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Mathematics is tightly interwoven with science and engineering, where 
it has numerous applications. In the educational context, there is an 
ongoing debate who should teach mathematics to non-mathematicians 
and how this mathematics should be taught. The knowledge gained in 
mathematics course is used in another course (mathematics, science or 
engineering), hence students should retain core concepts some time 
after learning. Beliefs that students have about mathematics 
significantly influence on their learning, and consequently on the 
retained knowledge. We investigated retained calculus knowledge and 
beliefs about mathematics in two groups of first year students coming 
from the science and engineering study programs. The results showed 
that both groups of students showed better procedural knowledge than 
conceptual. Also they showed positive beliefs about mathematics in 
their study program, but were not certain where this knowledge will be 
used later. However they differed in the perception of mathematics as 
being exciting discipline. The educational implications of these findings 
are also discussed. 
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INTRODUCTION 

Problem of communication between professional mathematicians and students who 
study in non-mathematics study programmes often represents an obstacle in 
comprehending taught subject matter (Maull & Berry, 2000).  In non-mathematics study 
programs like engineering, there is an ongoing debate who should teach mathematics to 
non-mathematicians and how this mathematics should be taught. Some academics 
advocate that the teaching of mathematics must be in the hands of professional 
mathematicians, while others argue that the engineering departments should integrate 
mathematics into the engineering courses; some academics support rigor/formality 
approach for teaching mathematics, while others argue against it (Flegg et al., 2012). 
Similar problems concerning mathematics can be found in the science study programs. In 
the educational context, the relationship between mathematics and sciences is a source of 
debate that lasts more than several decades (Matthews et al., 2009). In the secondary 
education in Croatia, and in many other countries as well, these disciplines are portrayed 
and taught as disciplines distant from each other, even when the same teacher teaches 
them. This mathematics-science debate has moved from the secondary education into the 
higher education with a bit different form and language, focusing on specific competences 
that students should gain in the undergraduate science curriculum (Orton & Roper, 2000). 
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Mathematics does not serve only to mathematicians as a basis of mathematical modeling 
and a problem solving tool. It is tightly interwoven with science and engineering, where it 
has numerous applications (Helfgott, 2004). Therefore, to be able to re-design the teaching 
of mathematics to non-mathematics students, we as the teachers of mathematics should be 
aware of the relevance of mathematics in engineering and science study programs. On the 
other hand, we should be conscious about students‟ attitudes and beliefs about 
mathematics and we should get an insight into the knowledge that students retain after the 
teaching and learning. The knowledge gained in mathematics courses e.g. calculus, is used 
in another course - science, engineering or mathematics, and the teachers in those courses 
frequently complain on students‟ mathematical knowledge (Czocher et al., 2013). Taking 
into consideration the aforementioned discussion, we designed the study that investigated 
retained calculus knowledge and beliefs about mathematics in two groups of students 
coming from the science and engineering study programs. 

Theoretical Background 

Procedural and conceptual knowledge 

Various definitions of knowledge appeared during last decades, but we have chosen 
categorization into procedural and conceptual knowledge as the most appropriate one for 
our research. Conceptual knowledge is the type of knowledge which is rich in relationships 
and provides an understanding of the principles and relations between pieces of knowledge 
in a certain domain while procedural knowledge is what enables us to quickly and 
efficiently solve problems. Procedural knowledge can be learnt with or without meaning and 
consists of a sequence of actions (Hiebert & Lefevre, 1986). Haapasalo and Kadijevich 
(2000) gave another definition of procedural and conceptual knowledge which highlights 
their dynamic nature; procedural knowledge is dynamic utilization of algorithms or 
procedures within representation form, and conceptual knowledge denotes ability to browse 
through a network consisting of concepts, rules, algorithms, procedures and even solved 
problems in various representation forms. Star (2005) argues that using the terms 
conceptual and procedural knowledge confuses knowledge types with knowledge quality. He 
offers new definitions of conceptual and procedural knowledge. Conceptual knowledge 
could be better understood in terms of "knowledge of concepts and principles" and 
procedural knowledge in terms of "knowledge of procedures". Star's re-definition of 
conceptual and procedural knowledge makes possible to consider also deep well-connected 
procedural knowledge, and superficial and weakly connected conceptual knowledge. In this 
paper we have adopted Star's definition to be able to better characterize both types of 
knowledge. 

