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 Constructing formal geometry proofs in is an important topic in the mathematics curriculum. But students’ 

difficulties with proof are well documented. This article focuses on proofs that use triangle congruence postulates 

in US high school geometry. Examining students’ proof reasoning in one-on-one task-based interviews, we 

analyzed students’ oral planning/explanations and two-column written proofs. We found that much of the 
reasoning students conveyed in their oral planning/explanations was not incorporated into their written proofs, 

resulting in formalization and fatal logical reasoning gaps. We found that the majority of the students utilized 

sound reasoning in their oral explanations, but struggled to capture that reasoning in their written two-column 

proofs. We link our findings to learning progression research, further elaborating the van Hiele levels. Our research 

contributes to understanding the learning and teaching of proof and to the ongoing controversy over the use of 

two-column proofs in the high school geometry curriculum. 

Keywords: geometry proofs, two-column proofs, learning progressions, student cognition, mathematics 

education 
 

INTRODUCTION 

Establishing the validity of reasoning is critical in understanding, creating, and using mathematics, and the standard way of 

establishing mathematical validity is proof. Thus, researchers have argued that proving is essential to students’ mathematics 

learning, and it is considered an important topic in the mathematics curriculum (Battista & Clements, 1995; Cirillo & Herbst, 2012; 

Common Core State Standards Initiative, 2010; Hanna & Jahnke, 1996; Herbst, 2002; National Council of Teachers of Mathematics, 

1989, 2000; Stylianides, 2007; Wu, 1996). In the US, most instruction on proof is limited to high school geometry. However, research 

conducted on students’ proof performance has found that the majority of high school geometry students struggle with this topic 

(Chazan, 1993; McCrone & Martin, 2004; Senk, 1985, 1989). For instance, Senk (1985) found that only 30% of US students in a full-

year geometry course that covered proof reached a 75% mastery level of proof writing. McCrone et al. (2002) found that “[S]tudents 

performed poorly on items that required them to write a formal proof with no support. They also had difficulty on items that 

required students to make a single deduction from a given piece of information” (p. 1). 

In the US, the most common context for formal geometry proof is the two-column format (Herbst, 2002; Pair et al., 2021), which 

was created to make proof accessible to high school students (Herbst, 2002). Even though the two-column proof format continues 

to be widely used in US high school geometry textbooks and classrooms (Kelley, 2013; Stylianides et al., 2017), the use of such 

proofs is controversial. In a survey of recent mathematics education conference attendees, Pair et al. (2021) found that 79% of 

respondents stated that there is value in two-column proofs and 43.5% said that they were probably or definitely not in favor of 

eliminating two-column proofs. In contrast, 21% of respondents did not see the value of such proofs, and 35.5% probably or 

definitely thought that such proofs should be eliminated. Further, a number of mathematics education scholars have criticized 

the format. For instance, Schoenfeld (1988) criticized two-column proof as focusing on form over mathematical substance. As an 

example, he provides a proof of the Base Angles Theorem for Isosceles Triangles that he claims most mathematicians would find 

adequate, but that would not be accepted in many high school geometry classrooms because it omits details required in the two-

column format. More generally, according to Hanna (1989), because mathematicians present mathematical results in the form of 

theorems and proofs, this practice is mistakenly seen as the core of mathematical justification (Lakatos, 1976). However, 

mathematicians generally discover new ideas using intuitive and empirical methods. In creating mathematics, they pose 
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problems, analyze examples, make and revise conjectures, search for counterexamples−it is only after this intuitive “playing 

around” has intuitively convinced them that something might be true that sophisticated users of mathematics turn to verifying 

their conclusions using a step-by-step deductive proof. Furthermore, Cirillo et al. (2021), with Herbst and Miyakawa (2008), argue 

that most of what students do in high school geometry proofs is framed by Givens-Prove-Figure Template/Configuration (GPFT) 

instead of the more genuine practice of proving statements in theorem format, thus masquerading the nature and role of 

mathematical proof.  

In contrast to naysayers, Weiss et al. (2009) claim that the two-column format can productively engage students in proof by 

offering constraints and supports for constructing valid proofs. The two-column format can aid both teachers and students in 

reflecting on and evaluating the validity of deductive proofs (Herbst, 2002). Additionally, there are three counterarguments to the 

claim that two-column proofs promote form over substance. First, form, with its sequential structuring, is a critical part of a 

deductive argument. So, it is more likely that superficial instructional focus on form is the problem, not form itself. Second, a 

confounding issue is the common instructional practice of posing geometry problems in which students can assume that the 

conclusion is true (Herbst, 2002; Mariotti, 2006), a practice that emphasizes proof formality over proof as convincing justification. 

This issue can to a great extent be alleviated in more exploratory approaches to geometry instruction such as those utilizing DG in 

which students have to decide whether to prove an empirical finding or find a counterexample to its generality (Battista, 2007; 

Gilbertson et al., 2013; Mariotti, 2006). The third confounding issue is posing all proof problems in GPFT two-column format, a 

practice that can be alleviated by having students prove theorems in both two-column and paragraph forms, and explicitly 

attending to what makes a proof valid.  

Given the importance of formal proof in mathematics and the widespread use of the two-column format, it is important for 

research to go beyond paper-and-pencil evaluations of its correct use to investigate students’ reasoning as they engage in the 

proof process. Numerous researchers have stated that more in-depth research is needed on students’ development of geometric 

proof understanding, reasoning, and skills (Battista, 2007; Cirillo & May, 2020; Sinclair et al., 2017). Thus, the current investigation 

conducted individual interviews of students as they orally planned proofs then wrote them in two-column format while thinking 

aloud. By including students’ oral reasoning along with their written proofs, the present study provides an additional perspective 

on whether and how two-column proofs can be useful in developing students’ proof reasoning, and it identifies elements of this 

format that cause student difficulties.  

Research on Oral Versus Written Proofs  

In investigating students’ development of proof reasoning, a number of researchers have contrasted oral versus written 

proofs. Focusing on 8th grade number theory proofs, Campbell et al. (2021) found that students often struggled to write proofs 

that they presented orally, and “found no evidence that students’ written arguments were more sophisticated than their oral 

arguments” (p. 21). They claimed that some research suggests that students produce more sophisticated written proofs, but other 

research indicates that students’ oral proofs are of higher quality. Soto-Johnson and Fuller (2012) studied oral and written proofs 

of college students in abstract algebra, finding that some students who understood the ideas needed for a proof “could not write 

a coherent proof…. [but] these same students provided fairly sound verbal proofs” (p. 1). In another study focusing on pattern 

problems for 14-15-year olds, Stylianides (2019) found that oral rather than written proofs of patterns were more likely to meet 

proof standards. In this case, the written proofs were produced in small group work and afterwards oral arguments were presented 

in front of the class.  

However, even though past oral/written studies provide valuable insight into the development of students’ proof reasoning, 

none of them has dealt with the two-column proof format in geometry. Given the widespread use of the two-column format, it is 

important to investigate both oral and written components of proof in this context. Thus, the present study, focusing on proofs 

that use the triangle congruence postulates, investigated students’ proof reasoning in (a) orally stated proof plans, (b) subsequent 

written two-column proofs, and (c) think-alouds during proof writing. The research questions are explained in the following. 

Research Questions  

According to Mariotti (2006), two of the three main streams of research about proof, both of which we address, are: “What is 

the status of proof at school?” and “What are the main difficulties that students face in relation to proof?” (p. 174). And there are 

two main approaches to investigating students’ conceptions of proof, again, both of which we address: (1) taking a broad 

perspective, researchers analyze the different ways of thinking that can be described and classified as proof; and (2) starting from 

an epistemological position that bestows a specific status to mathematical formal proofs, researchers describe and explain 

difficulties and obstacles encountered by students in their attempts to construct formal proofs. More specifically, our research 

questions are as follows: 

1. How do students, in US geometry classes in which a two-column format is prevalent, understand the structure of proof, 

orally when planning, and during the process of writing proofs in two-column format? 

2. In which form of expression, oral or written, are students less likely to make errors and produce valid proofs/defensible 

proof reasoning? 

3. What kinds of errors do students in the two expression forms, oral and written, make? 

4. What aspects of two-column proofs do students struggle with? 
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CONCEPTUAL FRAMEWORK 

Taking a psychological constructivist perspective, we believe that students must personally construct mathematical ideas as 

they repeatedly cycle through phases of action, reflection, and abstraction, and that effective mathematics instruction carefully 

guides and supports students’ construction of personally meaningful mathematical concepts and ways of reasoning based on 

knowledge of student reasoning. Indeed,  

There is a good deal of evidence that learning is enhanced when teachers pay attention to the knowledge and beliefs that 

learners bring to a learning task, use this knowledge as a starting point for new instruction, and monitor students’ changing 

conceptions as instruction proceeds (Bransford et al., 1999, p. 11).  

In this article, we carefully examine students’ oral and written proof reasoning in a way that can be used to reflect on how best 

to support the development of students’ proof understanding and reasoning.  

In addition, we elaborate our research in a way that is instructionally useful by integrating it with learning progressions in 

geometry. According to the National Research Council (2007), “Learning progressions (LP) are descriptions of the successively 

more sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a topic” (p. 

214). An LP for a topic (a) starts with the informal, pre-instructional reasoning typically possessed by students; (b) ends with the 

formal mathematical concepts targeted by instruction; and (c) indicates cognitive plateaus reached by students in moving from 

(a) to (b) (Battista, 2011, 2012). Learning progressions are playing an increasingly important role in mathematics and science 

education (National Research Council, 2001, 2007; Smith et al., 2006). They are strongly suggested for use in assessment, 

standards, curriculum design, teaching, and research on learning and teaching (Sztajn et al., 2012).  

