paper, who actively participated in the project by making crucial interventions, and the second author who participated in all 

phases only by observing the research activities remotely (Burgess, 1984). The validity and reliability of the data are well-

documented in the above combined context. 

Students’ answers to each e-questionnaire and task question were grouped, with minimal verbal changes compared to their 

original wording, and placed on tables along with their frequency and percentage. There was collaboration and agreement among 

the researchers in grouping the data, thus making any further statistical control (e.g., inter-rater reliability test) not necessary. 

The Questionnaire 

Table 1 presents the answers of 60 students about the question Q1 (What is the ratio of diagonal (d) of a square to its side (a)?). 

As expected, students used the Pythagorean Theorem to answer, but only half of them were able to arrive at the correct answer. 

Eight students while reaching the relation 𝑑 = √2 ∙ 𝑎, could not display the ratio d/a. This, as the interviews showed, is due to two 

reasons: Some students were unaware of the meaning of the word “ratio”, while others were unable to solve a formula for a 

particular variable. It should also be noted that 21 students came up with results without natural significance. For example, it is 

not possible for the required ratio to be equal to 1, i.e., the diagonal of a square to be equal to its side! 

About the question Q1, students were quite familiar with performing algebraic operations, although they seemed to have 

difficulty solving a formula for a specific variable. However, this does not mean that they always realized the meaning of these 

operations and the results they come. 

Table 2 presents the answers about the question Q2 (Is the quotient of two rationals always a rational number?). This question 

seemed to be more difficult for the students than the first one, because while more than half of them answered correctly, only 

26.67% made a rigorous proof about the quotient of two rationals. The other students either based their claim on an example or 

relied on what they thought was a “counter-example” to justify that the quotient of two rationals is not rational. 

From this question, as it appeared from the progress of the experiment, several misconceptions of the students about the 

nature of the rational numbers and the operations between them emerged. Here, the well-known issue of the mathematics “proof” 

arose, which has been extensively studied in other researches (Alibert & Thomas, 2002; Hanna, 2000; Weber, 2001; Williams, 1979). 

In question Q2, the attention has to be paid to students who answered that the quotient of two rational numbers may not be 

rational. One student answered that “while the numbers 1/3 and 1/6 are rationals, their quotient is equal to 2, which is not”. In other 

words, it seems that the student considers that only fractions are rationals and not numbers that can take the form of a fraction in 

integer terms. That is, for the student, integers are not rationals. There were a total of 10 responses like this. Eight other students 

responded that the quotient of two rational numbers may not be rational, invoked repeating decimals as counter-examples. 

“1/3=0.333…, and 0.333… is irrational”, a student answered. Therefore, for these students, those decimal numbers that have an 

infinite number of decimal digits are irrationals. 

Table 3 presents the answers about the question Q3 (Can you find the rational number immediately following the number 2/5?). 

This question may have seemed the most difficult for the students, that is, the one related to the density of rational numbers. Only 

a small percentage, almost 12%, answered that there is no “next” of a rational number. The rest of the students followed a strategy 

based on the logic of the “next natural number” adding or subtracting unit fractions that can be said to play the role of the 

“infinitesimal”. 

The answers to question Q3 are also of great research interest. The response with the highest frequency, i.e., 3/5, resulted from 

the addition of 2/5+1/5. In other words, the students considered that the unit fraction 1/5 is essentially an elementary fraction, an 

“infinitesimal”, which added to 2/5 leads to the “next” rational number. 

Table 1. Q1-What is the ratio of diagonal (d) of a square to its side (a)? 

Response Frequency Percentage 

√𝟐 29 48.33 

𝒅 = √𝟐 ∙ 𝒂 8 13.33 

1 7 11.67 

2 4 6.67 

1/2 3 5.00 

Other 7 11.67 

No response 2 3.33 
 

Table 2. Q2-Is the quotient of two rationals always a rational number? 