Retention of knowledge 

The retention of learnt subject matter is one of the major goals of the educational system 
that relies on the assumption that learnt material will be remembered to some degree some 
time after the learning, and this enables further courses to build upon this material. There 
is not a unique agreed-upon measure of knowledge retention, but in educational contexts, 
most commonly used are cued recall and recognition (Custers, 2010). Cued recall is based 
on open-end question, while recognition is examined through true-false question. Multiple 

choice questions combine recall and recognition (Arzi et al., 1986).  There is not necessarily 
a dichotomy between retention and non-retention, but there is a state between the two of 
them. The main purpose of the educational system is not that a student immediately 
remembers an answer when asked, but to reconstruct the knowledge with little effort. If a 
student after a hint fully remembers the knowledge that is being asked for, this can be 
regarded just as good as retention. This argument is in line with a discussion of Karsenty 
(2003), where it is argued that recalling something is a reconstruction process that yields to 
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an altered version. Recalling is not a process of reproduction, where details are coded in 
memory and they re-appear as so-called „copies‟. On the other hand, the retention of 
knowledge can be defined as the extent to which someone can successfully access and use 
the information from the long-term memory (Sousa, 2000). We argue that this definition is 
also in line with previous discussion about measures of retention.  

Several studies investigated the effect of teaching style on the retention of mathematical 
knowledge days, months and years after instructions, obtaining different results. In some 
cases students from student-centered courses retained conceptual knowledge better and 
those form teacher-centered courses retained procedural knowledge better (e.g. Garner & 
Garner, 2001; Jukić & Dahl, 2011). In some cases students from student centered-courses 
retained better conceptual than procedural knowledge, but they had procedural knowledge 
at equal level as those students coming from teacher-centered courses (Allen et al., 2005). 
On the other hand, Kennedy & Schumacher (2008) found no statistically significant 
differences when comparing the performance of students in teacher and student-centered 
calculus course.  

Engelbrecht et al. (2007) investigated engineering students‟ knowledge in basic 
techniques from a first-year calculus course. Comparing their results from the pre-test and 

the post-test given two years after the instructions, they found a significant decline in 
student‟s performance. Another reason for being interested in the long term retention of the 
students' knowledge is that it is not always linked with the actual course grade. In 
Jukić & Dahl, (2010), the calculus teaching was investigated at one Croatian and Danish 
university in terms of the students' retention of key procedural and conceptual concepts of 
derivative two months after having passed similar Calculus 1 courses, and while being 
taught a Calculus 2 course. The results showed that for both countries a large portion was 
forgotten and that the passing grades of the Calculus 1 course did not predict the results in 
the test two months later. In fact, often students with the lowest passing grades had the 
better results two months later, or there was no difference. 

Beliefs, attitudes and knowledge 

When describing someone‟s thoughts and decisions toward world around, based on his 
observations and experiences, we use two words, beliefs and attitudes, and many times as 
synonyms. Some regard an attitude as collection of beliefs while others classify a belief as 
one component of attitude (e.g. Goldin et al., 2009). It is generally agreed that there is no 
universal acceptance in mathematics education what a definition of belief is. Beliefs are 
highly subjective, and they change according to someone‟s feelings. Students‟ beliefs about 
mathematics and mathematics learning have been a commonly shared interest among 
mathematics educators in last few decades. Furinghetti & Pehkonen (2002) described 
beliefs as individual‟s subjective knowledge and gave characterization on the view of 
mathematics as a mixture of knowledge, beliefs, conceptions, attitudes, and feelings. This 
characterization has four main components: belief about mathematics, belief about oneself 
as mathematics learner and as user of mathematics, belief about mathematics teaching 
and belief about mathematics learning. Many times when the term attitude is used, it 
includes beliefs about mathematics and about oneself (e.g. McLeod, 1992). 

