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Abstract 

Calculus is an important subject for science, engineering, and other fields of studies 
but phenomenally it is abstract and difficult to learn. Despite its importance, the teaching 
of introductory calculus always emphasizes manipulation of algebraic notations and rote 
learning. Most students learn the how instead of the why of calculus due to extensive use of 
algebraic symbols and notations. Therefore, graphing activities were developed based on the 
learning cycle approach and the lesson was taught for an hour in the classroom. This study 
investigates the effectiveness of the lesson in understanding the relationship between 
differentiation and integration calculus and to measure the students’ attitude towards the 
learning unit. Sixty-five grade twelve students from higher secondary school were selected 
for the study. The test scores showed that there was significance improvement in the post-
test scores compared to the pre-test scores. It was also found that the lesson was effective 
and enriching. 
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Introduction 

The ideas of calculus are one of the greatest achievements of the human 
intellect (Hughes-Hallett et al., 2003) since calculus has demonstrated the power 
to illuminate the most fundamental problems in mathematics, physical sciences, 
biological sciences, and engineering. Calculus has reduced complicated problems to 
simple rules and procedures by using symbols and notations not only to represent a 
shorter way of writing but also to find the solutions easier. However, using those 
symbols and notations might lose the original pictures of the problems. 

By contrast, teaching and learning of calculus begin with the symbols and 
notations and follow by several examples of its applications. Lecture-based teaching 
methods are the top choices in calculus instruction for decades. Students develop a 
skill at memorizing formulas and algebraic procedural steps instead of conceptual 
understanding. Besides, a vast number of calculus textbooks are available, covering 

IEJME — MATHEMATICS EDUCATION 

2016, VOL. 11, NO. 9, 3371-3385 

 OPEN ACCESS 



	3372		IEJME-MATHEMATICS	EDUCATION	

every conceivable approach; these calculus textbooks contain a lot of abstract 
symbols and notations. A wide range of problems in the textbooks is solved using 
memorized formulas and procedural steps. According to Orton (1983a and 1983b) 
most students have learned calculus ‘how’ rather than ‘why’ due to extensive use 
of notations and symbols in teaching and learning. The real meanings of symbols 
and notations that students learned in the classrooms are not interpreted explicitly 
in the context of real world situations. 

With these reasons, mathematics educators felt that calculus education 
needed reform focusing on conceptual understanding rather than the acquisition of 
procedural skills (Peterson, 1986; Steen, 1988). Since the calculus reform movement 
began, many researches were conducted on concept-based approaches to teach the 
fundamentals of calculus, e.g. a realistic approach (Kaput, 1994), a guided 
reinvention (Gravemeijer & Doorman, 1999), a computer-assisted approach (Lang, 
1999), and a graphical approach (Tall, 1986). Most of these approaches employed 
contextual examples (e.g., distance and velocity of a moving car) without the real 
activities. As a result, students were required to imagine the context of the 
situations. If students cannot form clear mental pictures of contextual examples, 
they memorize the steps and follow rote learning. Graphing is a powerful tool in 
teaching as well as learning calculus. Graphical representations in calculus can help 
students to visualize underlying concepts. Graphs can translate and interpret 
algebraic formulas and data. Moreover, graphs often reveal mathematical results 
simply and clearly. 

Students have a vague concept of algebraic notations in relation to geometric 
interpretations. Mundy and Graham (1994) also reported that the difference 
between the performances on the procedural items and the conceptual ones was 
due to the separate understanding of geometrical and algebraic context in calculus. 
From our pilot study, which was carried out in undergraduate students, they had 
difficulty in explaining the relationship between differentiation and integration. 
They recognized that “integration is the inverse process of differentiation” whereas 
they remained silent when asked to explain “how”. Since the concepts of calculus 
are originated from contextual applications, using contextual activities and 
interpreting them in the form of graphs would ultimately help students to relate the 
concepts of calculus to algebraic symbols and notations. In addition, the students 
will get the physical feel and visualization of the concepts. 

