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ABSTRACT 

The literature emphasizes the interest and need to learn the concept of continuity with 

understanding, although this meaning it is not consensual nor specified how it may emerge and 

be developed in the learning process. In this paper we report the results of a study aiming to 

analyse Brazilian preservice mathematics teachers’ understanding of the continuity of a function 

concept, in a context of a teaching experiment which design is based on a theoretical model for 

learning with understanding that consider three dimensions: the meanings of continuity concept, 

the use of its different representations and their application in problem solving that involves it. 

Data collection includes participant observation with audio and video recording of the lessons, 

students’ written and digital work on the tasks proposed during the teaching experiment, and 

interviews applied to the students. The qualitative and interpretative data analysis showed that 

students, in general, assigned different meanings to the continuity, which emerged from their 

concept image. At the end of the teaching experiment, they show an adequate conception of this 

concept, being able to articulate different representations and perform treatments and 

conversions to interpret and represent the (dis)continuity of a function, and to correctly apply the 

criteria of existence of the concept of continuity and the intermediate value theorem in the 

analysis of errors and in the proving of mathematical propositions, and in solving problems that 

call for mathematical modelling. Thus, as they revealed a learning with understanding of the 

continuity concept, the study also provides information to propose innovative mathematics 

teaching and learning methodologies aimed at improving that learning. 

 

Keywords: continuity of functions, learning with understanding, concept meanings, 

representations, problem solving, pre-service mathematics teachers 

 

INTRODUCTION 

Continuity is one of the essential concepts in Calculus, a compulsory course in most undergraduate 

programs, because it is required for learning other advanced mathematical concepts and is the basis of several 

definitions and premises required for the application of its numerous theorems (Sealey, Deshler, & Hazen, 

2014). This mathematical concept is often introduced to undergraduate students when they start their 

university studies, particularly in the Pre-Calculus course for Brazilian pre-service mathematics teachers, as 

part of the mathematical knowledge they must acquire to teach mathematics (CBMS, 2012). However, 

previous research has shown that undergraduate students, including pre-service teachers, have difficulties in 
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understanding the continuity of a function, which limits the development of other calculus concepts, and noted 

that the observed difficulties may be due to procedural-dominated teaching practices that neglect the 

development of students’ conceptual understanding of mathematical content (Domingos, 2003; Sebsibe & Feza, 

2020). 

Considering that the understanding in mathematics is central to students not losing their interest in the 

subject and to be successful in their learning, the literature emphasizes the interest and the need of learning 

the continuity concept with understanding, specifically using educational dynamic software, for example the 

GeoGebra (Dikovic 2009). Therefore, it is required to investigate alternative pedagogical approaches to 

teaching Calculus, enabling students to overcome these commonly observed difficulties and gain better 

conceptual knowledge, including understanding (Sebsibe & Feza, 2020). However, in research, there is no 

consensus on the meaning of mathematical understanding, nor is it specified as such idea can be used to 

research and design teaching and learning processes of calculus topics (Simon, 2017). Furthermore, the 

empirical studies focused on how the understanding of the concept of continuity may emerge and be developed 

in the learning process are scarce.  

In this context, we assumed as relevant to carry out a teaching experiment with pre-service mathematics 

teachers who were attending a discipline of Pre-Calculus, aiming to promote their learning of the continuity 

of a function, with understanding, which design involves the use of GeoGebra and is based on three dimensions 

considered as reference for this learning: development of correct meanings of the mathematical concept; work 

with its different representations; and resolution of problems that involves it (Domingos, 2003; Karatas, 

Guven, & Cekmez, 2011). 

To understand the potential of the referred teaching experiment to help pre-service mathematics teachers 

to develop better knowledge about the continuity of a function, which could influence the way they will teach 

this mathematical topic (Albuquerque et al., 2006; CBMS, 2012), and the need for further adjustments in its 

design, the study reported in this paper aims to analyse Brazilian pre-service mathematics teachers’ 

understanding of the continuity concept, in the context of the described teaching experiment. In particular, 

we seek to answer the following questions: i) What are the meanings that students attribute to the concept of 

continuity of a function, when explaining or interpreting the (dis)continuity of functions?; ii) How do students 

recognize, represent and transform the concept of continuity in different representations?; and iii) What 

knowledge about the concept of continuity the students mobilize to solve problems that involve it? 

Thus, this study may contribute to research on pre-service teacher education, by shedding light on how to 

analyse pre-service teachers’ understanding of mathematical concepts, based on useful elements that allow to 

describe how this understanding is evidenced and to assist them in developing it in order to enhance the 

required mathematical knowledge for teaching. 

LEARNING WITH UNDERSTANDING OF THE CONCEPT OF CONTINUITY OF A 

FUNCTION 

Understanding in Mathematics Learning 

The importance of learning mathematics, with understanding, has gained overhang and growing 

consensus, both in curriculum documents and in mathematics education research (e.g. Domingos, 2003; Idris, 

2009; NCTM, 2000; Simon, 2017). It is also emphasized in curricular guidelines for pre-service mathematics 

teachers’ programs (Albuquerque et al., 2006; CBMS, 2012) in order to prepare teachers to promote that 

understanding in their practices. In these studies it is noted that mathematics understanding is not limited 

to a simple recall of facts and, therefore, students should develop an understanding of mathematical concepts 

in their learning, contrary to a common learning that is based on the acquisition of isolated skills and only 

later is developed the understanding of how these skills are related to the concept learned. Thus, the 

understanding becomes a focus of the learning process, considered a fundamental pillar in this process, and 

involves an integrated knowledge of relationships, meanings and different representations of a mathematical 

concept, as well as connections of different concepts from the same area of knowledge or from different areas, 

which should be developed by students from the beginning of their learning process (Domingos, 2003; Simon, 

2017). 

However, the term understanding in the learning of mathematics is not consensual among the members 

of the educational community. A definition of understanding that fits well to the objectives of this study is 

presented by Skemp (1976), who considers two types of understanding of mathematical concepts: instrumental 
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understanding or relational understanding. According to the author, understanding can be instrumental, 

characterized by the memorization of rules or methods that allows their use in problem solving through the 

simple application of that knowledges. It can also be relational, which refers to knowing how and why 

procedures work and involves a rich and integrated conceptual structure, allowing to relate the meanings, 

procedures and representations, and their mobilization in problem solving. Therefore, it is this conceptual 

structure that allows a learning with understanding. 

These two types of understanding are useful to classify the students’ understanding in learning 

mathematics, but do not reveal which components can support us to give some information about that 

understanding. Therefore, we assume that the meanings attributed to the mathematical concept, the use of 

its different representations, and its application in problem solving involving it, are elements that allow to 

describe how the understanding is evidenced and developed, being considered in previous research on the 

learning of the concept of continuity of a function as dimensions (Figure 1) of mathematical understanding 

(Gutiérrez-Fallas & Henriques, 2017; Karatas et al., 2011). 