There exists strong connection between knowledge and beliefs. Several studies (e.g. Dart 
et al., 2000; Furinghetti & Pehkonen, 2002; Johnston, 2001; Kember & Wong, 2000) have 
shown how beliefs have a high impact on students‟ effective learning and use of 
mathematics. They shape students to become passive or active learners, who cope with 
taught matter with different methods. The first case is characterized by rote learning and 
remembering, and the second by learning with understanding.  

According to Ernest (2003), many studies have shown that non-mathematics students in 
higher education often have negative images, beliefs and attitudes towards mathematics. If 
such student, e.g. engineering or science, does not see the importance of mathematics in 
his studies or in the future professional practice, he will not believe that mathematics is 
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useful. This would lead to a decline of motivation and interest to spend time working on 
mathematics, and regardless of what approach to curriculum is employed, student‟s 
interest is likely to be low (Flegg  et al., 2012).  

Research focus 

We have investigated conceptual and procedural knowledge in students belonging to the 
engineering and science study programs, two months after the instructions and 
examination have taken place. Also, we have examined students‟ beliefs about mathematics 
in general and to calculus courses taken. Our main objective was to see if there are 
relations between these beliefs and the retained knowledge. The research reported here 
should be seen as exploratory and the conclusions are of relevance to the Croatian context 
and to other similar university contexts. 

METHOD 

Participants 

The participants in this study were first year non-mathematics students form one 
Croatian university, belonging to civil engineering (65), electrical engineering (40), chemistry 
(36) and food science (33) study programs. We decided to divide participants in two groups
according to the nature of their study program, and hereafter they will be referred to as
engineering and science students. The students were surveyed using questionnaires that
were administered before the exercise lessons in a mathematics course. The questionnaires
were not pre-announced, so participants were those students who came to the exercise
lessons. Filling the questionnaire was voluntary so some students did not respond to all
questions.

In this university, each study program has its own calculus courses. The courses contain 
elements of mathematical analysis to emphasize the theoretical background, not just 
calculus techniques. In order to obtain a passing grade, students had to pass both a 
written and an oral exam where the students' knowledge in formal mathematical theory is 
also examined. Calculus courses in each study program have common parts, thus we 
investigated retained knowledge in differential and integral calculus that are common for 
the study programs chosen for this study. 

Questionnaire Design 

To be able to investigate students‟ retention of knowledge, we designed the questionnaire 
with multiple choice questions. As mentioned above, multiple choice questions combine 
recall and recognition (Arzi et al., 1986). Several questions were similar to the questions in 
Jukić & Dahl (2011), but this time option “none of the above” was not included. We had 
examined the teaching materials used in calculus courses, and had designed tasks that 
investigate core calculus knowledge. We consulted the lecturers and the teaching assistants 
of the courses about the relevance of the questions, formulation, and appropriateness of the 
options of answers. 

The questions from differential calculus dealt with the formal definition of derivative 
(Theory) and the geometric interpretation of the derivative of a function at a given point 
(Slope), with differentiation of a simple rational function (Quotient) and a composite function 
(Composition), and solving a problem that combines several concepts from differential 

calculus; the slope of a tangent line as the derivative of the function f  at the given point
and the process of differentiation (Application). The questions from integral calculus dealt 
with the geometric interpretation of the integral (Area) and with a primitive function of some 
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function RRf :  (Antiderivative), and asked students to compute several indefinite
integrals (Method and Integrals). All questions can be seen in the Appendix. 

We used Star's (2005) categorization into procedural and conceptual knowledge and we 
have grouped the questions in these two categories. If one regards conceptual knowledge as 
knowledge of concepts and principles, the questions Slope, Application, Theory, Area and 
Antiderivative form the conceptual category. If one regards procedural knowledge as 
knowledge of procedures, the questions Quotient, Composition, Method and Integrals form 
the procedural category. The concepts procedural and conceptual are not absolute, and 
some questions can be placed in both categories like Application or Composition. In the case 
of Composition, several differentiation rules have to be connected and this can be 
considered as conceptual knowledge. Also, solution to the Application could be based only 
on recalling the method without any conceptual knowledge. In our case, the students were 
exposed more to the chain rule of differentiation, unlike the questions like Application. 