This study focused on development of graphing activities based on the 
learning cycle approach to help students to establish the relationship between 
differentiation and integration in calculus. The main objectivities of this study were 
to find out the effectiveness of the developed learning unit on the students’ 
understanding of the relationship between differentiation and integration in 
Calculus and to measure the students’ attitude towards the learning unit. This study 
aimed to address the following research questions; 
i). To what extent can the learning unit enhance the students’ understanding the 

relationship between differentiation and integration in Calculus? 
ii). What is the students’ attitude towards the learning unit? 
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The Learning Cycle Approach 
The learning cycle approach is an inquiry-based teaching model, which first 

emerged in the 1960s when Robert Karplus and his colleagues implemented in the 
Science Curriculum Improvement Study (SCIS) program (Lawson et al., 1989). It was 
developed by Robert Karplus based on the constructivist theory of intellectual 
development proposed by Jean Piaget (Karplus, 1980). In Piaget’s intellectual 
development, the learning is not view as a transfer, but as an active construction 
of knowledge by the individual based on the knowledge already held (Piaget, 1952). 

The learning cycle approach has an advantage in learning by ordering the 
instructional activities compatible with Paiget’s cognitive development. In order to 
facilitate accommodation, the activities in the exploration phase expose the learner 
to a segment of the environment that demonstrates the information to be 
accommodated. In the second phase, the activities help the learner to 
accommodate the information. Finally, to organize the accommodated information, 
the activities are developed to help the learner to see the relationship between new 
information and other previously learned information (Abraham, 1997). 

The learning cycle has been implemented in various studies even though the 
names of the phases have changed. Originally, Exploration, Invention, and Discovery 
phases were named by Karplus and his colleagues. Many authors have modified the 
names of these phases, eg. Barnes, Driver, Karplus, Erickson, Nussbaum and Novic, 
Renner, and Rowell and Dawson, but the learning format and sequence of the phases 
remain the same (Lawson et al., 1989; Sunal, 2007). However, the phases of 
exploration, concept introduction, and concept application described by Anton 
Lawson (1988) and Michael Abraham (1989) are the foundation phases most closely 
related to the pioneer in the learning cycle, Robert Karplus, and called Lawson-
Abraham model of learning cycle. 
The Lawson-Abraham’s model of learning cycle consists of the Exploration, the 
Concept Introduction, and the Concept Application phases. 
 
(i). Exploration phase 

This is the most active phase for the students. They learn through their own 
actions and reactions with minimum guidance in an activity to expose them to the 
concepts. The students try out their knowledge by observation and investigation 
through the activity. The students are expected to encounter situations that they 
cannot explain with their present ideas or reasoning patterns. The teacher acts a 
facilitator by probing guiding questions and serving as a resource for the students. 

 
(ii). Concept Introduction phase 

In this phase, the concept is introduced and explained with help from the 
teacher. The concept is usually derived from the data or classroom discussions. This 
step should always follow exploration and relate directly to the pattern discovered 
during the exploration activity. The students should be encouraged to identify as 
many new patterns as possible before the concept is revealed to the class. 
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(iii). Concept Application phase 
In this phase, the students explore the usefulness of the concept they have 

learned and apply it to new situations. This phase is necessary to extend the range 
of applicability of the new concept. Without a number and variety of applications, 
the concept’s meaning may remain restricted to the examples used at the time it 
was initially defined and discussed. In addition, application activities aid students 
whose conceptual reorganization takes place more slowly than average or who do 
not adequately relate the teacher’s original explanation to their experiences. 
 
Methodology 
1. Participants  

Single group pre-test post-test research design was used in this study. Two 
sections of grade twelve science students were selected for the study. These 
students had already learned introductory calculus in grade eleven.  
 