Response Frequency Percentage 

No (counterexample) 18 30 

Yes (with explanation) 16 26.67 

Yes (“explanation” by an example) 12 20 

Yes 6 10 

Other 5 8.33 

Not always 3 5 
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The second most common response, i.e., 1/2, resulted from the following procedure: Initially the students performed the 

division and converted 2/5 to a decimal number (0.4). Then, they thought that the next decimal is 0.5 and finally converting 0.5 to 

a fraction, they were led to 1/2. Thus, to find the “next” fraction, we need the mediation of decimal numbers. However, there were 

some students who came up with essentially the same result, either by subtracting one unit from the denominator of the original 

fraction, i.e., 
2

5−1
=

2

4
, or by adding one unit to both the numerator and the denominator of the original fraction, that is 

2+1

5+1
=

3

6
. 

Three students added a unit to 2/5, ending up in the fraction 7/5. This reaction, which would be correct if we studied integers, 

is reminiscent of Polya’s (1945) heuristic method according to which when we cannot solve a problem, then we find another 

problem analogous to the given one. 

The Interviews 

In this section, we attempt a qualitative analysis of five dialogues we had with an equal number of students (let as call them 

Athena, Byron, Catherine, David, and Eleanor) in order to explore their views on the nature of rational and irrational numbers. The 

questions we asked are based on the answers we received from the e-questionnaire. 

Interview I: Researcher (R) and Athena (A) 

R: I see here that you used the Pythagorean Theorem… 

A: Yes, that’s what we did at school. And then I divided by a2 and I put square roots. 

R: Finally, are the magnitudes d and a commensurable or incommensurable? 

A: … What do you mean «commensurable or incommensurable»? 

R: Is their ratio rational or irrational number? 

A: That is, if I divide them? 

R: Let’s say yes. 

A: … Because the diagonal of a square is an irrational number, divisible by the side that is rational, it gives irrational. 

R: Does this apply to every square? 

A: Yes. I remember [from a textbook] for example that a = 1 and d = √2. 

From the above dialogue, it seems that the student ignores the concepts of commensurability and incommensurability, 

although this issue was discussed in a previous meeting, while she perceives the meaning of the ratio of two magnitudes as a 

division of measures of two quantities. In addition, she has formed the impression that the diagonal of the square is an irrational 

number, while the side is rational, which is obviously due to school exercises, where the lengths of the sides are usually integers. 

Interview II: Researcher (R) and Byron (B) 

R: The answer you give is “no” and as a justification you write 
1

2
1

4

=
4

2
= 2. I would like you to explain it to me a little more. 

B: If we take two rational numbers, 1/2 and 1/4 … 

R: Why are they rationals? 

B: They are fractions. 

R: Go on… 

Table 3. Q3-Can you find the rational number immediately following the number 2/5? 

Response Frequency Percentage 

3/5 18 30 

1/2 (or 2/4, 3/6, 5/10) 16 26.67 

There is no “next” number 7 11.67 

It is 0.400…1 but it is impossible to find 3 5 

7/5 3 5 

41/100 or 401/1000 3 5 

1 2 3.33 

1/6 2 3.33 

Other 5 8.33 

No response 1 1.67 
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B: Yes, and if we divide them, then we get a result of 2, which is not rational. 

R: 2 is not rational? 

B: No, it is integer. So the result of dividing two rationals is not always a rational number. 

R: When would it be rational? 

B: If as a result we get say 3/8. 

R: If the result, the quotient, was let’s say 1.75, would we accept it? 

B: It must be a fraction. No, we would not accept that. 

Byron still believes that only fractions with integer terms are rational numbers, while integers and decimals (obviously 

regardless of the number of decimal digits) are something different; they belong to classes disjoint to rationals. 

Interview III: Researcher (R) and Catherine (C) 

R: You write “No, it is not, e.g., 1/3 = 0. 3̅”. Can you explain it to me? 

C: 0. 3̅ has infinite decimal digits… It is irrational. 

R: What is the fraction 1/3? 

C: And this is irrational, because division never ends. 