 The Meanings and Understanding of Continuity 

The meanings that students attribute to a mathematical concept constitute one way to express their 

mathematical understanding, since they reveal the students’ conception of the mathematical concept 

(Fernández-Plaza, Rico, & Ruiz-Hidalgo, 2013). The meanings can be evidenced from a set of verbal, graphic, 

symbolic or schematic responses, among others, about the mathematical concept (Gutiérrez-Fallas & 

Henriques, 2017). 

Often, the research on the teaching and learning of the concept of continuity of a function, is based in Tall 

and Vinner’s (1981) theory of Concept Image and Concept Definition to explain the meanings attributed by 

students to this mathematical concept (e.g. Domingos, 2003; Fernández-Plaza et al., 2013; Gutiérrez-Fallas & 

Henriques, 2017; Juter, 2006; Messias & Brandember, 2015; Nair, 2010). According to Tall and Vinner (1981), 

the concept image describes the total cognitive structure associated with the mathematical concept, which 

includes all mental images, properties and processes, being built and developed through experiences of all 

types. Associated with this cognitive structure, the authors refer the evoked concept image as part of the 

concept image activated in a given context, although it do not necessarily reflect everything the student knows 

about the concept. The authors also define concept definition as a verbal description of the concept, which can 

be taught to the student or built by him, improved over time, in addition to the possibility of being different 

from the formal definition that is accepted by the mathematical community. For these authors, a concept 

definition may be nonexistent if it has not been formed or if it is forgotten by the student. If it exists, it can be 

inactive, as is the case for students who memorize certain definitions of mathematical concepts. 

The meanings can be correct, characterized by correct concept images and appropriate to the situation 

under study. Consequently, they reveal the correct meaning that is attributed to the mathematical concept, 

 
Figure 1. Model of the dimensions of mathematical understanding 
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for example, the meaning of a continuous function as a result of the equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), characterized 

by correct concept images of the concept of continuity of a function based on the verification of three criteria 

of its existence, namely: i) ∃ lim
𝑥→𝑥0

𝑓(𝑥); ii) ∃ 𝑓(𝑥0); and iii) lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) (Sealey et al., 2014). The meanings 

can also be nonexistent or conflicting when concept images are evoked by students in disconnection with the 

concept definition creating a cognitive conflict. Thus, misconceptions can act as an obstacle to the acquisition 

of new knowledge, limiting the learning of new concepts and their understanding (Tall & Vinner, 1981). This 

fact is exemplified in the classic concept of continuity as the function whose graph can be drawn with the pencil 

without lifting it, which can lead to inaccuracies in the analysis of rational functions, which are continuous 

throughout the domain, but with interruption in its graph (Juter, 2006). 

Therefore, the importance of actively involving students in building correct meanings of the concept of 

continuity, during their learning, is widely recognized. By adopting this practice it will provide opportunities 

for students to develop more complete meanings of the intuitive notions and the algebraic and formal notations 

of this concept, getting an adequate understanding of it (Gutiérrez-Fallas & Henriques, 2017; Karatas et al., 

2011; Nair, 2010; Sealey et al., 2014; Tall & Vinner, 1981). 

The Representations and Understanding of Continuity 

Understanding a mathematical concept implies not only knowledge of its different meanings, but also of 

its multiple representations (Domingos, 2003). Since communication in mathematics is established based on 

representations (Duval, 2006), they are referred as fundamental for the students’ learning of mathematical 

concepts, existing a relationship between their understanding and the representations they use (Juter, 2006). 

The use of different representations of a mathematical concept helps students to get a more complete idea 

of it, and is a powerful resource that can assist them in solving mathematical problems (Duval, 2006). Thus, 

understanding a concept requires a teaching approach that addresses this diversity (Karatas et al., 2011). The 

ability to recognize, represent and translate the concept of continuity in its different representations is 

considered a requirement for its understanding, being the most considered in the teaching of this 

mathematical concept the verbal, algebraic, geometric and numerical representations (Karatas et al., 2011; 

Sealey et al., 2014). 

The verbal representation of the concept of continuity consists in describing aspects of this mathematical 

concept using colloquial or natural language, being very common the use of intuitive notions such as ‘there is 

no graphical interruption’ and ‘defined at all your points’ to communicate about the continuity of a function 

(Karatas et al., 2011). This verbal representation is important to explain the symbologies that translate the 

concept and are often used by students in their written justifications when solving tasks (Sealey et al., 2014). 

The algebraic representations of a concept consider mathematical expressions that use algebraic symbols. 

Associated with the concept of continuity, they include, for example, the algebraic expression of the formal 

definition of continuity based on the notion of neighborhoods, or even the informal definition of continuity 

expressed by lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). These representations are essential in solving tasks in which the validation of 

the (dis)continuity of a function is required (Nair, 2010). The geometric representations of the concept of 

continuity are commonly described by geometric records of function graphs, supported by a cartesian 

coordinate system, containing a register indicating the limit variables (𝑥 → 𝑥0 / 𝑓(𝑥) → 𝑓(𝑥0)) through arrows 

or open intervals to represent the equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) and to justify the continuity of functions (Karatas 

et al., 2011). Some authors also mention the use of numerical representations associated to the concept of 

continuity, characterized by numerical records of ordered pairs (𝑥, 𝑓(𝑥)) of the cartesian plane, sometimes 

supported by tables, as a way of representing the set of points of a function 𝑓 (Domingos, 2003). 

The use of different representations of a mathematical concept requires transforming them. For Duval 

(2006), these transformations can occur in two different ways, that is, through treatment and conversion. The 

treatments are transformations of the representations that happen within the same register, such as the 

algebraic calculation of lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) to validate the (dis)continuity of a function 𝑓 at point 𝑥 = 𝑥0, which 

is a form of treatment of algebraic expressions (Juter, 2006). The Conversions are transformations carried out 

between different registers of representations, attached to one same object, such as, for example, the 

transformation of the algebraic expression of a function in its geometric representation (Duval, 2006). The 

author also highlights the importance of students being able to work fluently within and between different 

register of representations, in order to achieve understanding in the learning of mathematical concepts. 
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The potential of using different representations of the concept of continuity for its understanding is 

highlighted, for example, in the studies of Tall (1993), Domingos (2003) and Sealey et al. (2014). Tall (1993), 

for example, focused on the results of international studies about the teaching and learning of the continuity 

concept, concluded that the students who achieved greater success in the learning of this concept were able to 

recognize and transform the different representations (algebraic, numerical and geometric), knowing operate 

them. Domingos (2003) shows that a student who is able to operate and establish connections between 

different representations of the formal definition of the lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), explaining the meaning of the 

symbologies |𝑥 − 𝑥0| < 𝛿 and |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 in terms of neighborhoods 𝑉𝛿(𝑥0) and 𝑉𝜀(𝑓(𝑥0)), recognizing the 

role of quantifiers in these registers and designing the lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) as a result of the implication 𝑥 ∈

𝑉𝛿(𝑥0) ⇒ 𝑓(𝑥) ∈ 𝑉𝜀(𝑓(𝑥0)), evidences to have an adequate conception of the formal definition of continuity of a 

function. Sealey et al. (2014) also observed that the verbalization, the writing, and the geometric register of 

the intermediate value theorem (IVT) proved to be fundamental to an adequate students’ understanding of 

this theorem associated with the concept of continuity. The connections between these registers provided them 

multiple contexts in which they could build adequate intuitions of this theorem, which favored the meaning of 

algebraic notation and its role in the mathematical proposition that defines it. 