The students were asked also to respond to some beliefs questions (see Table 3), given on 
a 4-point Likert-type scale, ranging from 1 = strongly disagree, 2 = disagree, 3 = agree to 4 = 
strongly agree. The questions aimed at exposing their beliefs about mathematics and the 
application of mathematics in the rest of their studying program. The neutral option was 

omitted since we wanted the student to take a stand. 
To compare results from engineering and science students in calculus questions, we 

used Fisher's exact p-value test to investigate obtained quantitative data. For small, sparse, 
or unbalanced data, the exact and asymptotic p-values can be quite different and may lead 
to opposite conclusions concerning the hypothesis of interest. The Fisher's test is, as its 
name states, exact, and it can therefore be used regardless of the sample characteristics. To 
analyze Likert items, we used non-parametric Mann-Whitney test.  

FINDINGS 

Calculus questions 

Table 1 below shows the distribution of correct answers for all questions in the two 
groups of students, engineering and science. No question was answered correctly by any 
group. The question Application had the lowest correct answer rate in both groups. The 
question with the best correct answer rate differs for the engineering and science students. 
The engineering students answered question Quotient (80%) the best, while the science 
students answered the Antiderivative the best (83%). 

Table 1. Distribution of correct answers. p-values here indicate the size of the differences among the 
populations 

Type Topic Question Engineering Science Fisher’s 

p-value#/total % #/total % 

Conceptual Differential 

calculus 

Slope 55/102 54 30/63 48 0.5216 

Application 21/103 20 13/65 20 1.0000 

Theory 42/106 40 30/65 46 0.4281 

Integral calculus Area 77/105 73 43/66 65 0.3036 

Antideriv. 77/105 73 54/65 83 0.1888 

Procedural Differential 

calculus 

Quotient 85/105 81 51/69 74 0.3484 

Composition 67/105 64 49/64 76 0.0903 
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Integral calculus Method 65/103 63 43/66 65 0.7454 

Integral a 32/103 31 50/65 77 <0.0001 

Integral b 66/105 63 46/65 71 0.3212 

There was a significant difference how the science and the engineering students 
answered only one of 10 questions at the level of 0.05, where the science students 
outperformed the engineering students in the procedural question Integral a. 

Table 2 below shows how well each of the two populations solved each of the conceptual 
questions compared to each of the procedural questions. 

Table 2. Fisher’s p-values comparing answers to the procedural and conceptual questions by population 
Engineering students 

Conceptual 

Slope App. Theory Area Antider. 

Quotient 0.0001 p * p <0.0001 p 0.2499 0.2499 

Composition 0.1599 * p 0.0006 p 0.1807 0.1807 

Procedural Method 0.2034 * p 0.0009 p 0.1365 0.1365 

Integral a 0.0011 c 0.1105 0.2471 *c *c

Integral b 0.2067 * p 0.0005 p 0.1385 0.1385 

Science students 

Conceptual 

Slope App. Theory Area Antider. 

Quotient 0.0024 p * p 0.0014 p 0.3494 0.2151 

Composition 0.0010 p * p 0.0005 p 0.1794 0.3874 

Procedural Method 0.0520 p * p 0.0352 p 1.0000 0.0277 c 

Integral a 0.0009 p * p 0.0005 p 0.1780 0.5112 

Integral b 0.0015 p * p 0.0073 p 0.5745 0.1443 

Note: * denote p<0.0001.The letters p (procedural) and c (conceptual) denotes which question had the best answer rate 

The results of Table 2, and data from Table 1, show that for the engineering students 
there was a significantly different performance in 12 out of 25 comparisons of the two 
groups of questions at the level of 0.05. Of the 12 comparisons which showed a significant 
difference, 9 times engineering students answered the procedural question better, and three 
times they answered the conceptual question better. Hence it appears that the engineering 

students had preference for the procedural questions. In the procedural group, the 
engineering students achieved better results in the differential questions than in the 
integral questions. In the conceptual group, their results were better for the integral 
questions than for the differential question. 