R: The fraction 1/2 what is it? 

C: It is rational, because if you do the division, you get a result of 0.5. 

R: Is 0.5 rational? 

C: Yes, it ends there. 

R: While 0.333…? 

C: It is irrational. It goes on indefinitely. 

Many students believe that the number of decimal places in a decimal number determines whether the number is rational or 

irrational. Specifically, Catherine converts the given fraction into a decimal number and considers that the number 0.5 is rational 

because it has a finite number of decimal digits, while the number 0.333… is irrational because it has an infinite number of decimal 

digits. As we will see below, the number of decimal digits also seems to be related to the ability to locate numbers on the number 

line. 

Interview IV: Researcher (R) and Daniel (D) 

R: Is the number 0.111… rational or irrational? 

D: It is rational. 

R: How do we understand this? 

D: Because we know its decimal digits. It’s all 1, indefinitely. 

R: What is the number 4.127127127… Not all decimal digits are the same. 

D: But it is also rational. Its decimal digits are repeated. 

R: What about π? 

D: It is irrational. It is 3.14… I do not remember how it goes, but we don’t know its digits. Never ends. Nor is there a pattern… 

R: That is, if there was a pattern… as in the number 1.010010001…, what this number would be? 

D: Here… [short pause] there is a pattern. Each time we add a zero. So we know how this number goes… It is rational. 
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Few students seem to know more than two decimal digits of π, although many books and websites have various mnemonic 

rules, presumably for this purpose. On the contrary, the students seeing 3.14 spontaneously conclude that it is indeed the number 

π. 

Another issue is that the existence of a pattern in the decimal expansion of a number is a sufficient criterion for some students 

to be convinced that the number is rational. For example, in the previous dialogue, David describes a Liouville number as rational 

because he «knows how this number goes». Indeed, such a number has a very close rational approximation, but it is irrational; in 

fact, it is transcendental number (Apostol, 1997), namely number that is not the root of any integer polynomial. 

Interview V: Researcher (R) and Eleanor (E) 

R: What do you mean by “it is 0.400…1 but we can’t find it”? 

E: Actually, we can find it. 2/5=0.4 so the next number is 0.400…1, but this cannot practically be stated. 

R: Why not? 

E: Because we don’t know how many zeros there are between 4 and 1. Therefore, we can’t express it accurately. 

Eleanor, in order to deal with the question, converts the fraction to a decimal number, a strategy that was observed in most 

students. But what is important here is that she believes that “we can find the next number but […] we can’t express it accurately”. 

We consider that Eleanor’s conception is equivalent to the popular conception among students that the number 0.999… is 

immediately preceded by the number 1. 

The Task 

The most important part of the project turned out to be the task, for it gave us the opportunity to go deeper into how our 

students conceive rational and irrational numbers and in what ways these conceptions are related to the thinking strategies they 

follow in order to find the exact place of real numbers on the number line. In contrast with Sirotic and Zazkis (2007), we did not 

give students a line drawn on a Cartesian plane with a visible grid. So, in our project, students had to draw a straight line 

themselves and carry out the constructions. 

We point out that during our didactic intervention we explicitly constructed √2, while in dividing a line segment into two and 

three equal parts we did not directly explain that in this way we can construct the numbers 1/2 and 1/3. 

The first activity was about locating the fraction 2/5 on the number line. As it can be seen in Table 4, two students succeed in 

giving a complete answer doing the construction, while four more correctly stated that a unit section should be divided into five 

equal parts using straightedge and compass, although they did not explain how this would be achieved. Therefore, we can say 

that six students (10%) approached the correct answer with more or less success. 

It was also positive that two more students, even though they gave a rough approximation (0<2/5<1), they managed the 

fraction correctly, explaining that “the numerator is less than the denominator”. It should also be noted that five students replied 

that “2/5 is rational, so we can find the exact location on the number line”; thus, stating that rationality implies the exact location. 