All these authors emphasize that the understanding of the concept of continuity is enriched and promoted 

by the integrated use of its different representations, and thus suggest considering this use in the design of 

instructional activities for the teaching and learning of this mathematical concept, enabling students to 

achieve an understanding of the concept. 

Problem Solving and Understanding of Continuity 

Mathematical problem solving involves creative activity of experimentation, formulation of conjectures, 

testing and validation of them, argumentation, proof and refutation (Domingos, 2003). However, is commonly 

observed that students have many difficulties in solving mathematical tasks that require the application of 

mathematical definitions and theorems, such as the statement of mathematical propositions, for which its 

memorization is not sufficient (Ko & Knuth, 2009). 

The understanding the concept of continuity is linked to the ability to mobilize knowledge to solve problems 

that involve it (Karatas et al., 2011). In this sense, it is a common practice to use problems that request 

analysis of errors and mathematical proof, as well as those that appeal to mathematical modelling, both for 

the promotion and for the consolidation of learning about this mathematical concept (Domingos, 2003; Ko & 

Knuth, 2009). The problems involving analysis of errors require the identification of errors in mathematical 

expressions or solving procedures and their justified correction. Sometimes, the students resort to a 

counterexample to refute them, being important to reinforce the meanings and fundamentals of contents that 

are being used in the analysis (Ko & Knuth, 2009). The problems involving mathematical proof consist in 

proving mathematical conjectures, through logical and formal arguments, based on axioms, definitions or 

propositions, which is developed starting from logical steps to deduce the truth of the conjecture (Tall, 2006). 

Together, these types of problems play an important didactic role in providing students with insights into the 

meanings of statements (Ko & Knuth, 2009). In addition, they constitute an opportunity for students to develop 

the ability to reason abstractly about definitions and theorems associated with the concept of continuity, and 

are often used to lead them to the formalization of this mathematical concept (Swinyard & Larsen, 2012). 

The problems that appeal to mathematical modelling involve situations in semi-real or real contexts and 

require the creation of a mathematical model to translate these situations (Domingos, 2003). These problems 

bring great interest to mathematics education as they often involve practical situations from everyday life. 

They can also provide an opportunity for students to develop algebraic skills in validating continuity of 

functions (Juter, 2006). A problem of ensuring the existence of an equation root, which is the basis of many 

physics and chemistry problems and requires the application of IVT, fits in this type of problems (Strand, 

2016). Thus, the problems that appeal to error analysis, mathematical proof and mathematical modelling, 

involving the concept of continuity, constitute elements that enable students to mobilize their informal and 

formal knowledge about this concept, and reveal their mathematical understanding about it. 

PREVIOUS STUDIES ON THE LEARNING OF CONTINUITY CONCEPT 

Previous research on the learning of continuity concept highlight the importance of developing students’ 

conceptual understanding of the intuitive notions, algebraic calculus and formal approaches associated to 
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continuous functions. The intuitive notions of this concept are characterized by a correct informal 

mathematical knowledge based on pre-concepts, visual perceptions or unquantified actions about this concept 

(Tall, 2006). The knowledge of intuitive notions, designated by intuitive conception, is fundamental for the 

construction of the concept of continuity as it facilitates both the conception of this concept and the 

development of other aspects associated with it (Domingos, 2003). As an example, we have the notions of 

simultaneous approaches of 𝑥 → 𝑥0 and 𝑓(𝑥) → 𝑓(𝑥0) to describe lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), and the knowledge of the 

uninterrupted characteristic of the graphical behavior of some continuous functions, which can favour the 

recognition of the (dis)continuity of a function at a point 𝑥 = 𝑥0 or in an interval (Dikovic, 2009; Juter, 2006). 

The algebraic calculus associated to the continuity concept consists in the algebraic treatment of the 

lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), which is essential to the algebraic application of the concept, as well as to validate the 

continuity of a function as a required condition to apply diverse calculus theorems, for example the IVT 

(Strand, 2016). For that, a good mastery of Algebra is required in working with variables in the manipulation 

and simplification of algebraic expressions and in solving limit indeterminate forms, among others, which 

would not be possible using only intuitive notions (Nair, 2010). 

The formal approaches to the continuity concept are based on the algebraic expression of its formal 

definition, lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0)  ⟺  ∀ 𝜀 > 0 , ∃ 𝛿 > 0 such that if 𝑥 ∈ 𝐷𝑓 and |𝑥 − 𝑥0| < 𝛿 thus |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀, 

which is a basis for several proofs in Calculus (Dikovic, 2009; Swinyard & Larsen, 2012). A proper learning of 

this definition is essential for students to move towards a more formal and rigorous learning of the calculus 

concepts, and involves, among other aspects: (i) a correct interpretation of |𝑥 − 𝑥0| < 𝛿 and |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀, 

and of the quantifiers and their sequence in that algebraic expression; (ii) the ability to represent the 

continuity of a function by its formal definition and to operate with the inequalities |𝑥 − 𝑥0| < 𝛿 and 

|𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀, in order to find the values of 𝛿 that validate the |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀, thus ensuring the validity 

of the continuity of the function (Domingos, 2003; Swinyard & Larsen, 2012). 

However, the literature has pointed out students’ difficulties about the learning of the continuity concept. 

For example, Messias and Brandember (2015), and Sesibe and Feza (2020), highlight students’ cognitive 

difficulties, including: misunderstandings of the term continuity; incorrect conceptions of continuous function 

as a function that in each point of its domain has an image associated or that the lim
𝑥→𝑥0

𝑓(𝑥) exist, or a function 

whose graph has no interruptions; and misconception of the discontinuity of a function at 𝑥 = 𝑥0 implying the 

inexistence of lim
𝑥→𝑥0

𝑓(𝑥). For the authors, these difficulties result from cognitive conflicts present in the 

students’ concept image, which reveal conflicting meanings of the continuity concept. Juter (2006) and Nair 

(2010) point out difficulties associated with procedures in Algebra, due to weaknesses in the manipulation and 

simplification of algebraic expressions, in the factorization and rationalization of algebraic fractions and in 

solving literal inequations associated to the calculus of lim
𝑥→𝑥0

𝑓(𝑥) to decide on the (dis)continuity of a function. 

