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ABSTRACT 
In this paper we examine the history of the studying the dynamic compatibility 
conditions for gas-dynamic discontinuities, which determine the ratio between 
values of the gas-dynamic variables before the discontinuity and right behind him. 
The concepts of a shock wave, shock and the shock polar are introduced. The 
formation of ideas about the shock waves as a narrow region with abrupt changes 
in gas-dynamic parameters is shown with a staged scientific studies as an example. 
The relationship between the physical nature of gas-dynamic discontinuities and 
the appearance of singularities in solutions of the Euler equations for an ideal gas is 
shown. Burgers equation, which allows to simulate the shock waves is discussed. 
The article can serve as a brief introduction to the theory of gasdynamic 
discontinuities. It proposes the modern idea of gasdynamic discontinuities as the 
features arising in the solution of hyperbolic partial differential equations. 
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Introduction 

Shock waves model ( )D  is a surface of first degree mathematical discontinuity, 

during the transition through which the gas-dynamic variables are 

discontinuous   ˆ 0f f f   . It is traditional to separate the rarefaction waves 

rR (non-stationary simple isentropic Riemann wave) and r  (stationary centered 

Prandtl-Meyer wave) in which the ratio of static pressures ˆ / 1rJ p p   and 

wave compaction (compression) 
cR , c  and D  (shock wave), where 1cJ  . 

Ratios between variables f̂  and f  on opposite sides of gas-dynamic 

discontinuities are called dynamic compatibility conditions (DCC) (Uskov, 1980). 

DCC at stationary discontinuities is a balance of specific flows of (Uskov, 1983)  
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- substances 

  ˆ ˆ 0n n n         (1) 

- normal 

2 0np         (2) 

- and tangential components of the momentum 

  0n        (3) 

- energy 

 0 0nh       (4) 

where n  and   are projections of the velocity vector on the plane of 

discontinuity. DCC in such form weren’t created at instant. Differential 

equations for density   and velocity potential  , describing the one-

dimensional non-stationary motion of inviscid perfect isothermal gas were first 

introduced in 1788 in the book of J.L. Lagrange (1788), the formula are given as 

in original: 

2

2 1
ln 0

2
a

D t x

  
   
  

  
;    (5) 

2

2
0

t x xx

   
  

  

   
 .     (6) 

Here a is a sonic speed, D – density of initially unperturbed medium. For 

connection between the pressure, density and sonic speed, Lagrange used a 

ratio, previously proposed by Newton: 

2p a  .     (7) 

Literature review 

The derivative 
x






 is the gas velocity. In 1808, S.D. Poisson (1808) obtained the 

expression for it in the form of a plane wave:  

F x t a
x x

    
    

   

 
,     (8) 

where F - an arbitrary function determined by the initial and/or boundary 

conditions. 

In 1848, G.G. Stokes drew attention to the fact that the solutions of these 

equations stay continuous only for a limited period of time. It's interesting that 

the problem of studying the motion of an ideal gas containing discontinuities 

was considered in exactly this form in the late 20th century by the scientific 

school of Soviet mathematician V.I. Arnold (1988). Equation (7) describes the 

velocity field of particles freely moving in a straight line. Law of particle free 

motion is given by x = φ (t) = x0 + ut, where u is the velocity of the particle. The 

function φ satisfies the Newton equation. By definition, dφ / dt = u (t, φ). 

Differentiating the last relation in t, we acquire the equation, which received the 

name “Euler equation” 
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0
u u

u
x t

 
 

 
.     (9) 

Thus, the description of the motion using the Euler equations for the field of 

gas-dynamic variables and using Newton's equations for particles are 

equivalent. It is known that quasi-linear differential equations in partial 

derivatives are solved by building characteristics. Characteristics of the Euler 

equations are equivalent to Newton's law for a moving particle (Arnold, 1992) 

and thus the problem of wave propagation can be solved by building 

characteristics, along which the material particles move. Figure 1 shows how the 

Euler equation is solved with characteristics. 

 
 

Figure 1. The solution of the Euler equation with characteristics 

On the plane y-x the initial function y = u0(x)t = 0 is given. Characteristic 

equations are t '= 1, y' = 0, x'= y. If the horizontal lines are drawn from this 

curve, the particles along each of them will move with their constant velocity. 

Then at some point of time t = t1, t2 ... tn form of the velocity distribution u(x) 

will change (Figure 2). 