On the contrary, the majority of students (62%) converted the fraction to a decimal number in order to place it on the number 

line, either by approximation (between 0 and 1) or by scaling the line using a ruler, while a fairly large percentage of students 

(about 17%) did not respond at all. 

The second activity was about locating the fraction 1/3 on the number line, which although completely similar to the previous 

one created more difficulties. As it can be seen in Table 5, only a small percentage of undergraduate students (almost 8%) 

approached the activity with some success. The majority of the other students converted 1/3 into a fraction in order to decide 

which strategy to follow next.  

As is clear from the students’ responses, what plays a key role in the possibility to locate a number on the number line is the 

number of decimal digits. Up to two decimal digits mean that the number can be located (using a ruler or between two integers). 

Infinite decimal digits mean that the number cannot be located. Another conclusion that emerges about the way some students 

think, a conclusion stronger than that of the previous activity, is that a number can be located in the number line if and only if it is 

rational.  

Table 4. About the location of 2/5 

Response category Frequency Percentage 

Exact construction, dividing a unit section into five equal parts using straightedge and compass 2 3.33 

Verbal explanation only: “We divide a unit section into five equal parts using straightedge and compass. Then we place 
the number 2/5 two sections further away from the beginning” 

4 6.67 

Convert the fraction to decimal number (that is 0.4) and approximate placement between 0 and 1 20 33.30 

Convert the fraction to decimal number (that is 0.4), calibrate a line using ruler (cm and mm) and placement 13 21.67 

Convert all the given numbers to decimals and order them linearly (without other numbers in reference) “
𝟏

𝟑
<

𝟐

𝟓
<

√𝟐

𝟐
< √𝟓 < 𝝅” 

4 6.67 

“The numerator is less than the denominator, therefore 0<2/5<1” 2 3.33 

“2/5 is rational, so we can find the exact location on the number line” 5 8.33 

No response 10 16.67 
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In the next case, see in Table 6 about the location of π, the percentage of correct responses (π is transcendental so we can not 

locate it) rose to 15%, perhaps because we mentioned π several times during the teaching intervention and especially regarding 

the circle squaring. Therefore, these reactions may be partly an automatic recall from memory. 

However, the number of decimal digits plays a decisive role in this case as well. Since it is widely known that the decimal 

approximation of π is the number 3.14, many students (over 25%) assumed that π is equal to or approximately equal to 3.14 so it 

can be located on the number line, as in the previous cases of 2/5 and 1/3. Another 33% of students answered that it is not possible 

to find the exact location of π due to infinite decimal digits or due to its irrationality. It is also worth noting that some students 

perceive certain numbers such as π as “mathematical constants”, regardless of the nature and properties of these numbers. We 

could say that students create a correspondence between the physical constants (e.g. gravitational acceleration or speed of light) 

and the “mathematical constants” like π, φ, or e. 

Table 7 presents the frequency and percentage of undergraduate students which response about the location of √5 on the 

number line. Five of the sixty participants, maybe inspired by the teaching intervention, “expanded” the construction of √2. They 

draw a straight line, arbitrarily placed 0 and 1, then with the compass placed 2, brought a vertical line to 2, considered a linear 

segment on the vertical line with length equal to 1 and formed a right triangle with vertical sides 2 and 1 and hypotenuse √5. Then 

with the compass they located the number √5 while explaining the application of the Pythagorean Theorem. We consider this 

geometric approach as an encouraging fact, which gives a perspective for the integration of geometric constructions in the 

teaching of calculus.  

The responses of the other students are about similar to those regarding the location of 2/5, 1/3, and π, and up to a certain 

point expected, taking into account the results of previous research (Sirotic & Zazkis, 2007). The infinite number of decimal digits, 

the irrationality of the number, as well as the possibility of rounding the number, play crucial role for the location of √5 on the 

number line. Since several students used a calculator, either conventional or from their mobile phone, to calculate some of the 

first decimal digits of √5, it should come as no surprise that beyond rounding, a student concluded that √5 has exactly ten decimal 

places (those displayed on the calculator screen) and thus the decimal is terminated, “so it is rational, so we can find the exact 

location on the number line; however, it is difficult due to the many decimal digits”.  