According to these authors, such difficulties seem to be related to the students’ tendency to memorize 

processes, instead of understanding them, resulting in weaknesses in the treatment and conversion of 

algebraic records associated with the concept of continuity of a function. 

Difficulties associated with learning the formal definition of continuity of a function are also evident. There 

are several studies noting that students, in introductory Calculus courses, generally are not able to interpret, 

communicate or consistently apply the formal definition of continuity, as they do not understand or are unable 

to operate with the algebraic symbology of this definition (Cornu, 1991; Domingos, 2003; Swinyard & Larsen, 

2012; Tall, 2006). Some of the most common difficulties referred in these studies are: misunderstanding of the 

use of quantifiers ∀ 𝜀 > 0 and ∃ 𝛿 > 0 or its sequence in the formal definition, of the implicative correspondence 

𝑥 ∈ 𝑉𝛿(𝑥0) ⇒ 𝑓(𝑥) ∈ 𝑉𝜀(𝐿), and of the meaning of algebraic inequalities |𝑥 − 𝑥0| < 𝛿 and |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀, and 

weakness in the geometric representation and use of the formal definition of continuity to solve problems that 

involve it. 

Thus, taking into account the students’ difficulties in learning the continuity of a function, evidenced at 

different school grades, the research has highlighted the importance of teaching this concept through an 

approach that contemplates working with intuitive notions, algebraic calculus and formal approach, in an 

integrated way, so that students can achieve a deeper understanding of this mathematical concept and be able 

to apply them in problem solving (Juter, 2006). 
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METHODOLOGY 

Context and Participants 

This study is part of a broader investigation (Fonseca, 2019) based on a teaching experiment (Steffe & 

Thompson, 2000), carried out in a Pre-Calculus course of the 1st year of the pre-service mathematics teachers’ 

program in Brazil. The teaching experiment, aiming at developing the learning with understanding of the 

concepts of limit and continuity of a function, involved the classroom application of 17 exploratory tasks 

addressing these concepts and integrating the use of GeoGebra. 

The participants of the study are the 16 students (12 boys and 4 girls) that were attended the Pre-Calculus 

course during the first semester of 2016, and about 85% of them started the course without having any 

academic knowledge about the concepts of limit and continuity of functions. The researcher, first author of 

this paper, assumed the role of a teacher during the 66 classes (45 minutes each) of the teaching experiment. 

The classes followed an exploratory approach (Menezes, Canavarro & Oliveira, 2012) whose dynamic involved 

four moments: teacher presentation of the task to students; students autonomous work on the task, in small 

groups of 2 or 3 elements, involving moments of discussion between them and between them and the teacher; 

a final whole class discussion, guided by the teacher, where students shared and discussed their work; and a 

systematization of results by the teacher. 

In this paper we focus on a sequence of five exploratory tasks of the teaching experiment (𝑇13, 𝑇14, 𝑇15, 𝑇16 

e 𝑇17), which aimed to promote learning with understanding of the concept of continuity of a function, proposed 

to students after the teaching of the limit concept. This sequence was conceived to contemplate the 

development of intuitive notions, algebraic procedures and the formal definition of the concept of continuity, 

by exploring, across the sequence, the meanings of the continuity of a function, the use of different 

representations of the concept and problem solving involving it. Moreover, in accordance with what is referred 

in the literature (Domingos, 2003; Juter, 2006; Strand, 2016) as learning objectives in an introduction to 

Calculus course, the learning objectives regarding the concept of continuity considered in these tasks, are: i) 

To recognize and represent the concept of continuity of a function, both geometrically and algebraically from 

its formal definition; ii) To recognize the continuity as a condition of the IVT; iii) To apply the formal definition 

to prove the continuity of a function; iv) To apply the criteria of the concept of continuity to justify the 

(dis)continuity of a function; and v) To apply knowledge about IVT in solving problems. 

Data Collection and Analysis 

This study has a qualitative and interpretative nature (Cohen, Manion, & Mohinson, 2007). Data collection 

included participant observation with audio and video recording of the taught lessons and the students’ 

written work on the tasks as well as the digital files of their work on GeoGebra. At the end of the study, a 

semi-structured interview (Steffe & Thompson, 2000) was also conducted with four students to deeper the 

researcher knowledge about aspects of the students’ understanding about this concept. 

The descriptive and interpretative data analysis, focus on students’ understanding of the concept of 

continuity of a function, is based on three categories (Table 1), namely, meanings, representations and problem 

solving, which were considered from the theoretical framework as components of the understanding. 

In the next section, we present the results of the analysis organized by the described categories and 

evidenced with excerpts of students’ work on the tasks (identified by 𝑄# - task question and 𝑇# - task) and of 

the final interview (𝐹𝐼). To ensure the confidentiality of the data collected, the students’ names are fictitious. 

Table 1. Data analysis categories and respective descriptors 

Understanding the concept of continuity of a function 

Meanings 

Aspects of the evoked concept image and concept definition about the continuity of a 

function, mobilized by students, which reveal their conception about this mathematical 

concept. 

Representations 
Representations used by students to interpret, represent, and transform (treatments and 

conversions) the different representations of the concept of continuity of a function. 

Problem 

Solving 

Knowledge mobilized by students to solve problems involving the concept of continuity of 

a function, namely, error analysis, mathematical proofs for the validation of 

mathematical conjectures and problems that appeal to mathematical modelling. 
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RESULTS 

Meanings of Continuity 

The meanings that students attributed to the concept of continuity were evidenced in their work on solving 

the questions in which they were asked to decide and justify the continuity of functions graphically represented 

(𝑄3𝑇13, 𝑄4𝑇14) and to interpret the algebraic expression of the formal definition of the concept (𝑄3𝑇15, 𝑄4𝑇15). 

When the students started the study of the continuity of a function, by solving the task 𝑇13 in which they 

are asked to analyse the graph of four functions and decide on its continuity in a justified way, they assigned 

to the continuous function the meaning of a function whose graph has no interruptions or that each point of its 

domain has an associated image. These meanings reveal an intuitive conception of the continuity concept, as 

a result of their previous experience in the study of functions, leading them to misinterpret the graphs of 

functions in which the image 𝑓(𝑥0) was not defined, the lim
𝑥→𝑥0

 𝑓(𝑥) did not exist or the equality lim
𝑥→𝑥0

 𝑓(𝑥) =

𝑓(𝑥0) did not occur, preventing them from recognizing the (dis)continuity of these functions, as it is observed 

in the answers of the pairs Ismael and Jorge, and Gil and Maria (Figure 2) to 𝑄3𝑇13. 