 
Figure 2. The appearance of ambiguity in the solution 

At some point in time (t2 at Figure 2), the mapping u(x) ceases to be the 

graph of the function, i.e. there are the values of x, which corresponds to more 

than one u value. In this area, the physical condition of the particles interaction 

absence means they pass through each other, which is unphysically. It is 

necessary to introduce some model of their interaction. For example, the model 

of the universe formation, proposed by Ya.B. Zeldovich (1970) takes into account 

the expansion of the universe and the gravitational interaction. Adding such 

conditions creates the features in solution, i.e. areas where the concentration of 

particles (galaxies for Zeldovich) is maximal. Such areas (set of critical values) 

are called caustics (Figure 3). 
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Figure 3. The caustic of a wave 

Once established, the caustic can transform, decompose forming new 

features, but cannot disappear. This model describes the formation of a non-

uniform (cellular) structure of the universe from the original random density 

fluctuations of matter and energy. In our example of the ideal gas supersonic 

flow it is required to introduce the model of inelastic particles collision. Then, in 

the location of this collision a shock wave - the discontinuity of particle motion 

parameters will appear (Figure - 1 right). The discontinuities appear in the 

solution because Euler field equation ceases to uniquely describe the 

distribution of gas-dynamic variables. In the work, mentioned above, Stockes 

firstly introduced the concept of discontinuity in the area of continuous medium 

and received two conditions for density   and gas velocity u  on the sides of the 

discontinuity resulting from the laws of conservation of mass and momentum: 

1 1 2 2 1 2( )u u V      ;    (10) 

2 2 2

1 1 2 2 1 1 2 2 1 2( ) ( ) ( )u u V u u a          .  (11) 

Here V  is the discontinuity propagation speed, the index "2" indicates the 

parameters behind it, the index "1" - the parameters before it (Figure - 5). 

 

 
Figure 4. The gas-dynamic discontinuity 

Such discontinuities in which the gas-dynamic parameters change abruptly 

were later called strong. G. G. Stokes said that the abrupt change of parameters 

on the discontinuities is the result of neglecting the viscosity and thermal 

conductivity of the medium. 
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The simplest model of particles inelastic collisions is the Burgers equation 

(Karman & Burgers, 1939), which describes a gas-dynamic field in smooth 

regions of space, and the interaction of the particles within the gas shock wave 

2

2

u u u
u

t x x

  
 

  
 .    (12) 

At low viscosity of ε it approaches the Euler equation in the areas of smooth 

change of parameters (Figure - 5). Right and left of the shock wave the flow is 

described by the Euler equations and inside the shock wave (gas-dynamic 

discontinuity) - by an equation similar to the equation of heat conduction. 

  
Figure 5. Replacing the Euler equations (left) with Burgers equation (right) 

S. Earnshaw (1858, 1860) considered one-dimensional unsteady gas flows, 

both isothermal and adiabatic. He obtained solutions in the form of a plane 

wave, which over time can create areas of abrupt parameters change, which he, 

just like Stokes, called shocks.  The speed of disturbances propagation - the 

sonic speed plays an important role in the analysis of gas-dynamic 

discontinuities and supersonic gas motions. Earnshaw introduces the following 

relation between the pressure, density and adiabatic sonic speed: 

a k   , /p      (13) 

where k  - ratio between specific heat capacity of gas at constant pressure to 

specific heat capacity at constant volume. Today   is considered a standard 

notation. 

The main purpose of the article is to show the formation of the basic 

concepts of shock waves theory, with an example of the most significant 

scientific works (Riemann, 1860; Rankine, 1869, 1870). The history of studying 

dynamic compatibility conditions for gas-dynamic discontinuities, which 

determines the ratio between the values of gas-dynamic variables before the 

discontinuity and right behind it, is reviewed in the article.  

Methods 

The paper is used analysis of leading scientists from both domestic and foreign 

schools, who were engaged in issues of this study. The paper is widely used 

comparative analysis. 

Results 

Conditions, formulated by Stokes (10-11) were not enough to determine the two 

unknown parameters of the flow behind the discontinuity and the propagation 

speed of discontinuity itself. The first attempt to close the equations system 

written by Stokes was published in 1860 in the work of B. Riemann (1860). In 
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this paper, the author suggests that when going through the normal 

discontinuity the entropy is constant, and he supplemented the system (10-11) 

with third equation. In the same time Riemann could not explain the energy 

change when passing through the discontinuity arising under this assumption. 