The effect of computational technology is obvious here and confirms, at least to some extent, the existence of the 

phenomenon of “demathematization” by technology (Gellert & Jablonka, 2009; Keitel, 1989) that is the replacement of thinking 

and mathematizing processes by technological “black boxes”, i.e., programs that simulate mathematical constructions and thus 

do not require the users to understand their underlying mathematical structures. 

Table 5. About the location of 1/3 

Response category Frequency Percentage 

Exact construction, dividing a unit section into three equal parts using straightedge and compass 2 3.33 

Verbal explanation only: “We divide a unit section into three equal parts using straightedge and compass. Then we 
place the number 1/3 one section further away from the beginning” 

3 5 

Convert the fraction to repeating decimal (that is 0.333…) and approximate placement between 0 and 1 9 15 

Convert the fraction to repeating decimal (that is 0.333…). “It is not possible to find the exact location due to infinite 

decimal digits” 
13 21.67 

Convert the fraction to terminating decimal (that is 0.3 or 0.33), calibrate a line using ruler (cm and mm) and 

placement 
8 13.33 

“The numerator is less than the denominator, therefore 0<1/3<1” 2 3.33 

Convert all the given numbers to decimals and order them linearly (without other numbers in reference) “
𝟏

𝟑
<

𝟐

𝟓
<

√𝟐

𝟐
< √𝟓 < 𝝅” 

4 6.67 

“1/3 is irrational, so we can’t find the exact location on the number line” 4 6.67 

“1/3 is repeating decimal, so it hasn’t exact location on the number line” 3 5 

“1/3 is repeating decimal, so it has no place on the number line” 1 1.67 

“1/3 is rational, so we can find the exact location on the number line” 1 1.67 

No response 10 16.67 
 

Table 6. About the location of π 

Response category Frequency Percentage 

“π is transcendental so we can’t locate it” 9 15 

Decimal approximation using two decimal digits 7 11.67 

Approximate placement between 3 and 4 8 13.33 

“It is not possible to find the exact location due to infinite decimal digits” 11 18.33 

“π is irrational, so we can’t find the exact location on the number line” 9 15 

“π is a mathematical constant, is equal to 3.14” 2 3.33 

“π is irrational, but it can be written as a decimal number, specifically π=3.14, so it can be placed on the number line” 1 1.67 

“We can find the exact location on the number line because π=3.14, is rational” 1 1.67 

Convert all the given numbers to decimals and order them linearly (without other numbers in reference) “
𝟏

𝟑
<

𝟐

𝟓
<

√𝟐

𝟐
< √𝟓 < 𝝅” 

4 6.67 

No response 8 13.33 
 



10 / 15 Rizos & Adam / International Electronic Journal of Mathematics Education, 17(3), em0686 

Table 8 presents the frequency and percentage of undergraduate students which response about the location of √2/2 on the 

number line. Two strategies were observed for this construction; in the first one the students constructed √2 exactly as we had 

done in our teaching intervention and then they brought the perpendicular bisector. In the second case a student draws a square 

of side 1 and brought the diagonals so that four linear segments were appeared. Then she proved that each such segment is equal 

to √2/2. 

In this question, however, the numerical approaches continued to be the most often observed, indicating once again that it is 

quite difficult for students to break free from the numerical/ computational way of thinking. 

Interesting is the response of a student who wrote that while “irrational numbers cannot be placed on the number line, √2/2 is 

an exception”. Although the influence of teaching is obvious here, this answer could indicate a spontaneous intuition of 

constructible real numbers. 

From the analysis of the above results, it seems relevant to group the students’ conceptions of rational and irrational numbers 

into five categories: 

1. C1: Rational numbers are the integers or the quotients of exact divisions, while irrational numbers are the decimals in 

general and the fractions (quotients of divisions that leave a remainder). 