The answer of Ismael and Jorge, justifying the non-continuity “because the graph is interrupted when 𝑥 =

1”, reveals that the students interpreted the graph of the function 𝑓1 from the characteristic of the graph that 

shows an interruption, incorrectly concluding that 𝑓1 is not continuous, not recognizing that if 𝑥 = 1 does not 

belong to the function domain it should not be considered in the analysis of continuity. In turn, Gil and Maria’s 

answer, “because there is 𝑓(𝑥) for all values assigned to 𝑥”, reveals their conception that the continuity of a 

function only requires that all values of 𝑥 have an image on the graph, leading them to incorrectly assume 

that the function 𝑓2 is continuous even when the graph presents a jump at 𝑥 = 1, corresponding to a 

discontinuity point. 

At the end of this task, the teacher synthesizes the criteria for continuity of a function at a point 𝑥0, namely, 

i) ∃ 𝑓(𝑥0); ii) ∃ lim
𝑥→𝑥0

 𝑓(𝑥); and iii) lim
𝑥→𝑥0

 𝑓(𝑥) = 𝑓(𝑥0). Then, in solving the task 𝑇14, it is observed that the 

students’ intuitive conceptions about this concept are updated to formal conceptions. For example, when 

answering question 𝑄4𝑇14, in which they must decide on the continuity of a 𝑉 function that models the volume 

of a box with a cobblestone shape, and which was represented graphically, some students use their prior 

knowledge of types of continuous functions to interpret continuity, associating the meaning of this concept 

with the preconceived continuous function. These students identified that the analytical expression of the 𝑉 

function of the problem was a polynomial and, from there, they correctly concluded that the 𝑉 function is 

continuous all over its domain, as observed in the answer of the pair Elizeu and Vítor: “It is continuous because 

it is a polynomial”. It is also observed that most students mobilized correct concept images associated with the 

meaning of continuity as a result of the equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) at every point in the domain, as shown in 

André and Jorge’s answer “Yes, because for every value of x in the interval [0,5] there is a limit and the function 

is defined in it, that is lim
𝑥→𝑥0

𝑉(𝑥) = 𝑉(𝑥0). However, two groups of students still show difficulties in 

understanding this concept, since they did not present a justification for the continuity of this function by 

mobilizing concepts image associated with this concept meaning.  

  

“It is not continuous. Because the graph is 

interrupted when 𝑥 = 1, that is, the graph is not 

defined on it.”  

(Ismael and Jorge) 

“It is continuous, because there is 𝑓(𝑥) for all values 

assigned to 𝑥, even if the function jumps.” 

(Gil and Maria) 

 

Figure 2. Answers of the pairs Ismael and Jorge, and Gil and Maria to 𝑄3𝑇13  
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During the didactic intervention, it was observed that the meaning of continuity associated with the 

equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) was consolidated by all students in their respective concept image. The students 

used concept images associated with the continuity criteria of a function at a point 𝑥0, both to interpret the 

concept represented by the algebraic expression of its formal definition (in 𝑇15) and to justify the continuity as 

a condition for apply the IVT, at the end of the study (in 𝑇16 and 𝑇17). This correct conception of continuity 

favoured the recognition of the continuity of a function, represented by the algebraic expression of its formal 

definition (in 𝑇15) and the (dis)continuity of a function in a closed interval [𝑎, 𝑏] represented geometrically (in 

𝑇16 and 𝑇17). An example that shows this correct learning is presented in Figure 3, which contains the answers 

of the pair Elizeu and Vítor to (𝑄4 and 𝑄5)𝑇15 in which they were asked, respectively, to explain the meaning 

of the expression “∀ 𝜀 > 0, ∃ 𝛿 > 0 such that if 𝑥 ∈ 𝐷𝑓 and |𝑥 − 2| < 𝛿 then |𝑓(𝑥) − 𝑓(2)| < 𝜀” and to justify the 

mathematical concept it represents. 

These students presented correct and elucidative explanations of the lim
𝑥→𝑥0

𝑓(𝑥) related to the value of 𝑓(𝑥0), 

to translate the formal definition of continuity through the equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), complementing them 

with algebraic register schemes and/or creating a graph of a continuous function, to justify its continuity. 

Representations of the Continuity Concept 

The students’ ability to geometrically represent the continuity concept was analysed in the questions 𝑄1𝑇13: 

“Draw a graph of a continuous function” and 𝑄6𝑇15: “How could you represent this concept geometrically?”, in 

which are also required transformations on the representations. It is observed that almost all students 

evidenced facility in creating graphic representations of a continuous function and in carrying out geometric 

treatments of the formal definition of continuity, some of which supported in the mathematical symbols of that 

definition, as exemplified by the answers of Gil and Maria to 𝑄1𝑇13 and of Ismael and Jorge to 𝑄6𝑇15, shown in 

Figure 4. 

 
[𝑄4𝑇15: In this case, the point is defined. Assuming that 𝑓(2) = 4 ⇒ would be the graph 1; 𝑄5𝑇15: Continuous 

function or continuity at a point, since: (1) there are lim
𝑥→𝑥0

 (2) there is 𝑓(𝑥0), lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0)] 

Figure 3. Answers of the pair Elizeu and Vítor to (𝑄4 and 𝑄5)𝑇15  

 
(Gil and Maria) 

 
(Ismael and Jorge) 

Figure 4. Students’ answers to 𝑄1𝑇13 and  𝑄6𝑇15 
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Gil and Maria represented the graph of a function on the cartesian plane, registering the graphical 

behavior of points (𝑥, 𝑓(𝑥)) without interruptions, and Ismael and Jorge present correct geometric records of 

lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), namely the symbology |𝑥 − 2| < 𝛿 and |𝑓(𝑥) − 𝑓(2)| < 𝜀 formed by open intervals centred on 

𝑥0 = 2 and 𝑓(2) = 4, and by explanatory schemes of the point (2, 𝑓(2)). In this way, they show that are able to 

represent geometrically a continuous function and to convert the formal definition of continuity geometrically, 

presenting in each case a correct treatment of the converted geometric records, allowing them to present a 

correct geometric representation of the continuity concept. Only one pair, Miguel and Paulo, was unable to 

convert the formal definition of continuity into a geometric representation, as they incorrectly answered to 

𝑄6𝑇15 (Figure 5). 

This pair’s answer, although presents in the cartesian plane geometric records of expressions included in 

the formal definition of continuity, reveals difficulties in the transformation (treatment and conversion) of the 

geometric representation due to the lack of the graph of the function and indications of 𝑥 ∈ 𝑉𝛿(2) ⇒ 𝑓(𝑥) ∈

𝑉𝜀(𝑓(2)). 