Types of Cognitive Structuring Used to Reason About Geometric Proofs 

Axiomatic proof is a mathematical argument consisting of a sequence of connected statements in support of a mathematical 

claim, each statement logically deduced from previous statements and justified by a combination of given statements, axioms, 

and previously proven theorems (Beman & Smith, 1899; Herbst, 2002, Movshovitz-Hadar, 2001). In the context of an axiomatic 

system, deduction is comprised of three main components: a set of premises, a conclusion, and a justification (Anderson et al., 

1985; Duval, 2007). The premises are a set of propositions or conditions that are to be assumed to be true or correct. A conclusion 

is a proposition stating the outcome of a logical deduction. A justification is a sequence of deductions and citations of axioms and 

previously proved theorems that is required to draw the conclusion. A (correct) valid deduction or valid inference1 occurs when a 

person uses a sufficient sequence of assumed/proven premises and the rules of logic to draw a logically certain conclusion that is 

justified within a specified axiomatic system (Cirillio & Hummer, 2021; Movshovitz-Hadar, 2001). 

The reasoning involved in constructing geometric proofs is complex and involves three types of cognitive structuring: spatial, 

geometric, and logical/axiomatic (Battista, 2008). Spatial structuring mentally constructs a spatial organization or form for a 

physical/pictorial/graphic object or set of objects (Battista, 1999, 2008). Geometric structuring consists of using formal geometric 

concepts and properties to describe the interrelationships between components that determine a geometric object’s spatial 

structure. Examples of formal concepts that are included in geometric structuring are congruence, parallelism, slope, length, angle 

measure etc. For a geometric structuring of an object to make sense to a person, it must evoke an interiorized appropriate spatial 

structuring of the shape as well as interiorized formal geometric concepts used to describe the shape (Battista, 2008).  

To begin creating a geometric proof of a statement about geometric relationships−with a given, or student drawn 

diagram−students must first construct linked spatial and geometric structuring. However, to create a formal geometric proof, not 

only does the student need an appropriately linked spatial and geometric structuring, but the student must link this spatial and 

geometric structuring to the third and fourth types of structuring−logical and axiomatic structuring.  

Logical structuring in a proof is the process of making a series of deductions assumed to be consistent with the rules of logic in 

an attempt to prove the desired conclusion from the given premises. Correct logical structuring occurs when a student’s 

deductions are not only consistent with the rules of logic, but organized in an appropriate sequence to prove the desired 

conclusion from the given premises. In the two-column geometry proof format, logical structuring is the sequence of 

conclusions/statements that one deduces and lists in the left-hand column. One major error that can occur in a proof’s logical 

structure is when the argument has a gap in it (Duval, 2007). A reasoning gap occurs when a student deduces a conclusion by 

applying an axiom or theorem whose premises have not been explicitly established by the given conditions or previous deductions 

in their proof. 

Axiomatic structuring in a proof is the process of explicitly situating and justifying deductions and logical structuring within a 

given axiomatic system. In the two-column proof format, one can think of axiomatic structuring as the sequence deductions in the 

left-hand column linked to the required justifications in the right-hand column. A two-column proof exhibits a correct axiomatic 

structure if every one of its conclusions exhibits a logically valid deduction (correct logical structuring) and each conclusion is 

correctly justified in the right-hand column by an appropriate axiom or theorem from the axiomatic system. So, the only feature 

that distinguishes logical and axiomatic structuring is that the latter requires correct, explicit axiomatic justifications. Of course, 

both logical and axiomatic structuring can occur even if a proof is not in two-column format (although they may be a bit more 

difficult to discern).  

 
1 Logical deduction, deduction, logical inference, and deductive step will all be used interchangeably throughout the article. 
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Using Logical Deductions to Construct Geometric Proofs  

A major component of the validity of students’ geometric proofs is the sequence of logical deductions he or she makes. Duval 

(2007) argued that the most important part of constructing a logical proof is understanding the status or function of each 

proposition within a single deduction and within a chain of deductions. Duval (2007, p. 140) defined status as “the specific function, 

the particular role of each proposition within the set of the other propositions which are required or stated to get a proof or to 

produce an argumentation.” Each proposition within a single deduction serves one of the following three functions: a premise, a 

conclusion, or a justification (Clements & Battista, 1992; Duval, 2007; Wertheimer, 1990). Deductions within a proof are logically 

linked when the student takes conclusions from earlier deductions and uses them as premises for future deductions (Duval, 2007; 

Mariotti, 2006; McCrone & Martin, 2004). In other words, once a student has deduced a conclusion he or she needs to change its 

status to a premise so he or she can use it in deducing a future conclusion for their proof. A complete logical chain of deductions 

for a proof is a sequence of conclusions that consists of logically linked deductions that originate from the givens and end with the 

desired conclusion.  

METHODS 

Sample and Research Design 

To capture students’ mathematical reasoning, Winer conducted a series of one-on-one semi-structured task-based interviews 

(Goldin, 2000) with seven ninth and tenth grade geometry students who were asked to complete a series of proof problems. All 

participants were volunteers who were currently enrolled in a proof-based geometry course in which they had already completed 

a unit on triangle congruence proofs. The participants were from a suburban high school located in the Midwest United States. 

The participants came from two different geometry classes taught by two different teachers: five participants (four girls and one 

boy) came from an Honor’s geometry class while the remaining two participants (two girls) came from a normal-track geometry 

class. Students were each individually interviewed for five one-hour sessions in which they worked on 12 proof problems. For each 

problem, students were first asked to orally plan2 their proof and only after they had described their proof plan orally were they 

asked to write out their formal proof. In addition, as students wrote their proofs they were asked to explain their reasoning aloud 

to provide additional insight into their reasoning. Students were given a reference sheet with theorems and axioms on it, which 

acted as the default axiomatic system. The reference sheet was created using the theorems and axioms that were found in the 

student’s textbook so as to match the way that theorems and axioms were stated and named in their classes. If a student wanted 

to use a theorem that was not present on the reference sheet they were asked to prove why that theorem was valid, given what 

was included in the reference sheet. To cover the types of proofs that were typically found in high school geometry, all proof 

problems were selected or adapted from mainstream high school geometry textbooks (e.g., Larson et al., 2008) or relevant 

research studies on geometric proofs (e.g., Anderson et al., 1981; Chen & Herbst, 2013; Heinze, 2008; Martin & McCrone, 2003; Senk, 

1985). Problems were posed in GPFT format, in theorem format with no diagram, and in diagram format in which auxiliary lines 

were needed. Including this format variety permitted a more general examination of students’ overall geometry proof reasoning. 

Data Sources and Data Analysis 

This study is a generative qualitative research study in which the theory is created from empirical data and previous research. 

Clement (2000) stated, “The purpose of a generative study is to generate new observation categories and new elements of a 

theoretical model in the form of descriptions of mental structures or processes that can explain the data” (p. 558). During 

implementation, the interviewer collected data from multiple sources, such as two video recordings for each interview session 

(from different angles), students’ written work, and audio journals created by the interviewer after each interview session, 

enabling triangulation during data analysis. All video recorded interviews were transcribed and later analyzed with the other data 

sources using the constant comparative method from Grounded Theory (Glaser & Strauss, 1967) and retrospective analysis (Steffe 

& Thompson, 2000). 

After transcriptions were completed, they were segmented into smaller episodes that correspond to each proof problem. The 

segmenting of episodes allowed us to know when the student began and ended a proof problem as well as to separate the 

interview sessions into more feasible units of analysis. The transcriptions not only represented students’ oral utterances, but also 

presented any relevant actions (gestures, written responses, body language, stated and described when students made 

demarcations on diagrams, etc.) that occurred during the interviews.  

For each problem episode, we began the data analysis in an open coding procedure from the constant comparative analysis 

method (Glaser & Strauss, 1967), in which we identified and annotated interesting or significant incidents of student reasoning 

(Glaser, 1978; Glaser & Strauss, 1967). This analysis was an iterative one in which incidents and subsequent analytical 

commentaries were compared with similar incidents found in other episodes across participants and were constantly revised and 

modified. Once the analytical commentary and codes for each episode stabilized and were tentatively viable, we returned to data 

and did a more rigorous search for common trends and patterns among the students’ reasoning with particular attention to both 

what the students orally stated as they planned and constructed their proof to what they wrote in the formal proof. When 

searching for trends, we again used a constant comparative method to identify, construct, and refine conceptual categories that 

emerged from the data. The conceptual categories were also developed using an iterative cycle of constructing, criticizing, and 

 
2 Students were allowed to write down notes and mark the diagram. But they were asked to not write their formal proof until they had completed 

their oral) plan unless otherwise noted. 
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revising. This iterative cycle and constant comparison analysis continued until the categories became theoretically saturated 

(Glaser & Strauss, 1967). The conceptual categories identified and developed from this process were two types of reasoning gaps 

in the students’ proof reasoning, which are defined and discussed in the findings section. 

FINDINGS 

When we refer to a student’s written/formal proof, we focus only on what the student wrote in their two-column proofs. When 

we refer to a student’s overall proof reasoning, we consider and analyze three components of data: students’ oral proof plan, 

students’ oral explanations during their proof writing, and their written proofs. Our analysis of these three data components 

indicated that students committed two types of reasoning gaps in their overall proof reasoning, formalization gaps and fatal 

logical gaps. 

 In the following sections, we define these two types of reasoning gaps and provide examples of student work that falls into 

each one of the gap categories. We also provide an analysis of the possible causes for these gaps. As we illustrate the examples of 

the two types of gaps, due to length restrictions, we will not address every gap that is found in each of the examples of the students’ 

proofs, but only ones that illustrate how we coded the gaps. We follow the descriptions and student example gaps with a 

quantitative analysis of the frequency of these gaps as they occurred throughout the interviews. All students’ names are 

pseudonyms.  

Formalizations Gaps 

A formalization gap (FG) in a student’s proof reasoning occurs when the student is missing critical details and/or deductions 

in their written proof, but made oral statements and/or gestures in their plans or while working on their written proof that 

indicated some intuitive or informal understanding related to the missing information. We coded an instance as a formalization 

gap if it fit one of the following three categories.  