2. Procedures 

A pre-test was conducted for sixty minutes prior to the intervention. The 
learning unit on the establishment of relationship between differentiation and 
integration in Calculus was taught for one hour. At the end of the instruction, a 
post-test and an attitude test were conducted.  

A same set of five open-ended questions was used for both the pre-test and 
the post-test. The first question examined whether students could relate the graph 
of an anti-derivative to that of its derivative as well as the units in those graphs in 
the straight-line motion context. The second question examined whether students 
could relate the graph of a derivative to that of its anti-derivative in the same 
context. The third and fourth questions examined the students’ conceptual 
understanding of integration and differentiation respectively. The fifth question 
examined how students relate the derivatives (slopes of the lines) to the integrals 
(areas under the lines) of the lines, and also to examined how students establish 
the relationship from differentiation to integration 

The attitude questionnaire consisted of twelve Likert-type items and three 
open-ended questions. The purpose of the questionnaire was to find the students’ 
attitude towards the relationship between differentiation and integration and 
towards the learning unit. The Likert scale in the questionnaire included “1 = 
Strongly disagree”, “2 = Disagree”, “3 = Neutral”, “4 = Agree” and “5 = Strongly 
agree”. 

A paired sample t-test was used for data analysis to determine whether 
significant difference between the pre-test and post-test scores exists. The 
Cronbach’s Alpha reliability coefficient of the post-test was 0.67. The frequencies 
of the responses to each questionnaire item were separately tabulated and 
interpreted. The Cronbach’s Alpha reliability coefficient of the questionnaire was 
0.82.  
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Graphing activities learning unit 
The Lawson-Abraham model of learning cycle was used to frame the 

development of a learning unit on the relationship between differentiation and 
integration in calculus, which employed graphing activities. The students were 
divided into groups of 5 students. All the instructions for the group activities were 
provided on the worksheet given to the students. The details of the activity in each 
phase of the learning cycle are described below. 
 
(i). Exploration phase 

In this phase, students were asked to sketch the graph of the constant speed 
of a moving car for five hours, and to divide the area under the line into five equal 
parts as shown in Figure 1. Students were asked to find the area of each part under 
the line and to find the unit and the meaning of those areas, which should help them 
realize the graphical relationship between speed and distance. 

 

 
Figure 1 Graph showing constant speed of a car and area under the line. 

 
Students were asked to plot each area (distance) on another graph paper and 

compare the two graphs, which were actually the graphs of a derivative and its anti-
derivative as shown in Figures 2–6. Students found the area under the line from 
0t =  to 1 hour, 1 to 2 hours, 2 to 3 hours, 3 to 4 hours,  and 4 to 5 hours (see Figures 

2(a)–6(a)) and sketched the area on another graph as shown in Figures 2(b)–6(b), 
which eventually yielded the area under the speed-time graph (see Figure 7(a)) and 
the distance-time graph (see Figure 7(b)). They were further asked to find the 
equations of the two graphs in Figure 7. Being more familiar with algebraic notation, 
the equations should help them in confirming the relationship between the two 
graphs. 
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(a) (b) 

Figure 2 Area under the line and distance during the first hour 
 

  
(a) (b) 

Figure 3 Area under the line and distance during the second hour 
 

 
 

(a) (b) 
Figure 4 Area under the line and distance during third hour 

 

 
 

(a) (b) 
Figure 5 Area under the line and distance during fourth hour 
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(a) (b) 
Figure 6 Area under the line and distance during fifth hour 

 

 
 

(a) (b) 
Figure 7 Area under the speed-time graph and slope of the distance-time graph 

 
To help students see that the graphical relationship work for non-integers as 

well, they were asked to find the areas and the distances during the last half hour 
prior to t = 0.5, 1.5, 2.5, 3.5 and 4.5 hours as shown in Figure 8–12. 