The results of Table 2, and data from Table 1, show that for the science students there 
was a significantly different performance in 16 of the 25 comparisons of the two groups of 
questions. Of the 16 comparisons which showed a significant difference (alpha of 0.05), 15 
times the procedural question was answered the best, while one time the conceptual 
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question had the best answer rate. This suggests that the science students had retained 
better knowledge in the procedural questions than in the conceptual questions. In the 
conceptual group of questions, the science students achieved better results in the integral 
questions than in the differential questions. In the procedural group, their results had 
almost the same correct answer rate in the integral and differential questions.  

Belief Statements 

The statements from the questionnaires and the results of the students‟ responses are 
presented in Table 3. A larger proportion of the engineering students agreed with the 
statements 1, 2 and 3 than the proportion of science students, except for the statement 6, 
where this proportion was the same. This means that significant proportion of students 
from both groups considered that mathematics was important in technical and natural 
sciences, with 93% of engineering students and 76% of science students who agreed (and 
strongly agreed) with this statement. Also, above 90% of students from both groups 
regarded that knowledge in basic mathematical disciplines was necessary for students in 
these sciences. Understanding mathematics behind problem was important for 87% of 

engineering students and 74% of science students. Although the two groups of students 
had very similar responses to statements 1, 2 and 3, a significant difference was found 
between the engineering and science students at the level of 0.05 (p = 0.0415,  p = 0.00001 
and  p = 0.0068 respectively). This indicates that the engineering students have more 
positive beliefs about the role of mathematics in their study program. 

In the statements 4, 5, and 7, the two groups of students differed- more than half of 
engineering students agreed while more than half of science students disagreed (and 
strongly disagreed) with those statements. 54% of engineering student considered 
mathematics as exciting, while 64% of science students disagreed with that. When it comes 
to calculus courses taken, 60% of engineering students considered that calculus courses 
were interesting, while 60% of science students disagreed with this statement. 51% of 
engineering students claimed that they saw the application of integrals in the rest of their 
study program, compared to 56% of science students who disagreed with it. At the level of 
0.05, a significant difference was found between the engineering and science students in 
statement 4 (p < 0.00001) and statement 5 (p = 0.00001), what confirmed that there exists 
notable difference between those two groups of students. 

Table 3. Responses to the beliefs statements: percentages, mean, standard deviation 
Statements: Groups StDis. 

% 

Dis 

% 

Agr. 

 % 

StAgr. 

 % 

M SD 

1. Everyone who studies natural and technical sciences ought to have

knowledge of basic mathematical disciplines. 

E 1 4 45 50 3.43 0.63 

S 1 9 51 39 3.28 0.65 

2. Mathematics is a central part of technical and natural sciences. E 1 6 58 35 3.26 0.63 

S 4 20 59 17 2.88 0.72 

3. It is important to me not just to be able to solve a problem, but also

to understand the mathematics behind it. 

E 2 11 51 36 3.22 0.70 

S 4 22 47 27 2.98 0.80 

4. Mathematics is an exciting subject in general. E 10 36 40 14 2.56 0.85 
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S 26 40 30 4 2.14 0.85 

5. Calculus courses were interesting to me beyond the fact that I had

them as a part of my study program. 

E 9 31 45 15 2.65 0.84 

S 20 40 35 5 2.27 0.84 

6. I think derivatives have applications in the rest of my study program. E 25 17 25 33 2.65 1.18 

S 25 17 33 25 2.57 1.12 

7. I think integrals have applications in the rest of my study program. E 21 28 29 22 2.51 1.07 

S 29 29 21 21 2.34 1.11 

Note: E = engineering, S = science, M = mean, SD = standard deviation, StDis= strongly disagree, Dis=disagree, 
Agr=agree, StAgr = strongly agree 