Formalization gap 1 (FG1)−Curtailment 

Formalization gap 1 (FG1)−Curtailment occurred when students stated correct deductions orally in their proof planning or 

while they wrote their formal proofs, but did not write all of these deductions in their formal proof. This category included 

instances in which the students orally explained and justified a correct series of deductive steps, but combined these steps into a 

smaller set of written deductions in their formal proofs causing their formal proofs to be missing steps. 

 A formalization gap was coded as one instance when students were missing steps between two deductions in their written 

proof. The length of a reasoning gap refers to the number of missing deductive steps that are needed to logically link the two 

written deductions. For example, if a reasoning gap between two deductions has a length of four, it means that there are four 

missing deductive steps needed to logically close the gap between the deductions. The FG1 gap is illustrated with Rose’s oral 

explanations and formal proof for Problem M (see Figure 1).  

 

Figure 1. Rose’s demarcations of the given diagram and written proof for Problem M 

During oral planning: 

Rose: So, DE is perpendicular to EG is down here [marks Angle DEF as a right angle on the given diagram]. And then the 

same thing with BF [marks Angle BFG as a right angle]. … 

IN: And how did you know they were right angles?  

Rose: I was marking for perpendicular. If it is perpendicular it has to be a right angle3. So, F is the midpoint of EG, which 

means that since it is the midpoint these [points to Segment EF and FG] have to be the same length [marks Segment EF 

and FG as congruent]. And then DF is parallel to BG. So, [marks Segments DF and BG as parallel] I drew parallel signs. And 

DEF and BFG [outlines triangles DEF and BFG with her finger], so proving that those two triangles [are congruent]. [Pause]. 

So, since this [points at Segment EG] is a straight line and these [outlines Segments DF and BG] are parallel they intersect 

at the same angle [makes X gesture with her hands] which makes these [marks Angles DFE and BGF as congruent] 

 
3 We use italics to emphasize the points we are commenting about in the analysis. 
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Corresponding Angles. And I just proved that the triangles because Angle-Side-Angle [points to Angle BGF, Segment FG, and 

Angle BFG]. 

Rose’s reasoning exhibited an FG1 Curtailment gap of length three between steps 5 and 6. First, in Rose’s oral 

plan/explanations, she clearly demarcated that Angles BFG and DEF were right angles on the diagram. When the interviewer asked 

how she knew that those angles were right angles, she replied “If it is perpendicular it has to be a right angle.” From this oral 

statement and her demarcation of the right angles on the diagram we have evidence that Rose understands that the perpendicular 

given condition implies that Angles BFG and DEF are right angles. Later, however, Rose did not write this oral deduction involving 

right angles and perpendicular segments in her formal proof. After Rose had finished writing her formal proof, in response to a 

query about the right angles from the interviewer, she replied that it was “self-explanatory, given that they are perpendicular they 

would have to be right angles.” So, Rose appeared to not write that these angles were right angles because she seemed to assume 

that the conclusion was intuitively obvious. Dreyfus and Hadus (1987), commenting on proof principles, stated that “Even 

‘obvious’ statements must be proved” (p. 48).  

Second, Rose’s formal proof is also missing the deduction that Angles BFG and DEF are congruent by the All Right Angles are 

Congruent Theorem. However, Rose evidenced in her oral planning that she understood the need for this conclusion when she 

explicitly gestured to Angle BGF, Segment FG, and Angle BFG (i.e., a right angle) on the diagram to represent the congruent parts 

in justifying by ASA Triangle Congruence that Triangles BFG and DEF were congruent. From her gesture to Angle BFG, which she 

had demarcated as a right angle on the diagram (see Figure 1), it can be inferred that Rose used the notion that the two right 

angles were congruent to satisfy the premise of second pair of congruent angles needed to apply the ASA Postulate. This shows 

that Rose had valid informal reasoning in her oral planning of the proof, but she did not formalize it correctly in her written 

proof−she simply skipped steps. There were many other instances of students not writing a deduction that concluded that right 

angles are congruent for problems in which the students used them as a premise to implement a later deduction, typically 

involving triangle congruence. However, in all of these instances the right angles were demarcated on the diagram by the student.  

Third, is Rose’s missing deduction in her written proof that Segment EF is congruent to Segment FG by the definition of 

midpoint. Rose stated that “So, F is the midpoint of EG, which means that since it is the midpoint these [points to Segment EF and 

FG] have to be the same length [marks Segment EF and FG as congruent]4.” So, Rose had the conceptual understanding to use the 

definition of midpoint to deduce Segments EF and FG are congruent in her oral planning, but she did not explicitly convey this 

deduction in her written proof. 

Another noteworthy set of FG1 gaps occurred when students drew conclusions about equality and/or congruence. For 

example, in step 9 of Jim’s formal proof for Problem F (see Figure 2), Jim wrote that FM=EM by CPCTC. However, CPCTC’s 

conclusion is stated for congruence, not equality. Therefore, to be axiomatically correct Jim would have to split his step 9 into two 

deductions (i.e., 𝐹𝑀̅̅̅̅̅ ≅ 𝐸𝑀̅̅̅̅̅ by CPCTC and then FM=EM by definition of congruence). This is not a notational error of miswriting 

FM=EM for 𝐹𝑀̅̅̅̅̅ ≅ 𝐸𝑀̅̅̅̅̅  (i.e., FG3 gap) because Jim orally stated it as “FM equals EM” not clarifying “FM or EM” as lengths or 

segments. However, there are two possibilities in Jim’s curtailment. One is that Jim combined steps because he thought that 

congruence implied measurement equality. A second possibility is that Jim confounded the concepts of equality of lengths and 

congruence of corresponding segments, leading to an implicit curtailment of steps involving these two ideas and thus a FG1 gap 

of length 2 (we return to this idea later). 

 

Figure 2. Jim’s demarcations of the given diagram and formal proof for Problem F 

Confounding congruence of spatial objects and equality of object measures was common among students. Another example, 

with angles instead of segments, occurs in step 5 of Jenny’s written proof for Problem G (see Figure 3). Because Jenny stated in 

her oral planning “I am going to mark in the givens that these are perpendicular [marks in right angles at Angles PTQ and RWU on 

the given diagram],” it is clear that she understands that the intersection of perpendicular segments forms right angles. But in her 

written proof she wrote “ ∠𝑅𝑊𝑈 ≅ ∠𝑃𝑇𝑄 ≅ 90° by definition of perpendicular”. However, the definition of perpendicular 

segments on the reference sheet states that “two lines (or segments) that intersect form a right angle,” which does not include 

that intersecting angles are congruent or that their measure is 90 degrees. To be axiomatically correct, Jenny would need to write 

 
4 Also note that Rose confounds equal length and congruence. 
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three separate deductions5: 1) Angles RWU and PTQ are right angles by definition of perpendicular segments, 2) Angles RWU and 

PTQ are congruent by All Right Angles are Congruent Theorem, and 3) 𝑚∠𝑅𝑊𝑈 = 𝑚∠𝑃𝑇𝑄 = 90° by definition of right angles. Like 

Jim with length, Jenny confounds the concepts of angle measure equality and congruence, leading to an implicit curtailment of 

steps involving these two ideas and thus a FG1 gap of length 3.  

 

Figure 3. Jenny’s demarcations on the given diagram and formal proof for Problem G 

Later, in step 13, Jenny concluded her formal proof by stating that Segments PT and RW were congruent by CPCTC. However, 

Problem G asked her to prove that length PT equals length RW. So, to complete her formal proof, she needed to write another 

deduction stating that “PT=RW by definition of congruence segments”. The interviewer noticed that Jenny had only proven 

congruence of segments and not equality of lengths and asked Jenny if she had proven what the problem had asked to her prove. 

Jenny replied “yeah”, but did notice that the statement she needed to prove was equality and not congruence. Jenny addressed 

this difference by stating, “Well, I think it goes without saying that they are the same messages getting across,” providing evidence 

that Jenny confounded congruence and equality leading to an implicit curtailment of formal steps. Since Jenny is missing one 

deduction at the end of her proof this is an instance of FG1 of length 1, a gap that many students did throughout the interviews. 

Another common example of this confounding was when students wrote deductions like “∠1 + ∠2 ≅ ∠3  by Angle Addition 

Postulate”. On the reference sheet, the Angle Addition Postulate is stated for equality of angle measurements, not congruence, 

which is the case for many high school geometry textbooks. 

Formalization gap 2 (FG2)−Incorrect justification 

Formalization gap 2 (FG2)−Incorrect justification occurred when students incorrectly cited a theorem or definition in the 

justification for a valid deductive step, either by stating a closely related theorem/property or providing a justification that was 

axiomatically disconnected. In these cases, the students orally stated and/or gestured to something during their oral planning or 

explanations that provided evidence that they intuitively understood the correct justification/theorem for the step, however, they 

just misnamed the theorem being applied. For example, two students correctly gestured to Alternate Interior Angles in a parallel 

lines configuration and orally stated this pair of angles were congruent, but wrote the justification as Alternate Exterior Angles 

Theorem in their formal proof. Another example of the FG2 gap is when students cited the definition of isosceles triangles to justify 

that base angles are congruent when the correct justification is Base Angles Theorem.  

Of particular note was when the students wrote a theorem’s name when the correct justification was its converse. This error 

can be classified as formalization gap or fatal logical gap depending on the specific context of how it occurred during the 

interviews. If both the theorem and its converse were true (e.g., AIA and AIA converse) in the axiomatic system (i.e., the reference 

sheet) and the student interchanged them, then it was misnaming and was coded as a FG2 gap. If the converse is not true or not 

yet proven in the axiomatic system and the student uses it as justification, then it is a fatal logical gap (see LG2 gap section below). 

We define justification that is axiomatically disconnected as a justification in which it was not clear from what the students said 

in their oral explanations and what they wrote in their formal proof how the stated (orally and written) justification connected to 

the axiomatic system (i.e., the reference sheet). The most common observed example of a justification that was axiomatically 

disconnected was when students stated that they constructed an auxiliary line or segment and stated “construction” as its 

justification, which is not a justification found in the axiomatic system (more on this later in the quantitative results of the two 

types of reasoning gaps).  