 

  
(a) (b) 

Figure 8 Area under the line for 0.5t =  hours and slope of the line at 0.5t =  
hours 
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(a) (b) 

Figure 9 Area under the line for 1.5t =  hours and slope of the line at 1.5t =  hours 
 

 
 

(a) (b) 
Figure 10 Area under the line for 2.5t =  hours and slope of the line at 2.5t =  

hours 
 

  

(a) (b) 
Figure 11 Area under the line for 3.5t =  hours and slope of the line at 3.5t =  

hours 
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(a) (b) 
Figure 12 Area under the line for 4.5t =  hours and slope of the line at 4.5t =  

hours 
 

Finally, they were asked to directly calculate the area under the line in Figure 
7(a) from t = 0 to t = 5 hours by integration and to confirm that the result agreed 
with the area and the distance in the two graphs. They were also asked to find the 
slope of the line in Figure 7(b) at t = 0.5 hours, which gave the point on the line at 
t = 0.5 hours in Figure 7(a). 
 
(ii) Concept introduction phase 

From the exploration phase, students should begin to have an idea about the 
relationship between differentiation and integration. The concept introduction 
phase should help them formulate the idea more completely. The students were 
asked the following questions. 

i). What do you get if you find the area under the graph in Figure 7(a) by 
integrating the equation of the line from t = 0 to t = 5 hours algebraically? 

ii). What is the unit of the area? And what does the unit of the area tell you? 
The students should be able to see that finding the area under the line and 

integrating the line of the equation would give 100 km, which would indicate the 
distance travelled by the car in 5 hours as shown in Figure 7(b). Then, the students 
were also asked the following questions. 

i). What do you get if you find the slope of the line graphically and 
differentiate the equation of the line algebraically of the graph in Figure 
7(b)? 

ii). What is the unit of the slope? 
The students should be able to see that the finding the slope of the line 

graphically and differentiating the equation of line algebraically would give 20 
km/hr which would indicate the speed of the car on the graph as shown in Figure 
7(a). Then, the students were asked; do you see any relationship between the graphs 
in Figures 7(a) and 7(b) in terms of differentiation and integration in calculus? 
Explain? 

Now, the students should be able to see the relationship between 
differentiation and integration graphically, algebraically, and contextually from the 
activity and to conceptually understand that integration is the inverse process of 
differentiation. 
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(iii) Concept application phase 
In this phase, the context was still a moving car but accelerating at 2 m/s2  

for 10 seconds instead of travelling at a constant velocity. From the exploration and 
concept introduction phases, students should have an idea how to figure out the 
equation of the area under the line from a given graph in general. The students 
should be able to figure out the equations of the lines from the graphs as shown in 
Figure 13. 

Finding the area of the shaded region under the graph in Figure 13(a) would 
yield 02t  which could be generalized to the equation of the line ( ( ) 2v t t= ) in Figure 

13(b), and finding the area under the shaded region under the graph in Figure 13(b) 

would give 2
0 0 0

1 2
2

t t t´ ´ =  which could be generalized to the equation of the line in 

Figure 13(c) 
 

  
(a) (b) 

 
(c) 

Figure 13 Graph showing how to derive the general equations of the lines 
 

The students were asked to sketch the acceleration-time graph, to find the 
area under the graph as shown in Figure 14, and to plot the area, which was in fact 
the velocity, on another graph paper as shown in Figure 15. Then, finding the area 
under the graph in Figure 16 would give the distance, whose graph is shown in Figure 
17.  
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Figure 14 Acceleration-time graph. Figure 15 Velocity-time graph. 

 

  
Figure 16 Velocity-time graph showing 
area under the line. 

Figure 17 Distance-time graph. 

 
Finding the derivatives of the distance-time graph in Figure 17 would give 

back the velocity-time graph in Figure 15 and finding the derivative of the velocity-
time graph would give the acceleration-time graph as shown in Figure 16. Then, 
students could use the algebraic method of integration to confirm the findings of 
the velocity-time and distance-time graphs from the graphical method and the same 
was true for the reverse process of differentiation. It should be noted that the non-
linearity of the distance-time graph could also be used to emphasize the 
instantaneous nature of a derivative, both graphically and algebraically. 
 