 DISCUSSION AND CONCLUSIONS 

We investigated retained calculus knowledge in the engineering and science students two 
months after instructions and examination have taken place. Tasks, that we used, asked 
for core calculus knowledge and were created in collaboration with the lectures and the 
teaching assistants who taught students from the surveyed study programs. The results 
showed that the engineering students retained slightly better procedural knowledge than 
conceptual. Also a significant number of engineering students experienced problems with 
the conceptual knowledge in differential calculus, i.e. with the geometrical interpretation of 
derivative, its application, and the formal definition of the derivative. The science students 
retained far better knowledge in the procedural questions than in the conceptual questions, 
where many students had problems with the geometrical interpretation of both calculus 
concepts, derivative and integral, and with the formal definition of the derivative. 

One could argue that students could have forgotten concepts investigated in this study 
especially if they are not used over some time. But participants in this study remained in 
contact with calculus concepts in next mathematics courses. Engelbrecht et al. (2007) 
found that there is decline in knowledge that is not used regularly, but when the knowledge 
is encountered along the way, the retention should be strengthened. According to Semb et 
al. (1999), the retained knowledge depends on the original learning, what indicates that 
students did not gain good level of knowledge when they were learning it. A reason for 
preferring procedural knowledge over conceptual could lie in the formal mathematical 
theory presented in the taken calculus courses. Teaching and learning mathematics in the 
definition-theorem-proof style is difficult for many freshmen, wherefore they seek the 
security of the procedural rules (Tall, 2001). Studies showed that procedural knowledge is 
the one that faster deteriorates with time (e.g. Allen et al., 2005). If there is no conceptual 
meaning, this kind of knowledge is very fragile in the long term memory and usually 
remembered inappropriately.  

 The results from the previous section showed that the engineering students saw 
mathematics as an important part of their study program, and considered that every person 
who studies in engineering study program should possess basic mathematical knowledge. 
They highly appreciated an understanding of mathematical concepts, not only a 
performance of procedure, but this was not entirely supported with results in the calculus 
questions. They found mathematics and calculus courses interesting, but they were divided 
in their belief whether calculus concepts will be used or not in the rest of their study 
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program, what indicates that the relationship between mathematics and engineering was 
not visible to them even at the end of the first year of the their studying. The science 
students expressed the same beliefs as the engineering students about mathematics, basic 
mathematical knowledge in their study program and the understanding of mathematics in 
problems but with less conviction. However, more than half held a belief that mathematics 
in general and calculus taken were not interesting unlike the majority of engineering 
students. Similarly as the engineering students, the science students were not sure if 
mathematical concepts from calculus will have application in the rest of their study 
program: for differential calculus more than half participants agreed, and for integral 
calculus more than half disagreed. This belief indicates that students have not seen the 
practical application of their mathematical knowledge in the science context, meaning that 
the relationship between mathematics they took and the rest of their study program was 
not shown in the first year of their studying.  

In all, both groups of students considered mathematics as a necessary part of their study 
program, but were uncertain where their mathematical knowledge will be used later on. 
Similarly, a study by Flegg et al. (2012) found that the first year engineering students 
believed that mathematics was a relevant part of engineering, but were not able to relate 

mathematics to their later engineering courses. Orton & Roper (2000) found that the first 
year science students held misguided belief that mathematics was irrelevant in science.  

Students should be aware of the relationship between mathematics and engineering or 
science early in their studies, but there is not unique approach how this should be done. 
Matthews et al. (2009) describe the interdisciplinary approach which combines 
mathematics and science, keeping the boundaries between disciplines visible. On the other 
hand, Flegg et al. (2012) give recommendation for mathematics in the engineering curricula 
where mathematics is used as a tool for dealing with real world problem. Beliefs about 
mathematics in general and calculus courses taken significantly differed between the 
science and engineering students and we argue that this should be taken into account 
when teaching those groups of students. Therefore, choosing the best approach certainly 
depends on the specific study program. We believe that mathematics courses should be 
adapted to the particular study program, meaning that every science and engineering study 
programs should have its own mathematics courses, where material would be presented 
through the applications in that scientific discipline, at more practical level. Such emphasis 
on the applications in more meaningful contexts would enable better use of mathematical 
knowledge in the particular discipline. This also agrees with Townend [2007, p. 204]: "...if 
students could see that some level of mathematical skill was needed in order to investigate 
realistic [...] problems, then maybe they would be more prepared to invest the necessary 
time and intellectual effort." We would not suggest abandoning mathematical formalism 
and dealing only with calculus techniques. Techniques alone do not provide deep 
understanding and do not show under which circumstances some concept can exist and 
can be used. We agree with Mahavier & Mahavier (2008) and Sazhin (1998) that non-