An example of this formalization gap (FG2) is illustrated with Jenny’s work on Problem N (see Figure 4).  

During oral planning: 

Jenny: …What I just did was I saw the whole triangle as one complete unit [outlines Triangle NET with her finger]. Because 

I saw these two angles [points to angles 1 and 4, which are given as congruent] as base angles, therefore it is an isosceles 

triangle. So, NE is congruent to ET [marks to these respective segments as congruent on the diagram].  

 
5 We recognize there are other ways to state the deductions correctly such as: 1) Angles RWU and PTQ are right angles by definition of perpendicular 

segments, 2) 𝑚∠𝑅𝑊𝑈 = 𝑚∠𝑃𝑇𝑄 = 90° by definition of right angles, and 3) Angles RWU and PTQ are congruent by definition of congruence. Either 

way it is three steps. 
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Figure 4. Jenny’s demarcations on the given diagram and written proof for Problem N 

Later just after writing step 3 in her proof: 

IN: And what are base angles? What do you know about base angles?  

Jenny: That if the base angles of a triangle are congruent, then the triangle is an isosceles. So therefore these [points to 

Segments NE and ET] would be the same. So, we kind of just jumped that with if the base angles [points to angles 1 and 4] 

are the same, then legs [outlines Segments NE and ET with the back of her marker] of the triangle are the same. 

In Jenny’s oral planning, she stated “Because I saw these two angles [points to angles 1 and 4] as base angles, therefore it is 

an isosceles triangle,” and similarly, as she was writing step 3 of her formal proof, she orally stated “If the base angles of a triangle 

are congruent, then the triangle is an isosceles.” In both cases, Jenny’s oral statements are citations of the Converse of Base Angles 

Theorem, not the Base Angles Theorem, which she had cited as her justification for step 3 in her formal proof. So, it is a FG2 gap. 

We discuss other examples of FG2 gaps and possible causes for this type of behavior later in the Discussion section. (It should be 

noted, that all students were allowed to look at the reference sheet which included the Converse of Base Angles Theorem. 

However, many students, like Jenny, did not look at it unless they were struggling to come up with a name for theorem, which in 

this case Jenny did not seem to need to use it.) 

Formalization gap 3 (FG3)−Clerical 

Formalization gap 3 (FG3)−Clerical occurred when students misnamed a figure like an angle or a triangle in a written conclusion 

(i.e., notation error). For example, a student correctly demarcated on the diagram or gestured to an angle in the diagram (e.g., 

angle ABC), but wrote the angle’s name in the wrong order where the vertex of the angle was not the middle letter (e.g., angle 

ACB).  

Fatal Logical Gaps 

A fatal logical gap [or logical breach] in a student’s OVERALL proof reasoning occurs when the student draws a conclusion based 

on faulty or inadequate logic both in their oral planning/explanations and their written proof. We coded an instance as a fatal 

logical gap in the data if it fit one of the following two categories.  

Logical gap 1 (LG1)−False conclusion 

Logical gap 1 (LG1)−False conclusion occurred when students stated deductions in their oral explanations and/or in their 

written proofs that are false or invalid in the axiomatic system.  

We illustrate a LG1 gap with Ellie’s work for Problem E (see Figure 5). Prior to the beginning of the transcript, in her oral 

planning, Ellie deduced Segments BE and DE are congruent as well as Segments AE and ED are congruent by definition of bisects 

and demarcated it on her diagram. When she drew her diagram, she stated that she was drawing a square, although the 

quadrilateral she drew visually appeared to be more like a typical rectangle than a square (see Figure 5). It is important to note 

that Ellie initial struggled to recall the definition of parallelogram and only determined its definition after looking at the reference 

sheet, which states a parallelogram is “a quadrilateral with opposite sides parallel”. She demarcated the opposite sides were 

parallel on her diagram, but recognized that this conclusion was something she still needed to prove.  

 

Figure 5. Ellie’s drawn diagram and written proof for Problem E 
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During oral planning:  

Ellie: Well, these would be equal angles because they are Vertical Angles [marks Angle AED congruent to Angle BEC on the 

diagram]. And then these two angles are Vertical Angles [marks Angle AEB is congruent to Angle CED on the diagram] too. 

I think that all of these triangles would be equal by Side-Angle-Side. 

IN: Which triangles are going to be equal? Is it all four of them?  

Ellie: Yeah. So, I don’t know what that does for this whole thing though because these are equal [points to the four triangles 

AED, DEC, CEB, and BEA] I don’t know what that means.  

IN: But you have said that you think that all four of these are equal.  

Ellie: Yeah.  

IN: These inner triangles.  

Ellie: Yeah.  

IN: What was the reason again?  

Ellie: Side-Angle-Side.  

[Later in the episode during her oral planning]: 

Ellie: So, like if these angles um since I said that all the triangles were congruent by Side-Angle-Side, then all of the angles 

would be congruent [marks the Angles DAE, BAE, ABE, CBE, BCE, DCE, CDE, ADE as congruent. See her diagram in Figure 

5]. 

[Later in the episode as Ellie is writing her proof]: 

Ellie: …I can prove that it is a parallelogram because these are parallel because of the Alternate Interior Angles converse. 

[Ellie writes the quadrilateral is a parallelogram as her statement for step 7 of her proof].  

IN: What was the reason?  

Ellie: Because of the Alternate Interior Angles converse.  

IN: What specifically about Alternate Interior Angles converse? So, what angles are you specifically talking about?  

Ellie: BAE and BCE or um [I mean] DCE. So, should I write that? 

IN: So, if I was just reading it would I be able to figure out what you meant by Alternate Interior Angles, like what angles are 

you saying are congruent?  

Ellie: Well because I marked it [on the diagram]. … 

IN: So, you are saying that because of Alternate Interior Angles converse that now you know that it is a parallelogram. And 

you are saying because you marked it [points to Angles BAE and DCE on her diagram] it should be clear.  

Ellie: Yeah. 

In her oral planning, Ellie begins by correctly deducing that angles AED and BEC as well as angles AEB and DEC are congruent 

by Vertical Angles Theorem. In her oral planning and shown in step 5 of her formal proof, Ellie appeared to use steps 1-4 as premises 

to deduce that all four triangles (i.e., triangles AED, BAE, CEB, and DCE) were congruent by the SAS Postulate. This deduction is 

invalid because it is only true if the rectangle is a square, so this is a fatal logical gap (LG1) in Ellie’s proof reasoning. One possibility 

is that the breakdown in Ellie’s reasoning is due to an incomplete spatial structuring of her diagram, which must include an 

appropriate articulation of corresponding parts of triangles.  

Later in her oral planning, Ellie stated that since all the small triangles were congruent (i.e., the invalid deduction in step 5), 

she could conclude that all the remaining angles of the four congruent triangles (i.e., angles DAE, BAE, ABE, CBE, BCE, DCE, CDE, 

ADE) are congruent, another fatal logical gap (LG1) since this conclusion is also invalid. This is an additional invalid deduction 

because even if she used as a premise her earlier invalid deduction that the four interior triangles were congruent, she could only 

deduce by CPCTC that corresponding angles of the four triangles were congruent (∠𝐴𝐵𝐸 ≅ ∠𝐶𝐷𝐸 ≅ ∠𝐶𝐵𝐸 ≅

∠𝐴𝐷𝐸 𝑎𝑛𝑑 ∠𝐵𝐴𝐸 ≅ ∠𝐷𝐶𝐸 ≅ ∠𝐵𝐶𝐸 ≅ ∠𝐷𝐴𝐸)−not all eight angles are congruent to each other. It is only in Ellie’s oral planning 

that she stated this invalid deduction because she never wrote it in her formal proof. This gap was likely created by an incorrect 

spatial structuring of diagram; Ellie orally stated that she drew a square. And even though she did not draw a square, she may have 

geometrically structured her diagram with the properties of a square, which were not given with the problem.  
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Ellie’s incorrect spatial structuring might also be connected to the fact that Problem E does not provide a diagram nor explicitly 

state what is given and what needs to be proved. Herbst and Brach (2006) found that geometry students said that proofs of 

theorems without explicit diagrams-givens-prove format would either be done by the teacher or as part of a class discussion. This 

type of task would almost never have given to students to do individually or, if it was, the students saw it as the responsibility of 

the teacher to provide them with hints/details as to what was given and to what needed to be proved (Herbst & Brach, 2006). 

However, we argue that in order to get deeper understanding about students’ overall proof reasoning, we need to investigate how 

students construct proof problems presented in different formats. Also, proof problems like Problem E in the theorem or 

conditional statement format were found in the students’ textbook.  

Logical gap 2 (LG2)−Direct or indirect circular logic 

Logical gap 2 (LG2)−Direct and indirect circular logic occurred when the student either used the theorem/conjecture that they 

were trying prove in their proof of that theorem (direct circular), or they justified a deduction using a theorem which is true, but 

had not yet been proven in the axiomatic system (indirect circular). As an example of indirect circular reasoning, suppose the 

student is asked to prove Theorem A, “opposite sides of parallelogram are congruent” and the student uses Theorem B, “diagonals 

of a parallelogram bisect each other”, as justification in their proof of Theorem A. Although, Theorem B is a true, it has yet to be 

proven by the student, his teacher, or his class. Later, when the student is asked to prove Theorem B, he used Theorem A in the 

justification. Since Theorems A and B are used to prove each other this student would be exhibiting an indirect circular reasoning 

error. We illustrate this category using Rose’s work for Problem O. The episode picks up at the beginning of episode in which Rose 

reads the problem aloud followed by part of her oral planning for the proof.  

Rose: Problem O. Prove that opposite sides of a rhombus are parallel. Well that is easy I already proved it.  

IN: How did you do that?  

Rose: A rhombus is a parallelogram.  

IN: Okay… Now can you prove that a rhombus is always a parallelogram?  