The ability of students to recognize the continuity concept presented in different representations was 

analysed in questions 𝑄8𝑇13 and (𝑄2 and 𝑄3)𝑇16, when interpreting graphs of functions to decide on the 

continuity of a function, and in 𝑄4𝑇15, in which they were challenged to interpret the algebraic expression that 

formally defines continuity of a function. It was observed that most students recognize the (dis)continuity of a 

function in the analysed graphs, having resorting in 𝑄8𝑇13 to the lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) as an adequate and 

elucidative argument that correctly justifies the (dis)continuity of the functions corresponding to the graphs 

analysed, as exemplified in the following answers of Fátima and Miriam (Figure 6). In this way, the students 

show to recognize the concept of continuity, both geometrically and algebraically. 

Then, in (𝑄2 and 𝑄3)𝑇16, the students correctly interpret the behavior of the graph of the function 𝑓 at the 

points 𝑥 = 2, 𝑎 = −2 and 𝑏 = 4, using continuity criteria, expressed in verbal or algebraic form, to assess the 

veracity of the equalities lim
𝑥→2

𝑓(𝑥) = 𝑓(2), lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎) and lim
𝑥→𝑏−

𝑓(𝑥) = 𝑓(𝑏), which allowed them to 

correctly conclude that the function 𝑓 is continuous at the endpoints of the interval [−2,4], but discontinuous 

in this interval, since it was not continuous in 𝑥 = 2 ∈ [𝑎, 𝑏]. This conclusion is observed in the answers “No, 

because the lateral limits at point 𝑥 = 2 are different” and “Yes, because lim
𝑥→−2+

𝑓(𝑥) = 𝑓(2) and lim
𝑥→4−

𝑓(𝑥) =

𝑓(4)”, presented by Elizeu and Vítor, respectively, to questions 𝑄2𝑇16: “This (original) function is continuous 

in the open interval ]𝑎, 𝑏[? Justify” and 𝑄3𝑇16: “Is it continuous at ends 𝑎 and 𝑏? Justify”. 

 

Figure 5. Answer of the pair Miguel and Paulo to  𝑄6𝑇15 

 
 

 

𝒇𝟑: No, since lim
𝑥→1+

𝑓(𝑥) ≠ lim
𝑥→1−

𝑓(𝑥). 

 

𝒇𝟒: Yes, because lim
𝑥→1

𝑓(𝑥) = 𝑓(1). 

 

Figure 6. Answers of Fátima and Miriam to 𝑄8𝑇13  
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Other pairs, in 𝑄8𝑇13 and in (𝑄2 and 𝑄3)𝑇16, showed not to recognize the (dis)continuities of functions in the 

graphs analysed as they made mistakes in the application of the function continuity criteria, as exemplified 

in Ismael and Talita answer to Q3𝑇16: “No, the function is not continuous at points 𝑎 and 𝑏, because there is 

no limit and the points 𝑥 have images”. By justifying the discontinuity of the function at points a and b stating 

“because there is no limit”, this pair of students is using the results of calculating the lateral limits at these 

points, that is, lim
𝑥→𝑎−

𝑓(𝑥) ≠ lim
𝑥→𝑎+

𝑓(𝑥) and lim
𝑥→𝑏−

𝑓(𝑥) ≠ lim
𝑥→𝑏+

𝑓(𝑥), not realizing that the analysis of the continuity 

of the function at the interval endpoints, should consider only the analysis of its lateral limits where the 

function is defined, in this case, lim
𝑥→𝑎+

𝑓(𝑥) and lim
𝑥→𝑏−

𝑓(𝑥). 

In 𝑄4𝑇15, all students already recognized the continuity of a function represented by its formal definition. 

They recognized that the expression “∀ 𝜀 > 0, ∃ 𝛿 > 0 such that 𝑥 ∈ 𝐷𝑓 and |𝑥 − 2| < 𝛿 then |𝑓(𝑥) − 𝑓(2)| < 𝜀”, 

corresponds to the formal definition of the limit (𝐿) at the point 𝑥 = 2, with 𝐿 = 𝑓(2), and that the function was 

defined at 𝑥 = 2, since 𝑓(2) = 4. Thus, they correctly concluded that the algebraic expression represented the 

continuity of the function at x = 2, showing a correct verbal representation of this formal definition, as shown 

in the answer of Cláudio and Pedro: “lim
𝑥→2

𝑓(𝑥) = 4 = 𝑓(2). It is the definition of continuity in the point because 

the function f is defined in 𝑓(2) = 4”. 

These results evidence that, in general, students were able to make adequate and correct connections 

between different representations of the continuity concept, showing facility in the treatments and conversions 

between them. This result it is also confirmed in the students’ responses to the final interview, which reveal 

that the criteria for the existence of continuity of functions were consolidated by the four students interviewed. 

When challenged in (𝑄3𝐹𝐼) to describe everything they know about the information lim
𝑥→3

𝑓(𝑥) = 𝑓(3), being 𝑓 a 

real function, all respondents recognized the continuity of 𝑓 at 𝑥 = 3 and justified it using the verbal 

representation of continuity based on the lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), complementing it with algebraic and geometric 

representations of continuity concept, involving a correct treatment of these representations. In this way, they 

reveal fluency in the conversion of representations of the continuity concept, as exemplified in Pedro’s answer 

(Figure 7). 

Problem Solving Involving the Continuity Concept 

With regard to problem solving, students were challenged to mobilize their knowledge of the concept of 

continuity in order to: (i) analyse algebraic propositions that involve the concept of continuity or IVT, proving 

them or justifying the inaccuracies identified in them (𝑄8𝑇15, 𝑄3𝑇17); and (ii) solve problems that appeal to 

mathematical modelling and involves the application of IVT (𝑄7𝑇16, 𝑄1𝑇17 and 𝑄2𝑇17). 

In 𝑄8𝑇15, only half of the students were able to mobilize the formal definition of continuity to prove the 

continuity of the function 𝑓(𝑥) = 2𝑥 − 3 at 𝑥 = 2. The answers of these groups include a correct translation of 

 

[Verbal Representation: The function is continuous at 𝑥0 = 3. The limit exists and is equal to the image of 

the point] 

Figure 7. Pedro’s answer to 𝑄3𝐸𝐹 
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the continuity of the function 𝑓 at 𝑥 = 2 from the formal definition, expressed in “∀ 𝜀 > 0, ∃ 𝛿 > 0, 𝑥 ∈ 𝐷𝑓  and 

|𝑥 − 2| < 𝛿 thus |𝑓(𝑥) − 1| < 𝜀”, and a solving strategy to correctly determine the value of 𝛿 as a function of 𝜀, 

which validates the inequalities |𝑥 − 2| < 𝛿 and |𝑓(𝑥) − 𝑓(2)| < 𝜀, as observed in the answer of Fátima and 

Miriam (Figure 8). 