mathematics students should not be forced to produce    proofs, but they can be
trained to state, read, interpret, and apply accurately written definitions. Therefore, the 
formal mathematical aspects should be kept at the reasonable level. 

No matter what approach we choose, it demands significant collaboration between 
mathematicians and academics from different scientific disciplines. Linking mathematics to 
science or engineering early on should make the role of mathematics visible more than it is 
now in many engineering and science curricula. Sazhin (1998) points out that here should 
be a balance between the understanding of abstract mathematical concepts and practical 
examples that students can relate to, and this once again puts a focus on the connection 
between mathematics and other courses in particular study program. We believe this would 
affect on students‟ beliefs about meaningful application of mathematics and would induce 
better retention of mathematical knowledge. Leaving mathematics detached from 
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engineering and science, leads to belief that science and engineering do not require 
mathematics to educate skillful university graduates.  
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APPENDIX 

Derivatives questions surveyed with given options for answers 

1. Question Slope: What is the geometric interpretation of the derivative of the function

RRf : at the point x0? Offered answers: A: maximum/minimum of the function f at x0; 

B: slope of tangent line to the curve )(xfy   at x0; C: continuity of the function f in the 

given point; 

2. Question Quotient: Differentiate the function
3

2 2
)(

x

x
xf


 . Offered answers: A:

23

223

)(

)3)(2()2(

x

xxxx 
; B: 

3

223 )3)(2()2(

x

xxxx 
; C: 

23

223

)(

)3()2(

x

xxxx 
. 

3. Question Composition: Differentiate the function f(x) = sin2 6x. Offered answers: A:

2sin(6x); B: 12sin(6x); C: 12sin(6x)cos(6x). 

4. Question Application: Calculate the slope of the tangent line to the curve
2)3( xy 

at the point x = 1. Offered answers: A: 9; B: 18; C: 6. 
5. Question Theory: Which of the following holds:

A. A derivative of the function RRf :  at the point x0 is
x

xf

xx

)(
lim

0
, if this limit exists. 
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B. A derivative of the function RRf :  at the point x0 is
0

0 )(
lim

0 xx

xxf

xx 




, if this limit 

exists. 

C. A derivative of the function RRf :  at the point x0 is 0

0 )()(
lim

0 xx

xfxf

xx 




, if this limit 

exists..

Integral questions surveyed with given options for answers 

1. Question Area: Let f be bounded function and f(x)0, for x  ba, . What is the

geometric interpretation of the definite integral 
a

b

dxxf )( ? Offered answers: A: The area

between the curve )(xfy   and the x-axis for x between a and b; B: The arc length of the 

curve )(xfy   on the interval  ba, ; C: continuity of the function f on interval  ba, ; D:

volume of solid of revolution on interval [a,b] around x-axis 
2. Question Antiderivative: What is an antiderivative of a function f? Offered answers: A:

 xxf d)(' ; B: every function F such that )()(' xfxF   holds; C: the set of elementary 

functions; D: every function in Taylor series . 
3. Question Method: Which method is the most appropriate for computing the integral

 dxxe x ? Offered answers: A: substitution 
xet  ; B: integration by parts; C: trigonometric 

substitution; D: direct integration. 
4. Question Basic integrals:

a.   21 x

dx
=? Offered answers: A: Cx  )1ln( 2

 ; B: Cxarctan . 

b.  3x

dx
=? Offered answers: A: Cx  2

2

1
; B: Cx )ln( 3

. 