Rose: It is in the definition.  

IN: Look and see what the definition says [points to the reference sheet].  

Rose: [Looks at the reference sheet] A quadrilateral with four congruent sides.  

IN: Okay… Can you prove to me that rhombus is a parallelogram?... How do you know that? … Could you write something 

out formally that says [proves] that? Like a formal proof. 

Rose: [Writes out the initial proof shown in Figure 6] There you go. 

 

Figure 6. Rose initial proof for Problem O 

IN: …. So how do we know that a rhombus is a parallelogram? 

Rose: [Laughs]. Because its sides are parallel. 

IN: How do you know that the sides are parallel? Because in the book we used it was a quadrilateral with four congruent 

sides.  

Rose: Okay. … [Rose first draws a diagram of a Rhombus ABCD and then draws in its diagonals labeling their intersection 

point as Point E]. That the diagonals like bisect each other. Oh, I don’t really need it. [Rose marks angles CED and AEB are 

congruent on the diagram]. So, vertical angles. [Long pause]. Yeah, I actually do need another side. No, I can’t prove it that 

way. Can I use that the diagonal bisects each other? 

IN: Do you know that the diagonals bisect each other for a rhombus? 

Rose: Yes. If it is true for a parallelogram it would have to be true for a [rhombus]. [Rose marks that Segment CE is congruent 

to Segment AE as well as Segment BE is congruent to Segment DE on the diagram]. Now they are congruent because of 

Side-Angle-Side. And because of the CPCTC these angles are congruent [marks Angles DCA and BAC as congruent on the 

diagram]. And they are alternate interior angles, which means that the sides have to be parallel. 
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After reading the problem, Rose immediately stated that a rhombus is a parallelogram as a part of the definition of a rhombus, 

and therefore “opposite sides of rhombus are parallel.” This suggests that Rose was operating with the understanding that a 

rhombus is always a parallelogram, a property that Problem O was in essence proving, a LG2 direct circular reasoning gap (Figure 

7). In response, the interviewer asked Rose to read the definition of rhombus on the provided reference sheet (i.e., axiomatic 

system), which only stated “a quadrilateral with all congruent sides”. When asked by the interviewer “How do you know that a 

rhombus is parallelogram?” Rose replied “Because its sides are parallel.” It is only after the interviewer stated that this notion was 

what she was being asked to prove in the problem, that Rose abandoned the notion that rhombuses had opposite sides parallel 

as part of the definition of rhombus. Rose then orally stated that CE=EA and BE=ED because the diagonals of a rhombus bisect 

each other. When asked how she knew this, Rose stated “If it is true for a parallelogram it would have to be true for a [rhombus].” 

The fact that she stated that the diagonals of a parallelogram bisect each other guarantees the same is true for a rhombus is based 

on the unproven premise that all rhombuses are parallelograms. Since she used the statement that she is trying to prove in her 

proof of the statement, Rose made a direct circular reasoning error, a LG2 gap6. We propose a theoretical explanation of this 

behavior in the discussion section of the article. 

 

Figure 7. Rose’s drawn diagram and written proof for Problem O 

Quantitative Results of the Two Types of Reasoning Gaps 

In our summary quantitative analysis, we only classified and counted instances of formalization gaps and fatal logical gaps 

when the reasoning gaps appeared in both students’ formal/written proofs and their oral explanations/plans. The seven students 

each completed 12 proofs, creating a total of 84 problems for analysis. Table 1 shows the breakdown of the formalization and 

fatal logical gaps according to their categories. Table 2 and Table 3 shows the breakdown per student and per problem of the 

formalization gaps and fatal logical gaps, respectively. We found that there were 156 instances of formalization gaps while only 9 

instances of fatal logical gaps. The mean of formalization gaps per student was 22.29 and the median was 21 whereas the mean of 

fatal logical gaps per student was 1.29 and the median was 1. Approximately 18% of students’ formal proofs (15/84) had no gaps 

in them and were completely correct, and each student produced at least one proof without any gaps. Approximately 72.5% of 

students’ formal proofs (61/84) had only formalization gaps in them compared to the 9.5% of students’ formal proofs (8/84) that 

had at least one fatal logical gap. FG1 Curtailment gaps accounted for approximately 49% of the reasoning gaps found in the data. 

Overall, the data suggests that most of the participating students had sound intuitively correct proof reasoning and logic, but they 

lacked understanding of the details needed to stand up to axiomatic scrutiny for formal proofs. 

Table 1. Number of formalization gaps and fatal logical gaps separated by category 

Formalization gaps (FG) categories # of instances Fatal logical gaps (LG) categories # of instances 

Formalization gap category 1 (FG1)−Curtailment 81 Fatal logical gap category 1 (LG1)−False conclusion 5 

Formalization gap category 2 (FG2)−Incorrect 

justification 
65 

Fatal logical gap category 2 (LG2)−Direct or Indirect 

circular logic 
4 

Formalization gap category 3 (FG3)−Clerical 10   

Total formalization gaps 156 Total fatal logical gaps 9 
 

 

Table 2. Formalization gaps (FG) breakdown per student and per problem 

 Rose Jenny Ellie Amy Jim Tinny Sarah Total FGs per problem Average of FG per problem 

Problem S 1 0 1 0 0 1 1 4 0.57 

Problem A 0 0 3 0 1 3 0 7 1.00 

Problem M 1 1 1 1 2 2 1 9 1.29 

Problem L 3 0 0 0 0 0 0 3 0.43 

Problem D 2 3 2 3 2 2 2 16 2.29 

Problem N 1 3 2 1 6 2 5 20 2.86 

Problem E* 1 2 1 1 2 3 0 10 1.43 

Problem F 2 1 0 1 2 4 1 11 1.57 

Problem H* 2 3 3 4 5 3 2 22 3.14 

Problem G 4 3 4 4 4 4 4 27 3.86 

Problem O* 3 3 2 3 3 1 4 19 2.71 

Problem I 1 1 2 1 2 0 1 8 1.14 

Total per student 21 20 21 19 29 25 21 156 22.29 

Note. *Problems that are in the theorem or conditional statement format and no diagrams were provided 

 
6 Any time a gap occurred in multiple deductive steps that could have been written as one deductive step, like Rose’s steps 3 and 4 in Problem O, 

we only classified it as one gap. 
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Table 3. Fatal logical gaps (LG) breakdown per student and per problem 

 Rose Jenny Ellie Amy Jim Tinny Sarah Total FGs per problem Average of FG per problem 

Problem S 0 0 0 0 0 0 0 0 0 

Problem A 0 0 0 0 0 0 0 0 0 

Problem M 0 0 0 0 0 1 1 2 0.29 

Problem L 0 0 0 0 0 0 0 0 0 

Problem D 0 0 0 0 0 0 0 0 0 

Problem N 0 0 0 0 0 0 0 0 0 

Problem E* 0 0 2 0 0 0 0 2 0.29 

Problem F 0 0 1 0 0 0 0 1 0.14 

Problem H* 0 0 0 0 0 0 0 0 0 

Problem G 0 0 0 0 0 0 0 0 0 

Problem O* 1 0 0 0 1 0 1 3 0.43 

Problem I 0 0 1 0 0 0 0 1 0.14 

Total per student 1 0 4 0 1 1 2 9 1.29 

Note. *Problems that are in the theorem or conditional statement format and no diagrams were provided 

DISCUSSION  

Dealing with the Givens  

We did not include in our gap count when students did not write the givens in their formal proofs. For reference, we found that 

there were 27 instances in which the students did not explicitly write the givens in their formal proofs. Most of these instances (23) 

were done by the two students (i.e., Ellie and Tinny) who were in the normal track geometry class. Both teachers of the participants 

stated that they required students to write the givens in their proofs. The reason for not including it in our gap count is that it is 

debatable whether students should or should not be required to write the givens in their formal proofs and whether that 

constitutes a formalization gap. On one hand, a function of writing the givens in a proof is to explicitly state the givens that the 

individual is actually using as premises (i.e., relevant) to implement later deductions a proof. On the other hand, it can be argued 

when the givens are explicitly stated in the problem that writing the givens is unnecessary. In fact, nine of the proof problems used 

the GPFT format as shown in Problem M (see Figure 1). The remaining three problems were stated in theorem format, with no 

diagrams. For these problems, the givens and what needed to be proven were not explicitly stated and had to be deciphered by 

the students from the provided problem statement. McCrone and Martin (2004) found that 12 out of 18 students in their study 

could not correctly identify the given statements from a proof problem using the if-then format. For reference, in this study, there 

were 18 instances of not writing the givens for GPFT problems and 9 instances when the problem was presented in theorem format. 

So, it could be argued that stating the givens for theorem format problems is important, whereas for the GPFT problems, the 

students could argue that the givens are already stated. Due to this debate, we chose not to classify when students did not write 

the givens in their proof as a formalization gap.  

Marking Givens on Diagrams 

 In some cases of FG1, students thought that if they clearly demarcated givens on the diagram (e.g., right angle, congruence 

etc.) there was no need to explicitly state it in their formal proof. There are several issues with this practice. First, students used 

diagram markings to represent different types of information. They not only demarcated givens and valid deductions on their 

diagram (not distinguishing them), but also invalid deductions that they later convinced themselves were untrue, intuitive notions 

that were yet to be proven, and deductions that were true but irrelevant to their proof’s logical structure. Second, demarcations 

on diagrams provide no insight into the logical sequence in which the deductions were made nor justifications the student used 

to draw these conclusions. Therefore, students’ reasoning in making demarcations on a diagram, which are never sufficient for 

stating deductions for formal proofs, generally cannot be fully understood without listening to students’ oral planning and seeing 

their gestures and demarcations on the diagram as they do it.  