Results 
1. Students’ performance 

A paired sample t-test showed that the average post-test score was 
significantly greater than the average pre-test score (see table 1). After the 
intervention, there was significant improvement in students’ performance. The 
mean score in the pre-test was extremely low as many students found the questions 
difficult, which indicated that students had no conceptual understanding in regard 
to differentiation and integration in general and to the relationship between 
differentiation and integration in particular. Some of the students scored much 
higher in the post-test despite the fact that the intervention lasted for only one 
hour. 
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2. Students’ attitude towards the learning unit 

The questionnaire was administered to 65 students for 30 minutes after the 
post-test to address the second research question: What is the students’ attitude 
towards the learning unit? The questionnaire consisted of twelve closed-ended 
Likert-scale questionnaire and one open-ended (1) suggestions and comments 
regarding the activities in the learning units. (see Table 2) 

The students’ responses to each Likert-type item were analyzed by the 
frequency and mean of the students’ responses to determine the students’ attitudes 
towards the learning units as shown in Table.2 

 
Table 2 Students’ responses to the questionnaire. 

 Items 1 2 3 4 5 Mean SD 
1 I like the activities in learning 

calculus. 
1 5 8 28 23 4.03 

0.9
7 

2 I found the graphing activities in the 
calculus lessons interesting. 

1 5 11 35 13 3.83 
0.8
9 

3 It was too difficult to learn calculus 
by doing graphing activities. 

11 23 19 7 5 2.57 
1.1
3 

4 I find reading the textbook in detail 
is by itself sufficient for me to learn 
calculus. 

31 16 12 3 3 1.93 
1.1
3 

5 I learn calculus better by reflecting 
on these activities instead of only by 
book and memorizing. 

1 2 7 36 19 4.08 
0.8
1 

6 I look forward to solve more 
problems in calculus after the 
activities. 

6 11 17 19 12 3.31 
1.2
2 

7 I will understand better if other 
topics in mathematics are taught 
using activities like the ones used in 
this calculus lesson. 

2 7 14 26 16 3.72 
1.0
5 

8 The time was too short for the 
lesson. 

4 4 13 26 18 3.77 
1.1
1 

9 The calculus lessons need more 
exercises until I understand and 
become fluent. 

0 3 5 26 31 4.31 
0.8
1 

10 Mathematics teacher teaching 
calculus is enthusiastic in teaching 
calculus. 

0 2 24 32 7 3.68 
0.7
1 

Table 1 Paired sample t-test of pre-test and post-test result 
Test Mean Standard deviation t Sig. (2-tailed) 

Pre-test 4.36 3.09 16.83 0.00 
Post-test 13.50 3.27 
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 Items 1 2 3 4 5 Mean SD 
11 Mathematics teacher teaching 

calculus is encouraging and 
approachable during the lessons. 

0 6 17 34 8 3.68 
0.8
1 

12 Mathematics teacher teaching 
calculus taught the lessons too fast 
and I could not follow the 
instruction. 

17 18 15 11 4 2.49 
1.2
3 

 
In the closed-ended Likert-scale questionnaire, 51 out of 65 students liked 

the activities in the calculus lessons and 48 students found the activities in the 
learning units interesting and enriching. Thirty-four students found that it was not 
very difficult to learn calculus by doing the activities and 47 students found that 
reading the textbook in detail was not sufficient for them to learn calculus. Fifty-
five students responded that they learned calculus better by reflecting on the 
activities instead of only by reading books and memorizing, and 31 students looked 
forward to solve more problems in calculus after the activities. The majority of the 
students preferred to learn other topics in mathematics using activities like the ones 
used in the calculus lessons. Forty-four students found that the time was too short 
for the lessons in calculus and 57 students needed more exercises in the lessons. 