The remaining pairs of students did not applied the formal definition of continuity to prove that function f 

is continuous at x = 2, as exemplified in the answer of the pair Miguel and Paulo (Figure 9), in which it is 

observed that students resort to arguments based on the equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) to validate the continuity, 

possibly due to a lack of understanding of the algebraic procedure to find a 𝛿 as a function of ε that meets the 

formal definition. 

It was also observed that almost all students, in question 𝑄3𝑇17, were able to correctly analyse four 

algebraic propositions that involve the application of IVT, proving them or justifying their inaccuracies. These 

students resorted to geometric records that translate the algebraic records of these propositions, analysing 

whether the assumptions of IVT were fullfilled in them, to prove or justify the inaccuracies. They also 

presented verbal explanations to complement the graphical representations of discontinuous functions used 

as counterexamples, as exemplified in Cláudio and Pedro’s dialogue and in the graph associated with their 

answer to 𝑄3.𝑏)𝑇17, where they conclude: “[b) false] If 𝑓 is a function in which 𝑓(1) > 0 > 𝑓(2) thus 𝑓 have a 

root in [1,2]” (Figure 10). 

 

[(…) Thus, it is possible to 𝛿 =  
𝜀

2
] 

Figure 8. Answer of the pair Fátima and Miriam to  𝑄8𝑇15 

 

[For 𝑓(𝑥) to be continuous, the lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). Thus: lim
𝑥→2

2𝑥 − 3 = ⋯ = 1] 

Figure 9. Answer of the pair Miguel and Paulo to  𝑄8𝑇15 

http://www.iejme.com/


 

 

 INT ELECT J MATH ED 

 

 

http://www.iejme.com   13 / 17 

 

 

 

These students analysed the hypotheses of the proposition (𝑓 is a function, 𝑓(1) > 0 and 𝑓(2) < 0) and 

identified that the continuity of the function is not guaranteed, representing in the cartesian plane the graph 

of a function that meets these hypotheses. Although Pedro, in the dialogue, incorrectly concluded that 𝑓 has a 

root in [1,2] and justified with the graph of a continuous function in [1,2], Cláudio corrected him justifying that 

the continuity of function 𝑓 does not be guaranteed, allowing him to consider a discontinuous function at the 

root point (cuts the 𝑥 axis) and that satisfies the conditions of the problem. Then, they identified the 

incorrection in the statement “𝑓 has a root in [1,2]”, in one of the conditions presented in item b) and present 

the graph of a discontinuous function as a counterexample to justify it. 

Finally, all students showed facility in solving a problem that calls for mathematical modelling and 

requires the application of IVT when the analytical expression of the function is presented in the problem 

statement. As exemplified by Talita and Joelson’s answer to 𝑄7𝑇16 (Figure 11), these students were able to 

recognize and prove the continuity of the function 𝑝 in [1,2] and that que 𝑝(1) < 𝑑 < 𝑝(2). Based on these 

conditions, they concluded the existence of 𝑥0 ∈ [1,2] whose image is 𝑝(𝑥0) = 0. 

In this answer, the students correctly proved the continuity of the function 𝑝 in [1,2], justifying that the 

function was continuous in ]1,2[ because it is a polynomial function, and applied correctly lim
𝑥→𝑥0

𝑝(𝑥) = 𝑝(𝑥0) to 

prove the lateral continuity of the function at the endpoints 𝑥 = 1 and 𝑥 = 2. They also correctly calculated the 

value of 𝑝(1) and 𝑝(2) and confirmed that the condition −1 = 𝑝(1) < 𝑑 < 𝑝(2) = 51 was true for 𝑑 = 0. From 

this knowledge, they correctly concluded the existence of 𝑥0 ∈ [1,2] such that 𝑝(𝑥0) = 0, stating “will have real 

root”. In this way, they reveal ability to apply IVT assumptions to prove that 𝑝(𝑥) = 𝑥7 − 5𝑥4 + 3 have at least 

one real root in the range [1,2], responding correctly to 𝑄7𝑇16. 

However, when solving problems that require the application of IVT, having to obtain an analytical 

expression of the function that models the problem through a mathematical modelling process (𝑄1𝑇17 and 

𝑄2𝑇17), most students showed little mastery in mathematical modelling and difficulties with Algebra 

procedures. The main difficulties were not being able to express the function that models the problem and not 

recognizing the assumptions of IVT in these conditions, to apply it in solving the problem. An example of these 

Pedro: item b) If 𝑓 is a function, it does not say that it is continuous, 

with 𝑓(1) > 0. That is here [represents (1, 𝑓(1)) in the 1st quadrant]. 

And zero is greater than 𝑓(2), right? 

Cláudio: Yes, this means that 𝑓(2) is down there [indicates 4th 

quadrant].  

Pedro: So 𝑓 has a root in [1,2]? Yes [represents a graph containing 

(1, 𝑓(1)) and (2, 𝑓(2)]. 

Cláudio: Why? 

Pedro: Look that [Shows his graph] 

Cláudio: It is continuous? You can have this here [insert an open ball at 

the point that crosses the 𝑥 axis]. 

Pedro: Ok. This is a counterexample. 

 

 

Figure 10. Dialogue of Cláudio and Pedro and their answer to 𝑄3.𝑏)𝑇17 

 

Figure 11. Answer of Talita and Joelson to  𝑄7𝑇16 
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difficulties are evidenced in the answer of Gil and Maria (Figure 12) to 𝑄2𝑇17, in which they should solve a 

problem that aimed to ensure the existence of a fixed point of a function (𝑥 ∈ 𝐷𝑓 such as 𝑓(𝑥) = 𝑥), having as a 

real context the climb and descent of a climber on a mountain. 

In this answer, we observe that the students made an error by graphically represent the two displacements 

(up and down) based on a single function, and by incorrectly record their domain as an interval containing the 

values “7, 12, 7,, 12 ,, “, instead of considering distinct continuous functions, containing the same domain [7,12] 

and codomain [0, ℎ]. In this way, they reveal that they were not able to correctly interpret the problem, 

translating it into continuous functions that describe the movements of climb and descent performed by the 

climber in the mountain. These errors prevented them from realizing that the functions (up and down) had a 

common point (𝑥, 𝑓(𝑥)), which corresponded to the solution of the problem. 

CONCLUSIONS AND IMPLICATIONS OF THE STUDY 

In this study we analysed pre-service mathematics teachers’ understanding of the continuity concept, in 

their learning process, based on three dimensions adopted from a theoretical framework that are considered 

as reference for that learning: meanings of the mathematical concept; different representations of the concept; 

and problem solving that involves it (Domingos, 2003; Karatas et al., 2011). The results allow to conclude that 

those dimensions proved to be adequate to analyse the students’ understanding of this concept, during the 

teaching experience.  