Congruence of Spatial Objects Versus Equality of Their Measurements  

In approximately 64% of FG1 gaps (52/81), students confounded congruence and equal measurement. Because this 

confounding gap could be caused (a) by an explicit curtailment in which students thought the distinction was unnecessary, or (b) 

students misunderstanding the difference and relationship between congruence and equal measurement, the interviewer 

explicitly asked every student, “What is the difference between congruence and equality or do they mean the same thing (i.e., 

synonyms)? The students responded in one of two ways: 1) there is no significant difference between congruence and equality 

(i.e., they are just two different ways in geometry of saying that items were the “same”) (6 instances) or 2) they did not know of a 

difference between congruence and equality (1 instance). There were three problems (Problem F, Problem N, and Problem G) in 

which the statement that needed to be proved was measurement equality (e.g., EM=FM or 𝑚∠2 = 𝑚∠3). Of the 21 formal proofs 

that students wrote for these problems, none had a correct final deductive step that correctly deduced the required measurement 

equality. Students either stated the measurement and equality conclusion and justified it with a theorem that was not stated for 

equality, like Jim did for Problem F (see Figure 2). Or students only proved the final deductive step for congruence and did not 

write a deduction involving measurement and equality, like Jenny did for Problem G (see Figure 3). This evidence suggests that 

the participants did not recognize the difference between the geometric concepts of congruence as it relates to spatial objects 

(e.g., segments, angles, shapes) and equality as it relates numerical values (lengths, angle measures, etc.).  
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Findings about FG2 and FG3 gaps  

The second most common formalization gaps among the students was FG2 Incorrect Justification, which accounted for 

approximately 40% (65/165) of all reasoning gaps. In all instances of FG2, the students made oral explanations and gestures to the 

diagram that showed that they intuitively understood the correct justification, they simply misnamed it. This suggests that many 

students intuitively understand which claims are valid, but struggle with citing correct justifications from the axiomatic system in 

their written proof.  

Only 6% of reasoning gaps were classified as FG3 gaps. We see some of the FG3 gaps as part of Anderson’s (1989) error 

classification of a “slip” which is “characterized by the fact that the subject does not reliably make that error and can self-correct 

when the error is pointed out” (p. 344). Anderson (1989) also argued “that slips can be traced to losses from working memory of 

critical information for solving a problem. Thus, when memory load goes up, slips increase.” (p. 344). This suggests that students 

might be making notational mistakes when their memory load is high which causes them to unconsciously make errors. It is also 

possible that some students struggle with understanding the procedure for naming angles, triangles, etc. in a congruence 

statement. This small percentage of FG3 gaps suggests that most students correctly named their shapes in their conclusions in 

their formal proofs. 

Auxiliary Segments and Formalization Gaps 

There were two proof problems, resulting in 14 proofs, that required students to draw auxiliary segments, with all students 

doing so. However, for six out of 14 instances, students did not write a deduction stating that they could construct an auxiliary 

segment on their diagram, thus exhibiting FG1 gaps. The other remaining eight instances, students wrote a deduction in their 

proof about the auxiliary segment and wrote the justification of “Construction”, which is disconnected from the axiomatic system, 

thus exhibiting FG2 gaps. Of students who used the justification of “construction”, when asked what this justification meant 

responded in some form with either authoritarian proof scheme (Harel & Sowder, 1998) like “that is what the teacher told me to 

do” or “you can do any type of construction/drawing on the diagram you want” or some combination of both. There was not a 

single instance in which a student provided the proper axiomatic justification, Postulate 5, from the reference sheet which stated 

that “Through any two points there exists exactly one line” (i.e., Euclid’s first postulate in Book 1 of Elements). This postulate is 

what the students’ textbook used as the correct justification for when an auxiliary line or line segment is drawn in a proof. This 

suggests that these students did not understand the axiomatic justification for drawing auxiliary segments, did not believe it is 

important to state this deduction, or perhaps their teachers used “construction” as a justification. Although, students did not 

provide a correct axiomatic justification for constructing an auxiliary segment in the diagram in their formal proof, they did 

explicitly draw it in the diagram and use the auxiliary segment to help complete their proof. This suggests that they intuitively 

understood the deductive step, they just did not formalize it correctly to stand up to axiomatic-based scrutiny. Thus, all instances 

were classified as formalization gaps. 

Quantitative Findings and Analysis for Fatal Logical Gaps 

There were only 5 instances of LG1 gaps and 4 instances of LG2 gaps occurring in the interviews. The two students who 

committed the LG1 gaps were Ellie (4 instances) and Tinny (1 instance) whom were in normal track geometry class. As was 

discussed with Ellie’s proof for Problem E (see Figure 5), when LG1 gaps occurred, many times students were either operating with 

incomplete spatial structuring, like when Ellie did not appropriately articulate corresponding parts of triangles, or incorrect spatial 

structuring, like when Ellie seemed to be operating as though her diagram had more details (it was square) than what was actually 

provided (i.e., it was a quadrilateral). LG2 gaps were when students either justified a deduction using a theorem which was true, 

but had yet to be proven in the axiomatic system (i.e., indirect circular logic), or when they committed a direct circular logic error. 

We illustrated the LG2 gap with Rose’s work for Problem O. When students committed a LG2 gap they seemed to be struggling 

with understanding what they were allowed to use as justifications from the axiomatic system. It is only from viewing both the 

students’ formal proofs and their oral planning/explanations that we gain additional insight as to why students committed these 

types of fatal logical gaps.  

Integration with the Theory of Learning Progressions 

To further interpret our results, we use the geometry learning progression originated by van Hiele (Clements & Battista, 1992) 

and elaborated by Battista (2007) (see Table 4). Relating proof writing to the original van Hiele learning progression, Senk’s (1989) 

research suggests that success in a proof-oriented high school geometry course requires students entering the course to be 

reasoning at least at van Hiele level 3. Senk found that less than 22% of students entering below level 3, but 57%, 85%, and 100% 

at levels 3, 4, and 5, respectively, mastered proof writing. Unfortunately, research suggests that over a variety of curricula in a 

variety of countries and using a variety of assessments, a reasonable estimate for the percent of students who achieve (on 

posttests) Level 2 or higher reasoning in the van Hiele Learning Progression7 in any of grades 5-9 is 36% (Battista, 2007, 2019; 

Clements & Battista, 1992). Consistent with this estimate, research has found that (a) only about 31% of high school students have 

achieved Level 2 reasoning before high school geometry, and (b) only about 60% of high school students achieve Level 2 reasoning 

by the end of high school geometry (Clements & Battista, 1992; Senk, 1989), suggesting that the majority of high school students 

are not operating at a level of geometric reasoning sufficient for success in a proof-oriented course. Our LP analysis below 

corroborates and helps explain these previous findings. Battista's (2007) elaborated learning progression for reasoning about 

geometric shapes (Table 4) explains several aspects of our students’ proof reasoning. We, first, provide evidence of the current 

 
7 The review of research data is based on the original van Hiele levels as reported in Clements and Battista (1992). 
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study’s students operating at Levels 2.3 and 3.3, then we discuss how the current results suggest elaborations of Levels 3.3, 3.4, 

and 4. 

Table 4. Summary of Battista's (2007) LP for reasoning about geometric shapes 

Level 1: Visual-holistic reasoning 

Students identify, describe, and reason about shapes according to their appearance as visual wholes. 

Level 2: Analytic-componential reasoning 

Students explicitly attend to, conceptualize, and specify shapes by describing their parts and spatial relationships between parts. 

2.1. Visual-informal componential reasoning. Students describe parts and properties of shapes informally and imprecisely because they do not 

possess the formal conceptualizations for precise property specifications. 

2.2. Informal and insufficient-formal componential reasoning. As students begin to acquire formal conceptualizations of spatial relationships 

between parts of shapes, they use a combination of informal and formal descriptions of shapes. But the formal portions of these descriptions are 

insufficient to completely specify shapes by their properties.  

2.3. Sufficient formal property-based reasoning. Students exclusively use formal geometric concepts and language to describe and conceptualize 
shapes in ways that delineate a sufficient set of properties to specify the shapes. Students can use and formulate definitions for classes of shapes, 

but their definitions are not minimal because forming minimal definitions requires relating one property to another using logical reasoning (which 

occurs at Level 3.3). Instead, students’ conceptualizations and definitions for shapes include all of the visual characteristics they associate with that 

shape category, as described by formal geometric concepts, which we call “prototypical defining properties.” As an example, for most students, 

the prototypical defining properties of rectangles are: opposite sides congruent and parallel, and four right angles. These properties express in 
formal geometric terms the most visually salient spatial characteristics that students use in conceptualizing rectangles. Of course, there are other, 

less visually salient properties of rectangles. For instance, in rectangles, the congruent diagonals bisect each other” (Battista et al., 2018).  

Level 3: Relational-inferential property-based reasoning  

Students explicitly interrelate and make inferences about geometric properties of shapes, but the sophistication of students’ property 

interrelationships varies greatly. Because one property can “signal” other properties, students can correctly specify shapes without naming all 

their properties, form minimal definitions, start to logically organize sets of properties, and distinguish between necessary and sufficient sets of 
conditions. 

3.1. Empirical relations. Students decide empirically that if a shape has one property, it has another. 

3.2. Componential analysis. By analyzing how shapes can be visually constructed one-component-at-a-time, students conclude that when one 

property occurs, another property must occur. 

3.3. Logical inference. Students make logical inferences about properties with “locally logical reasoning” in which they string together logical 

deductions based on “assumed-true” propositions, that is, propositions that they accept as true based on their experience, intuition, or authority. 

Students at this level use logic, but they do not question the starting points for their logical deductions. 

3.4. Hierarchical shape classification based on logical inference. Students use logical inference to reorganize their shape classifications into a 

logical hierarchy, and they can logically justify their hierarchical classifications. It becomes not only clear why a square is a rectangle, but a 
necessary part in of their reasoning. Students can also understand and create definitions that list only one sufficient property such as “a rectangle is 

a quadrilateral having four 90° angles,” understanding that they can deduce other properties from this one defining property.  

Level 4: Formal deductive proof 

Students can understand and construct formal geometric proofs. That is, within an axiomatic system, they can produce a sequence of statements 

that logically justifies a conclusion as a consequence of the “givens.” 
 