2. C2: Rational numbers are only fractions with integer terms. Integers are not rationals; they belong to a class disjoint to 

rationals, and the same happens with decimals in general. Irrational numbers are the square roots of non-square numbers. 

3. C3: Rational numbers are the decimals which have a finite number of decimal digits and fractions that are converted to 

such decimals. Irrational numbers are the decimals which have an infinite number of decimal digits and fractions that are 

converted to such decimals. 

4. C4: The decimal numbers that have a finite number of decimal digits (and fractions converted to such decimals) are 

rational. But if a decimal number does not end, in order to be rational it is necessary and sufficient to have a pattern, 

otherwise it is irrational. 

5. C5: The exact formal definitions: Rational is a number which can be put in the form p/q, where p and q are integers and q 

is not zero and irrational is a real number that is not rational. 

The above categories of conceptions are not “levels of real number understanding”, such as van Hiele’s (1957) levels of 

geometry understanding. The fundamental difference is that at the levels of geometric thought (van Hiele, 1957; van Hiele & van 

Hiele-Geldof, 1958) a student starts from the lower level and progresses to the higher levels, while in our empirical model there is 

no element of succession. For us, a student can be led directly to the fifth category without going through the others. 

However, as the analysis of the project indicates, even if a student belongs to the fifth category, it does not necessarily mean 

that they are able to locate a real number (if it is located) on the number line. 

Table 7. About the location of √5 

Response category Frequency Percentage 

Exact construction, using straightedge and compass and applying the Pythagorean Theorem 5 8.33 

“𝟒 < 𝟓 < 𝟗 ⇒ 𝟐 < √𝟓 < 𝟑” and placement between 2 and 3 5 8.33 

“√𝟓 is irrational, so we can’t find the exact location on the number line” 9 15 

“It is not possible to find the exact location due to infinite decimal digits” 13 21.67 

Convert to decimal (2.2 or 2.24) and approximate placement between 2 and 3 4 6.67 

Convert to decimal (2.2 or 2.24), calibrate a line using ruler (cm and mm) and placement 10 16.67 

“The number √𝟓 = 𝟐.𝟐𝟑𝟔𝟎𝟔𝟕𝟗𝟕𝟕𝟓 has a finite number of decimal digits, so it is rational. We can find the exact 

location on the number line, however it is difficult due to the many decimal digits” 
1 1.67 

Convert all the given numbers to decimals and order them linearly (without other numbers in reference) “
𝟏

𝟑
<

𝟐

𝟓
<

√𝟐

𝟐
< √𝟓 < 𝝅” 

4 6.67 

No response 9 15 
 

Table 8. About the location of √2/2 

Response category Frequency Percentage 

Exact, using straightedge and compass and applying the Pythagorean Theorem 10 16.67 

“𝟏 < 𝟐 < 𝟒 ⇒
𝟏

𝟐
<

√𝟐

𝟐
< 𝟏” and placement between 0 and 1 5 8.33 

“
√𝟐

𝟐
 is irrational, so we can not find the exact location on the number line” 6 10 

“It is not possible to find the exact location due to infinite decimal digits” 12 20 

Convert to decimal (0.7) and approximate placement between 0 and 1 5 8.33 

Convert to decimal (0.7), calibrate a line using ruler (cm and mm) and placement 8 13.33 

“In general, irrational numbers cannot be placed on the number line, but exceptionally 
√𝟐

𝟐
 can” 1 1.67 

Convert all the given numbers to decimals and order them linearly (without other numbers in reference) “
𝟏

𝟑
<

𝟐

𝟓
<

√𝟐

𝟐
< √𝟓 < 𝝅” 

4 6.67 

No response 9 15 
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Students’ Comments About the Project 

In order to find out the students’ opinions about the project and to take it into account in a possible future study, we asked 

them to evaluate the whole process. 