The meanings that most students attribute to a continuous function, at the beginning of their learning, as 

a function whose graph has no interruptions or a function that has an image associated to each point of its 

domain, describe intuitive conceptions of continuity resulting from their previous experience in the 

interpretation of graphs of functions, as observed in Juter (2006), Sealey et al. (2014) and Tall and Vinner 

(1981). These intuitive or limited conceptions of continuity were updated during the teaching experiment, by 

formal conceptions, as they started to attribute meanings to the concept associated with the existence of the 

limit at the point, result of equality lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), or preconceived continuous functions, and did not become 

an obstacle to students’ learning about this concept, contrary to what was observed in other studies (e.g. Cornu, 

1991; Juter, 2006; Nair, 2010). In fact, the diverse correct meanings that most students attributed to 

continuity, which emerge from their evoked concept-image and concept-definition (Tall & Vinner, 1981), 

evidence an adequate students’ conception of this concept and necessary for their understanding, as pointed 

out by Domingos (2003) and Fernández-Plaza et al. (2013). Their adequate conceptions were then mobilized, 

leading them to correct conclude and justify about the continuity of a function in the proposed tasks and also 

to clarify the connection between its informal and formal definition, observed when they presented correct and 

clear explanations based on intuitive notions to conclude about the formal definition of this concept, and used 

correct explanations based on formal notions to define it.  

 

[It is not possible to state, because it is not known if the time and the route of both functions (up and down) 

were the same. May occur:] 

Figure 12. Answer of Gil and Maria to 𝑄2𝑇17 
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In working with different representations of the concept of continuity, most students were able to recognize 

the (dis)continuity of a function represented geometrically and algebraically, with records based on the 

algebraic expression of its formal definition. They predominantly resort to verbal representations to 

adequately explain the records that translate it and complement them with adequate and clarifying schemes 

and/or other algebraic expressions based on the criteria for the existence of continuity. The results also show 

the students’ ability to geometrically represent the (dis)continuity of a function, by representing graphs of 

preconceived continuous functions as a result of their intuitive conceptions, and performing appropriate 

treatments of these geometric representations supported by the symbols of the algebraic expression of the 

formal definition of the concept, being this ability essential to understanding this concept (Domingos, 2003; 

Karatas et al., 2011). It is also observed that they were able to algebraically represent the (dis)continuity of 

functions represented geometrically and by the algebraic expression of their formal definition, showing that 

they have assimilated the continuity criteria required to understand this concept (Karatas et al., 2011; Messias 

& Brandemberg, 2015). As students were able to articulate the different representations to interpret and 

represent the (dis)continuity of a function, they also showed facility in carrying out treatments and conversions 

between representations, which evidences their understanding (Duval, 2006). 

Regarding to problem solving, most students were able to mobilize their knowledge about the continuity of 

a function to: (i) analyze algebraic propositions that involve this concept, proving them or justifying the 

inaccuracies identified in them; and (ii) apply the continuity and IVT criteria to solve problems that require 

mathematical modelling. The use of the formal definition to prove the continuity of a function at a point proved 

to be a difficulty for some students, who resorted to arguments based on approximations and equality 

lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0) to justify the continuity, due to the misunderstanding of the algebraic procedure to find 𝛿 as 

a function of 𝜀 that makes the inequalities |𝑥 − 𝑥0| < 𝛿 and |𝑓(𝑥) − 𝐿| < 𝜀 true, as also identified in the studies 

of Domingos (2003), Juter (2006) and Swinyard and Larsen (2012). However, unlike the results of these 

studies, most students were able to analyze algebraic propositions that involve the concept of continuity, 

proving them or justifying their inaccuracies, building geometric registers that translate algebraic 

symbologies, and assessing whether the criteria continuity or assumptions of IVT are satisfied in them. Based 

on this analysis, students validate or refute the propositions, presenting verbal explanations and/or 

complementing them with records of graphs of function as counterexamples, which reveals the ability to 

connect informal and formal knowledge about the concept, essential to their understanding (Ko & Knuth, 

2009; Sealey et al., 2014; Strand, 2016). Thus, it is possible to infer that success in solving these problems is 

favored by the appropriate use of the different representations of the concept of continuity. 

Students, in general, showed facility in applying the assumptions of IVT to solve problems involving 

mathematical modelling, when these are explicitly identifiable in the problem statement. However, when this 

explanation of the assumptions of IVT was not so evident, requiring its translation, some students showed 

difficulties in applying knowledge about the concept of continuity to algebraically translate the problem in the 

conditions of IVT and solve it, showing little mastery in modelling and difficulties in Algebra, which reveals 

misunderstandings about the theorem, according to Sealey et al. (2014) and Strand (2016). 

These results allow us to conclude that students, in general, show a relational understanding (Skemp, 

1976) of the concept of continuity of a function, at the end of the teaching experience, being able to relate 

different meanings and different representations of these concepts and to mobilize them in solving problems 

that involve them. Despite this, some students still maintain an instrumental understanding (Skemp, 1976), 

showing weaknesses in the construction of identifiable representations of the concept of continuity, caused by 

a lack of geometric, algebraic or verbal rigor in the records of these representations. They also show 

weaknesses in the treatments and conversions between the different representations (algebraic and geometric) 

of this concept, which prevented them from carrying out some translations of it, such as, for example, 

geometrically representing the continuity represented by the algebraic expression of its formal definition, and 

formally representing the continuity of a function and apply it to solve a mathematical proof problem. In 

addition, they have difficulties in solving problems that require the use of algebraic calculation procedures of 

the limit concept and in the application of the IVT when their assumptions are not explicitly identifiable in 

the problem statement, revealing fragility in the integration and articulation of mathematical knowledge 

associated with the concept of continuity. 

Although the results do not allow generalizations in view of the particular characteristics of the context 

and participants of the study, the exploration in the classroom of the three elements of understanding that 

constitute the theoretical model considered in this study may enhance students’ understanding of the concept 

of continuity. In view of these results, this model constitutes a contribution of this study to the research in 
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mathematics education that propose to promote and analyse mathematical understanding, since these three 

elements, namely, the meanings attributed to the mathematical concept, the work with its different 

representations and solving problems that involve it, are essential for the learning of any mathematical 

concept. It should also be noted that this theoretical model does not intend to provide a universally accepted 

definition of mathematical understanding, but one that is adequate to the objectives of the study. However, 

this study is only a first step in understanding these potentialities, as the way how this understanding emerges 

and develops requires a deeper research of the resources and strategies that contribute to it. 
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