Evidence of level 2.3. Reasoning 

Example 1: Jim, Problem G (Figure 8): 

 

Figure 8. Problem G 

Jim: [During oral planning] PQRU is a parallelogram. So that is parallel to that [points to Segments PQ and UR, respectively] 

and that is parallel to that [points to Segments PU and QR, respectively] ... I am thinking about how I can prove that is equal 

to that [points to Segments PQ and UR, respectively]. … Oh, a parallelogram. I think it is in the definition of parallelogram. 

A parallelogram is basically a rectangle without the right angles. So that side would be equal to that side [points to 

Segments PQ and UR, respectively] and that side would be equal to that side [points to Segments QR and PU, respectively]. 

Jim does not use a minimal (formal) definition for the concept of parallelogram−a quadrilateral with opposite sides parallel−a 

conception that requires Level 3.4 reasoning. Instead, his definition of a parallelogram includes two prototypical defining 

properties−opposite sides parallel and opposite sides congruent−because he knows that both properties are true for 

parallelograms (see description of Level 2.3 in Table 4).  
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Example 2: Jenny, Problem N: 

Jenny: [During oral planning] I saw these two angles [points to angles 1 and 4, which are given as congruent] as base angles, 

therefore it is an isosceles triangle. So, NE is congruent to ET…. If the base angles of a triangle are congruent, then the 

triangle is an isosceles. So therefore these [points to Segments NE and TE] would be the same. … 

Jenny: [Later after Jenny has written steps 1 through 5 of her formal proof.] That is like because the triangles are congruent 

[points to Triangles NEA and TEC] the corresponding sides [points to Segments EA and EC] are also congruent also. And 

then you would have the measure of angle 2 is equal measure of angle 3 because of [pauses] I guess the definition of isosceles 

triangle [writes 𝑚∠2 = 𝑚∠3 by definition of isosceles for step 6 of her proof]… [later, elaborating on her reasoning for 

step 6 in the interview]. Then they [points to Segment EA and EC] are the same. You can jump to the base angles are the 

same [points to angles 2 and 3] because it is an isosceles triangle (Figure 9).  

 

Figure 9. Jenny’s proof for Problem N 

There are two important points to notice about Jenny’s reasoning. First is Jenny’s definition of isosceles triangles, which she 

seemed to conceptualize as having a pair of congruent sides and corresponding base angles congruent, including two prototypical 

defining properties of the shape. So, she is not using the minimal definition of isosceles triangle given in the reference sheet, “a 

triangle with two congruent sides.” Battista (2007) found that students at Level 2.3, when defining/describing a shape, almost 

always included all the formal properties that they associated with the shape. Other students in our study exhibited similar 

conceptualizations. Approximately 42% (27/65) of all FG2 gaps identified were when students wrote a definition of a shape as a 

justification when the correct justification was a theorem that was deduced from a formal minimal definition.  

Even more, based on our current data, we hypothesize that this prototypical-defining-properties conceptualization is 

generally carried forward into Level 3.3, locally logical reasoning (see Table 4). This is illustrated by Rose’s previously described 

reasoning for the Problem O, prove that the sides of a rhombus are parallel, in which she made the following statements: 

“A rhombus is a parallelogram.”  

[Can you prove that a rhombus is always a parallelogram?] “It is in the definition.”  

[So how do we know that a rhombus is a parallelogram?] “Because its sides are parallel. (Citing in writing the definition of 

rhombuses.)” 

[Do you know that the diagonals bisect each other for a rhombus?] “Yes. If it is true for a parallelogram it would have to be 

true for a [rhombus].”  

Rose’s reasoning demonstrates that, placed in an axiomatic context, she was struggling to move past her Level 2.3 conception 

of rhombuses that included the properties: all four sides congruent, opposite sides parallel, a special type of parallelogram, and 

bisecting diagonals. This conception caused her to struggle with accepting and using a minimal definition of rhombuses as 

quadrilaterals with all sides congruent, the definition given in the axiomatic context in which she was attempting to reason. We 

believe that, in this axiomatic instructional context, Rose was attempting to operate at Level 4 while still transitioning from Level 

2.3 to Level 3.3, showing evidence of some reasoning at all three levels−2.3, 3.3, and 3.4, while, because of her curriculum, skipping 

levels 3.1 and 3.2. 

Evidence of level 3.3. “Locally logical” reasoning  

The distinction between “locally logical” reasoning and formal proofs is critical to understanding students’ learning 

progression for developing proof reasoning (Battista, 2007). At Level 3.3, students’ reasoning is locally logical in that they start 

their sequence of valid logical deductions with propositions that they accept as true based on their experience, intuition, or 

authority. Their reasoning is logical “but they do not question the starting points for their logical analyses.” (p. 853). In contrast, 

at Level 4, students can understand and construct formal geometric proofs within an axiomatic system. Even though proof-

oriented high school geometry courses purportedly exist in the context of an axiomatic system, it is unlikely that students view 

their proving processes in an axiomatic context, and instead, operate in a locally logical context in which they believe that an 

unordered set of axioms and theorems can be assumed true and used when needed. Furthermore, in contrast to the logical rigor 

of formal proofs, locally logical proofs are more informal and tend to skip steps, especially formal justifications for statements, 

and, as we saw above, they use definitions of shapes that include all the prototypical-defining properties students associate with 

the shape. In the current study, many of students’ oral statements in their proof plans and written-proof oral explanations suggest 
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Level 3.3 locally logical reasoning or a transition from this reasoning toward Level 3.4 reasoning. Additional evidence for this type 

of reasoning comes from students’ use of indirect circular reasoning when students use in a proof a valid theorem that has not yet 

been proved in the axiomatic system. In this case, students seem to use no explicit positioning in the axiomatic system−they cite 

what they believe is true rather than relying on axiomatic structure.  

Learning progression implications for instruction 

On geometric definitions: Our data suggests that our high school geometry students’ conceptualizations of shape definitions 

are likely to include all the prototypical-defining-properties that the students know−as in Level 2.3, but continuing into Level 

3.3−unless and until specific instructional attention addresses the nature of definitions (c.f., Cirillo & Hummer, 2019). In contrast 

to traditional instruction, in LP-based instruction, attention to the nature of definitions would occur only after the students reach 

Level 3.3 and teachers are trying to guide students to move into Level 3.4 (Battista, 2012; Borrow, 2000). In contrast, and 

inconsistent with LP-based instruction, traditional proof-oriented instruction addresses the nature of definitions at the beginning 

of the course, at a time when most students are not even in Level 2.3 and thus not prepared for the Level 3.4 reasoning required 

to make sense of such formal definitions. And students must achieve Level 3.3 and 3.4 before attempting to operate at Level 4, 

which is required in a proof-oriented geometry course. 

On empirical exploration in proof-oriented geometry courses: Inspection of Level 3 sublevels 3.1 and 3.2 (Table 4) suggests that 

student empirical exploration, and inter-student discussion, should play an important role in students achieving first, Level 3.3, 

then Level 3.4, because such experiences can establish students’ belief in the validity of accepted theorems and help them trust 

the deductions they start making in Level 3.3, double-checking deductions with empirical exploration (Battista, 2007; Borrow, 

2000). We can connect this to some of Mariotti’s (2006) claim that the discrepancy between empirical verification and deductive 

reasoning is recognized as a source of student difficulties in constructing proofs, a transition clearly demarcated in Level 3 

sublevels. Furthermore, according to Mariotti (2006), Duval recognized a cognitive rupture between argumentation and proof, 

with argumentation consisting of the rhetoric employed to convince somebody of the truth or falsehood of a statement, and proof 

consisting of the logical sequence of deductions that imply the theoretical validity of a statement. Perhaps locally logical reasoning 

is the form of argumentation students use as they move toward structural cognitive unity, which is the relationship between the 

structure of an argumentation and the structure of a corresponding proof.  

Elaborating level 4 

The results of the current study also suggest that Level 4 in Battista's (2007, 2012) LP be elaborated into at least two sublevels. 

Level 4: Formal deductive proof: 

ORIGINAL: Students can understand and construct formal geometric proofs. That is, within an axiomatic system, they can 

produce a sequence of statements that logically justifies a conclusion as a consequence of the “givens.”  

NEW Level 4.1: When attempting to work within an axiomatic system, students give valid proofs, but with several formalization 

gaps in which they condense steps or ignore formal axiomatic conceptual subtleties. In some sense, this is continuation of the 

locally logical reasoning of Level 3.3 into Level 3.4, but now students are attempting to make their proofs explicitly formal (most 

often using the GPFT template). 

NEW Level 4.2: When attempting to work within an axiomatic system, students give valid proofs without formalization gaps. 

They recognize and utilize differences among undefined terms, definitions, axioms, and theorems, and they understand global 

axiomatic sequencing and structuring in the sense that they see why, for example, theorems numbered greater than N cannot be 

used in the proof of Theorem N (because it often, but not always, leads to indirect circular reasoning). 

Conclusions 

The findings from the task-based interviews suggest that even though most of the proofs that students wrote were not formally 

(axiomatically) correct, most of the students used otherwise sound reasoning in most of their oral proof plans and explanations. 

This finding suggests that these students do not fully understand or see the need for all the details needed to write formal proofs 

with correct logical and axiomatic structuring−and that, most often, students struggled with formalizations rather than logical 

deductive arguments. Importantly, the nature of students’ struggles with proof reasoning would not have been revealed if only 

their written proofs were examined (e.g., Ellie and Rose). Analyzing all the students’ oral plans and explanations in addition to 

their written proofs enabled us to identify different types of gaps in students’ proofs, providing deeper insights into their proof 

reasoning.  