Independent of the Riemann Rankin in 1869-1870 years (Rankine, 1867, 

1870) obtained the third equation, supplementing the system (10-11), in a 

different form. He discovered the relationship between the parameters on both 

sides of the shock wave considering the ever-changing state of medium within it, 

in which the equilibrium heat exchange occurs. The total amount of the heat 

obtained by the medium must be zero. Using the ratio of equilibrium 

thermodynamics and the Stokes formula, Rankin obtained the expression for 

velocity of the normal discontinuity propagation in a stationary medium a (not 

to be confused with the sound velocity a) and flow velocity u in terms of the 

known pressure in front of the discontinuity P and behind it p, as well as in 

terms of known the specific volume S before discontinuity for a perfect gas 

(notation as in the original): 

 2 ( 1) ( 1)
2 2

p P
a S

 
    

 
  .   (14) 

The most important Rankin’s result is the statement that normal 

discontinuities always propagates at supersonic speeds relatively to motionless 

medium, while relatively to the medium behind the discontinuity their speed of 

propagation is always subsonic. A method for producing a DCC at the shock 

wave applied by Rankin leads to the fulfillment of all conservation laws, but it 

only takes into account the thermal conductivity of the gas, neglecting its 

viscosity, which is not really reasonable because viscosity and thermal 

conductivity are interrelated. Hugoniot obtained the conditions on the normal 

discontinuity more strictly than Rankin, as a consequence of the law of energy 

conservation, bypassing the consideration of gas state "inside" of the shock wave 

(Hugoniot, 1889). This condition coincides with the one previously obtained by 

Rankin, but for obtaining it Hugoniot didn’t require any additional assumptions. 

Today DDC on stationary discontinuities represent balances of specific 

flows of (Uskov, 1983): 

- substances 

  ˆ ˆ 0n n n         (15) 

- normal 

2 0np         (16) 

- And tangential components of the momentum 

  0n        (17) 

- Energy component 

 0 0nh       (18) 

Where n  and   are projection of the velocity vector on discontinuity plane. 

As follows from (15-18) there are 2 types of discontinuities: tangential ( , 

where 0n  ) and normal (shock wave) through which the gas flows. From (16) it 

is seen that on both sides of   the static pressures are the same, and from (17) - 
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that the tangential component may be different i.e.   are the slip lines. The 

density, temperature, total enthalpy and entropies of the flows, separated by 

tangential discontinuities can be different. 

The Laplass-Poisson adiabat (isentrope) is easily obtainable from the given 

system. 

1JE        (19) 

and so is Rankine-Hugoniot (shock adiabat) 

1 J
E

J









     (20) 

where ( 1) / ( 1)     ,   is the adiabatic index, ˆ/E    , ˆ /J p p  is the 

intensity of the shock-wave compression (J> 1) or rarefaction (J <1) process. 

Isentropic curve (19) is valid for simple compression (J> 1) and waves (J <1) 

waves, stationary (Prandtl-Meyer waves) or travelling (Riemann waves) ones. 

Shock adiabat (20) appeared in the simulation of shocks and shock waves by the 

surfaces of discontinuity. Mach numbers on opposite sides of a wave or 

discontinuity related by the formula 

ˆ
EJ




      (21) 

where 2(1 ( 1)M     and  2ˆˆ 1 1M    . Depending on which formula 

for adiabatic is used (the shock adiabatic formula (16) or isentropic one (15)), the 

formula (17) makes it possible to determine the Mach number of the 

rarefaction/compression waves   and shock waves  . 

In the direct shock wave the ratios f̂  and f  are set from the system (11-

14), in which velocity D is speed of the shock wave, moving along the initial 

stream, which have the velocity U (Uskov, 2000) 

n U D a        (22) 

which leads the DDC system to a form of DDC - D: 

   pu D  ;     (23) 

 2p u     ;  D u D  ;    (24) 

   0h u D .     (25) 

When D = 0, the system (22 - 25) describes the DDC on the direct shock 

wave. (22) shows that for D = U ( 0n  ) value Û U , i.e.   0u   and there is a 

surface of variables discontinuity through which the gas does not flow. This 

discontinuity is called a contact ( K ). It moves at gas velocity Û U D   and 

divides the flows shares with different thermodynamic variables (except for 

static pressures P̂ P as on a tangential discontinuity). By the equations of 

Clapeyron 

( ˆ ˆˆp RT RT   )     (26) 

for a perfect gas ( ˆR R ) at K  these equalities are true: 
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 ˆˆT T   ,
ˆ

ˆˆ

M a T

M a T
  .    (27) 

Thus, the contact discontinuity is a special surface that separates the gases 

with different thermodynamic parameters (except the pressure) (Uskov & 

Mostovykh, 2010). 