The majority of the students felt that the time was too short for the lessons. 
The problem of time limitation was not under our control. We had to follow the 
mathematics curriculum issued by Department of Curriculum and Research 
Development, which specified in detail how long each topic should be taught. 
However, the majority of the students found that the instructor was enthusiastic in 
teaching calculus and encouraged the students in the learning process. 
 
Discussion and Conclusion 

In introductory calculus courses, a lot of attention is paid to how to do 
the calculations and manipulations of formulas instead of why and how they work. 
Students are usually taught calculus by means of what Ryan (1992) described as ‘the 
rush to rule’ where the meaning is ignored and students operate on a purely 
mechanical level, pushing symbols and notations on paper. This is the main problem 
that students face in conceptual understanding of calculus. Calculus originated from 
the study of motion, which is realistic in nature with rich history and experiences 
common to all human beings. Students are hardly taught calculus using graphs or 
realistic or experimentally real situations and visualization tools. Although, there 
have been numerous studies done to teach the concepts of the fundamentals of 
calculus but there has been no concrete study done to improve the teaching of the 
relationship between differentiation and integration. Differentiation and 
integration are taught separately mostly using an algebraic approach, which makes 
it difficult to visualize the relationship between differentiation and integration. 
Students just spell out the relationship by following what is written in textbooks—
“Integration is the inverse process of differentiation”—and cannot explain how and 
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why as it is difficult to visualize the relationship seeing only algebraic symbols and 
notations. 

The pre-test result showed that the students often lacked certain conceptual 
understanding in differentiation and integration from traditional mathematics 
teaching. The students learnt calculus without actually understanding 
differentiation and integration as well as their relationship. The concepts of 
differentiation and integration were traditionally taught by focusing only on 
algebraic methods in an introductory calculus course at the higher secondary level. 
The students saw calculus as a series of process associated with algorithms and could 
not apply the concepts in the contextual situations. This agrees with Tall’s (1992) 
findings that students instead of having conceptual view of the symbols and 
notations in differentiation and integration, they focus only on a process-oriented 
view. The students encountered difficulty in relating the functional notations of 
differentiation and integration to the context of motion. 

The average score of the post-test was significantly higher than that of the 
pre-test, indicating that the developed learning unit could enhance the learning 
achievement of the students. The hands-on graphing activities helped the students 
think logically, develop their own reasoning skills, and ultimately invent their own 
concepts of the relationship between differentiation and integration. Sokolowski et 
al. (2011) and Orhun (2012) also employed graphing activities in contextual settings 
to enhance students’ understanding of calculus. The reliability of the posttest was 
rather low due to the difficulty in learning calculus and to the open-endedness of 
the questions. 

The students found the activities interesting and enriching probably because 
they took active roles in the lesson and felt motivated to learn calculus, hence 
leading to better performance. To really understand the relationship between 
differentiation and integration, students obviously need to understand both 
differentiation and integration, which are themselves based on more fundamental 
concepts like limit and continuity and discontinuity of a function. To understand 
these concepts, the lessons must focus on context-based activities rather than on 
algebraic methods (Tall, 1992). Students usually learn and retain better when they 
are actively involved in the lessons and the concepts can be visualized. The coverage 
of the fundamentals of calculus is necessary before the learning of the relationship 
between differentiation and integration can take place. Such a coverage will require 
a much longer intervention duration. It is hoped that a coherent lesson on calculus 
based on contextual activities will be developed. 

Learning by doing is an unreplaceable approach consistent with the 
constructivist theory of learning. As said in Chinese proverb “Tell me and I will 
forget. Show me and I may remember. Involve me and I will understand.” When 
students are physically and mentally involved in the activities, they get the real feel 
of what they are doing which helps them retain what they have learned. In this 
study, the activities are designed to help students understand the calculus concepts 
better by involving physically in the contextual graphing activities. 
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