From the answers we received it emerged that the students felt quite comfortable during the project, developed positive 

emotions, recognized the value of the material they involved, felt that they learned new things about real numbers, and acquired 

a positive attitude towards geometric constructions with straightedge and compass. In fact, some students have recognized that 

there is still much to be done in order to clarify some basic mathematical concepts and procedures. 

Of particular value is the comments of a student, who stated that «at school I generally listened to geometry and history and 

subjects like that and I did not like them at all, but here [in the project] we followed a completely different approach. Although at 

the beginning I had some reservations, in the end I “kept” a lot of things […] We discussed the evolution of mathematics, we met 

great mathematicians, we learned about the relationship between geometry and rational and irrational numbers, and we made 

geometric constructions, which I experienced for the first time. Ι believe that if the meetings were done face-to-face, they would 

have to offer us more things». Indirectly this student responds partly to the objections raised against the integration of elements 

from the History of Mathematics in teaching and specifically to those objections concerning the background and attitude of the 

learners (Tzanakis et al., 2000, p. 203). Also, according to the student, distance learning is a hindrance to learning Mathematics. 

All of the above give a positive answer to the second research question. Therefore, the contribution of geometric constructions 

in a calculus course can increase students’ engagement. 

DISCUSSION 

Our research aimed to investigate students’ conceptions of rational and irrational numbers in the transition of students from 

secondary to tertiary education. Then with our teaching intervention we wanted to find out what strategies do the students follow 

in order to locate a real number on the number line. In addition, we were interested whether geometric constructions in a distance 

learning calculus course could increase the involvement of students. 

The Pythagorean Theorem, which all undergraduate students used in the first question (Q1), is taught in the Greek educational 

system in the 8th grade and is repeated in the 11th, while students know in advance that in this section they will be assessed in tests 

and final exams. It should also be noted that the Pythagorean Theorem is a special mathematical topic in popular culture and a 

source of inspiration for many art forms, from statues and poems to films (The Wizard of Oz), T-shirts and stamps (Greenwald, 2016; 

Pantsar, 2016). It is therefore not surprising that this theorem is the first thing that comes to students’ minds when they come to 

geometric problems. Nevertheless, students’ difficulties on display the requested ratio and understand its irrationality are 

remarkable. Some participants were unaware of the meaning of the word “ratio”, while others were unable to solve a formula for 

a particular variable. Also, some students (in Q1) came up with results without natural significance, which indicates that critical 

competence is considered as a resource to be developed further through students’ participation in the educational process 

(Skovsmose, 1994), in elementary education.  

The task at the end of the project gave very interesting information. As it turned out, for most undergraduate students irrational 

number means indeterminate due to infinite decimal digits (that’s why many students considered that the fraction 1/3 is an 

irrational number), in the sense that irrationality is equivalent to ignorance, while in terms of placement of numbers, our results 

made clear that the dominant strategy of the students was to convert the given numbers into decimals, round them and then 

place them on the number line, ignoring the geometric methods taught during the project. This finding is completely in keeping 

with a discovery of an earlier study, according to which irrationality relies upon decimals and not connected to geometry 

(commensurable and incommensurable segments) as occurred historically (Arcavi et al., 1987, p. 18). This important, for the 

students, role of decimal digits, became in fact the determining factor that led us to group students’ perceptions regarding rational 

and irrational numbers into five categories. So the answer to our first research question is that the criterion by which students 

distinguish rational from irrational numbers and place them on the number line is the number of decimal digits and the existence 

(or not) of some pattern. 

The five categories of conceptions we considered are not “levels of real number understanding” such as van Hiele’s (1957) levels 

of geometry thought. We should also emphasize that the above categories are not related to Sierpinska’s (2005) model of 

theoretical thinking, nor to Zachariades et al. (2013) thinking categories that can be exploited in the analysis of prospective 

teachers’ reasoning and knowledge of real numbers. Our model is empirical, in the sense that it emerged from the analysis of 

specific results. It would therefore be interesting to conduct future research aimed at investigating whether similar results could 

be drawn from teaching experiments with younger students. 