Most of the time in instructional and research settings, teachers and researchers evaluate students’ proof reasoning only by 

examining their written proofs. The present study indicates that this practice is not a reliable way to genuinely understand their 

overall proof reasoning. A two-column proof provides limited amount of information about what students were thinking as they 

constructed their proofs. For example, when students are missing deductions in their written proofs, the teacher or researcher 

usually cannot distinguish between students who did so intentionally because they thought the deductions were obvious (e.g., 

Rose in Problem M) from students who did it because of some misconception or error in their reasoning (e.g., Ellie in Problem E).  

In contrast, as this article illustrates, evaluating students’ proof reasoning using both their oral planning/explanations and 

their written proofs can provide deeper insight into the students’ thinking. Research studies have found that many experts quickly 

devise a proof-plan prior to writing their formal proofs and that these plans omit many steps (Cirillo & Hummer, 2021; Koedinger 

& Anderson, 1990). When asked to first orally plan their proofs, we found students, like experts, developed proof plans that were 

most often logically sound, but missing formal details. The major difference between experts and our students, is that the experts 

are able to fill in all the missing details whereas most of our students were not. This suggests that students need additional 
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instruction to help them translate their sound informal ideas in planning to more formal written deductions that stand up to 

axiomatic-based scrutiny. The additional insight gained from analyzing students as they orally plan their proofs and engage in 

think-alouds as they write proofs not only helps teachers and researchers better understand students’ proof struggles so they can 

develop more effective curriculum materials and instructional interventions.  

Our finding, that students struggled to understand and provide the amount of rigor and level of detail needed for valid two-

column proofs, is consistent with Soto-Johnson and Fuller’s (2012) and Stylianides’ (2019) work in which they found that students 

struggled to write coherent formal proofs, but evidenced sound oral arguments. Because of the order in which the proofs were 

constructed, written-then-oral in Stylianides (2019), one might argue it was the order that produced the better performance on 

oral proofs (even though that study used group work, rather than individuals like this study). In contrast, we found that when 

students constructed their oral plans first then wrote their proofs, students’ oral comments were less likely to skip steps. This 

suggests that order of oral and written proofs might not be a factor in students’ performances with proofs.  

Our findings also suggest that our students struggled to understand the difference between congruence and equality and the 

appropriate use of these concepts in their deductions in formal proofs. This is consistent with Anderson’s (1989) finding with his 

research with the Geometry Tutor software in which almost all students did not see the difference between congruence and 

equality and skipped steps when the definition of congruence was needed to switch between equality of measurements to 

congruence of segments or angles (and vice versa). One difference between our finding and Anderson’s is that we saw students 

not only skip steps involving congruence and equality, but also used incorrect notation in their written conclusions (e.g., ∠𝐴 ≅

∠𝐵 ≅ 90° 𝑎𝑛𝑑 𝐴𝐷̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ ). We attribute this difference to asking our students to write their proofs on paper instead of using 

a computer software which had a selection of conclusions provided from which students could choose from. Most high school 

geometry textbooks seem to make a distinction between these two concepts, including our students’ textbook. However, our 

students seem to think they are interchangeable and they are synonyms for meaning the “same as.” Faulker et al. (2016) argued 

that students might have the following questions if the congruence and equality concepts are viewed as interchangeable “If equal 

means ‘same as’ then what does congruence mean and why do I need another vocabulary word that means the ‘same as’?” (p. 

15). Anderson (1989) also argued for importance of this distinction as follows:  

The reader may well consider why this distinction between equality of measure and congruence is being enforced in the 

geometry curriculum… Congruence means that objects will be the same after rotation, reflection, and translation. Equality 

means the identity of two numerical measures. The distinction becomes important in the later chapters where two objects 

(e.g., triangles) can be equal in some measure (e.g., area) but not congruent (p. 360).  

So, the question becomes how important is the distinction between congruence and equality in high school geometry? On one 

hand, maybe the difference between congruence and equality is too fine of a distinction so that it is unnecessary for high school 

students to make it. In fact, there are some older high school geometry textbooks in which the authors do not distinguish between 

congruence and equality, rather just use equality for triangle congruence. For instance, noted Harvard mathematician George 

Birkhoff8 and his coauthor state in their high school geometry text, “it is advisable in an elementary course to slur over or ignore 

some of the subtler mathematical details, for these are not suitable material for the mind of the student at this juncture” (Birkhoff 

& Beatley, 1940, p. 4). As an example, consider their statement of Assumption 1: “If in two triangles two sides and the included 

angle of one are equal respectively to two sides and included angle of the other, the two triangles are equal,” noting that “other 

books on geometry often refer to equal triangles as ‘congruent’ triangles” (p. 59).  

On the other hand, if we consider this distinction important, then it seems critical that teachers explicitly provide instruction 

to help students understand the difference between the two concepts and how to appropriately use them in formal proofs. Faulker 

et al. (2016) argued that teachers need to help children develop a more precise definition of equality that goes beyond “same as” 

in order to avoid confusion when they are introduced the concept of congruence later in geometry. They also argued that the 

concept of equality should be tweaked to “same in value” to explicitly state the attribute that is the same, which in many cases in 

geometry is a numerical value representing a measurement. In either case, more research and discussion among teachers and 

mathematics educators is needed to sort out whether the distinction between congruence and equality is an important one to 

emphasize in high school geometry.  

Limitations 

One limitation of our study was the small number of students (n=7) who participated in the interviews. So further research is 

needed with a larger sample of students to see if the findings generalize. Another limitation is that to study students’ geometry 

proof reasoning in depth, the present study intentionally limited the presented proof problems to ones that use triangle 

congruence postulates in US high school geometry. Although the proofs covered in the present study represent a major category 

of proofs, and the reasoning students used in these proofs seems to represent many generalized proving behaviors, extending the 

current study’s results to other kinds of proof problems (e.g., similarity, transformations, circles, etc.) cannot be accomplished 

without further research.  

Another limitation is the finding of students not writing givens in their proofs. What is clear from the data is that students who 

did not write the givens did not seem to have a proper understanding of the function of including givens in their proofs. A few 

students cited the givens in their proof right before they used them as premises to draw subsequent deductions, thus exhibiting 

 
8 It is worth noting that Birkhoff created a set of four postulates of Euclidean plane geometry that build on the postulates for the set of real numbers, 

thereby simplifying the axioms for Euclidean geometry. These axioms were later modified by the School Mathematics Study Group as a new 

standard for high school geometry. 
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an explicit understanding of the function of including the givens in their written proofs. However, of the other students who wrote 

the givens as their first steps in their proofs, it is unclear from the data whether these students truly understood the function of 

writing the givens or whether they did this step procedurally due to some established sociomathematical norm (Yackel & Cobb, 

1996) in their geometry classrooms. Additional data is needed to determine which students understood the function of including 

givens which students did so by rote. This data would help distinguish whether not writing the givens in formal proofs should be 

classified as a formalization gap or not. Interconnected with this issue, to complete most of the proof problems presented, the 

students typically had to use all the provided givens. Future research needs to investigate situations in which students are 

provided more given information than is needed to complete the proof. This would not only provide insight into how students 

handle irrelevant proof givens it would help us better understand if students truly understand the function of writing the givens 

or if they are just implementing a sociomathematical norm in which they simply rewrite the givens in the first few steps.  

Finally, the present study investigated in detail students’ understanding of how to construct a particular type of formal 

geometric proof. It did not, however, attempt to relate students’ ability to understand and write proofs to the purpose of proof. 

For instance, how did students’ understanding of their proofs relate to whether or not they believed that the statements that they 

proved were true or not. Given the substantial amount of research that indicates that students do not necessarily understand how 

formal proof is related to the validity of proved statements (Battista, 2007), it would be fruitful to interrelate these two different 

lines of research on geometric proof.  

IMPLICATIONS 

Given that the participating students struggled with proof formalization rather than forming sound logical arguments, it is 

important for mathematics educators to decide how important formal proofs in high school geometry are, or if locally logical 

arguments are sufficient. Some teachers have questioned whether formal proofs in high school are appropriate in favor of more 

exploratory activities in which students construct informal arguments (Boyle, 2012; Knuth, 2002). Many researchers have found 

that most proof problems given to students in high school geometry are more ritual-based exercises, which teach students about 

deductive reasoning and logic and are less about explaining why geometry works (Gilbertson et al., 2013; Herbst, 2002; McCrone 

& Martin, 2009). However, if mathematics educators view formal proof as important, then how it is taught needs to change so 

students can understand the formal details needed for valid axiomatic proof. One possibility is using Dynamic Geometry 

Environments (DGE) to help students see the need for formal proofs and appreciate the other functions of proof (explaining, 

discovery, systematization, etc.) (Battista, 2007; de Villers, 2004; Mariotti, 2006). One possible instructional technique that might 

help is having students explore ideas and properties of shapes using DGE, form their own conjectures from their explorations, and 

then try to prove or disprove their conjectures using formal proof or counterexamples.  

Since most of our students’ errors were formalization gaps, which were most identifiable when students were asked to orally 

explain their thoughts as they planned and wrote their proofs, mathematics educators need to find alternate ways to assess proofs 

besides only reading the students’ written proofs. We recognize, however, that teachers typically do not have the time or the 

resources to conduct one-on-one interviews with every student. Therefore, an important instructional implication of this study is 

that teachers need to find ways to create opportunities for students to orally explain their thinking before constructing formal 

proofs in ways that teachers could observe. One possibility is that, before constructing a formal proof, students could be put in 

small groups to explain their plans for creating the proof (while the teacher circulated about the classroom), and students could 

even present their plans to the whole class. This would allow teachers to formatively assess students’ proof reasoning in order to 

address and remedy any difficulties that arise before students take a more traditional written assessment.  

Another possibility is to have students submit video recordings using their phones and along with their oral plans and written 

proofs upload them to website set up by their teachers. Teachers might to examine samples of students’ reasoning, or they might 

use the video recordings only when they find missing or incorrect steps in the students’ written proofs. Another possibility is for 

mathematics educators to create some sort of computer software in which students not only type in their deductive steps, but 

also orally record their reasoning for each step. Then teachers could read the written proof and click the oral recording next to 

each deduction to hear the students reasoning for the step. 
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