From DCC-D (25) it is also clear that, in contrast to shock, on the shock 

waves exists the discontinuity of total enthalpy as well. The straight shocks 

themselves are special cases of the standing shock waves (D = 0) in a supersonic 

gas flow. 

Shock polar, heart-shaped curves 

A detailed analysis of the gas-dynamic waves (isentropic expansion and 

compression waves) and oblique shocks arising in the plane, stationary, inviscid, 

non-conducting perfect gas, was published in 1908 by T. Meyer. In the same 

paper the parameters of oblique shock wave, formed during the flow around 

plane acute angle are defined. This is an important task for the practice, because 

the flow around inclined barriers is one of the most common causes of a shock 

wave in the gas stream. Starting with this work of Meyer, the intensity of a 

shock wave (the ratio of static pressures 2 1/J p p  on its sides) has been 

considered the main parameter, characterizing. In their modern form DCC on 

shock waves were formulated by V. N. Uskov in 1980. Later they were developed 

for the case of one-dimensional traveling waves and oblique shock waves (Uskov, 

Tao & Omelchenko, 2002). In these works, the convenient formulas for 

calculating the parameters of oblique shocks and oblique shock waves are given. 

In particular, for the intensity of oblique shocks ( ). 

2

2 2 2(1 ) sin (1 ) sinJ M
a

 
       

 



        (28) 

Here σ - the angle of a velocity vector to the plane of a shock, which can 

range in the limits 90    , where sin 1 / M  is a Mach angle at which the 

shock degenerates into a Mach line ( 1J  ).Values of J are as well determined 

by other gas-dynamic variables behind the discontinuities: the density using the 

shock adiabatic, temperature ( ˆ /T T EJ ), sonic speed ( ˆ /a a EJ ). Angle of 

flow rotation at the shocks is also determined by the intensities J  and mJ  

(1 )( 1)

(1 )( 1)m

J
tg ctg

J J

 


   


 

 
.     (29) 

Here 2 ( 1) / ( ) ( ) / ( )m m mctg J J E E E        . In the coordinates 

 ln ,J    the formula (28.29) describes a family of curves (Figure 6), 

nicknamed for their distinctive appearance the heart-shaped curves. Their other 

name is the shock polar. Studies of heart-shaped curves, conducted by V.N. 

Uskov allowed determining their important properties: the presence of the 

envelope, of the limiting angles of flow deflection at the discontinuities, of the 

points corresponding to discontinuities, the Mach numbers behind which are 

equal to one. It can be noted that the presence of the envelope is important in 

problems of supersonic aerodynamics (Uskov & Chernyshov, 2014) as the 
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pressure corresponds to extrema on the sides of the body of flying a 

predetermined attack angle, but with a variable velocity. 

 

 
Figure 6. Shock polars 

Discussion 

The results for the optimal (in the sense of reaching the extremum of some 

parameter) one-dimensional traveling (Uskov, 2000) and two-dimensional 

oblique shock waves (Uskov & Mostovykh, 2006) are obtained. Relations 

describing the heart-shaped curves have long been known, but their use is still 

often causes difficulties because of the certain computing specifics and the need 

for selection from a variety of formal roots. The first quantitative experimental 

results that could be compared with the theory were obtained by P. Vieille 

(1899). He measured the propagation velocity of the shock wave in the tube after 

the break of membrane (the prototype of the modern shock tube). A. Stodola 

(1903)  studied the flow in the nozzle on the mode with initial shock wave inside 

it. These studies provide experimental confirmation for the theory of Stokes, 

Riemann, Rankine and Hugoniot for a single discontinuity. But in the shock-

wave processes may involve not only single waves and discontinuities, but also 

shock-wave structures (SWS).  

Conclusion 

This survey provides links to the most important and landmark scientific papers 

devoted to finding relations on shock, shock waves, simple (isentropic) 
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compression and rarefaction waves. The concept of a gas-dynamic discontinuity 

as the surface on which the gas-dynamic variables are discontinuous is 

introduced. The connection with geometric theory of equations in partial 

differentials is shown. The concept of the shock polar is introduced, the most 

important works, which studied the properties of shock polars are provided. This 

article can serve as a brief introduction to the theory of gas-dynamic 

discontinuities. It sets out the modern idea of a gas-dynamic discontinuity as the 

features arising in the solution of hyperbolic partial differential equations. 
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