From the analysis of the questionnaires and the interviews, some gaps that the participants have from school came to surface. 

For example, students viewed fractions as a process, not as a numerical result, while they saw decimal numbers as “the final 

number”. It is possible that the above conceptions are based on abridged interpretations of elementary school teachers or some 

high school teachers but also on unclear expressions of textbooks. On the other hand, students are accustomed to using and 

trusting–usually uncritically–measuring instruments such as scales, calculators, rulers, protractors, etc. whose results are 

decimals. But also, daily economic transactions are made based on decimal numbers and very rarely on fractions. It is therefore 

difficult to weaken the effect of decimal numbers and to make clear the equivalence between the different forms of a number. 

In some cases, they concerned the placement of the given numbers on the number line, students gave “automatic” answers 

like the spontaneous conversion of all numbers to decimals. This “automation”, in combination with the fact that the course of 
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geometry is degraded in the Greek high school, shows the difficulties that students face with problems that involve geometry. 

Thus, it seems very difficult for students to overcome the algebraic way of thinking and to get rid of the “confidence” provided by 

the formalistic character of the teaching and learning of Mathematics in Greece (that is blind memorization of algebraic rules, 

arithmetic operations and solving techniques without conceptual content and without any geometric interpretation), with which 

children have been familiar with since the early secondary education. At the same time, this students’ practice demonstrates the 

“algebraization” of geometry, i.e., the arbitrary algebraic reformulation of a geometric problem and the consequent loss of 

meaning of the mathematical concepts involved. This conclusion is in line with recent relevant research finding (Rizos et al., 2021). 

Distance education using ICT, as demonstrated by the results of the task but also according to the students’ evaluation in the 

project, was a limiting factor to the learning of geometric constructions with straightedge and compass and consequently made 

it difficult for the students to grasp the meaning of irrationality and become able to distinct rational and irrational numbers, as 

well as to locate their position on the number line. After all, research converges that it finally seems almost impossible to teach 

geometry online without proper interaction (Borba, 2021). In this sense the pandemic had negative impact on the teaching and 

learning of mathematics. We believe sharing the view of the student that if our teaching intervention had been conducted face-to-

face in a real classroom, then the results would be better since in these times, it is visible that human contact and interactivity 

have faded, because of the exclusive use of ICTs. Of course, new research remains to be carried out in order to confirm (or reject) 

this conjecture. 

In the didactical recommendations of a similar research, Fischbein et al. (1995) suggest the students to face the possible 

incommensurability of two magnitudes, namely, to be involved in the process of searching a common unit. We believe that such 

a teaching intervention could be the exploration of geometric anthyphairesis of √2 (Chrystal, 1889, p. 270). It would be interesting 

to conduct such research, in order to determine whether a historically inspired approach (like geometric anthyphairesis) could 

help students find out if a number is rational or irrational. 

CONCLUDING REMARKS 

What emerges from our research is that the fundamental criterion by which Greek undergraduate students distinguish rational 

from irrational numbers is the number of decimal digits and the existence of some pattern, if any. Furthermore, the most common 

thinking strategy they followed in order to find the exact place of a given real number on the number line was the conversion into 

decimal, the rounding and finally the location. At the same time however, the contribution of geometric constructions with 

straightedge and compass in a calculus course appears to increase students’ engagement. Our findings could be universally 

significant. After all, research converges that it finally seems almost impossible to utilize geometry online without proper 

interaction. In this sense the pandemic had negative impact on the teaching and learning of mathematics. Although the students 

recognized the value of the material they involved, they felt that they gained knowledge about real numbers and acquired a 

positive attitude towards geometric constructions with straightedge and compass, we believe, sharing their opinions that, if our 

teaching intervention had been conducted face-to-face in a real classroom, then the results would be better, since in these times 

it is common knowledge that human contact and interactivity have faded, because of the exclusive use of ICTs. Of course, new 

research remains to be carried out in order to confirm (or reject) this conjecture 
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