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 To learn mathematics, historically students had no choice but to memorize fundamental facts and apply 

memorized algorithms. Since 1995 in the US, all states have adopted standards to govern K-12 mathematics 

instruction, and in most, standards have de-emphasized memorization and emphasized reasoning based on 

concepts. This change assumed the brain could reason in mathematics without relying on memorized knowledge. 
Scientists who study the brain have recently verified this assumption was mistaken. Due to stringent limitations 

in working memory (where the brain solves problems), mathematical problem-solving of any complexity requires 

applying well-memorized facts and procedures. A decade after the implementation of standards in most states, 

US young adults ranked last in testing in mathematics among 22 nations. Changes are proposed to state K-12 

standards, which recent scientific research suggests would substantially improve student mathematics 

achievement. 

Keywords: cognitive science, K-12 instruction, US K-12 mathematics standards, working memory limits, grade 

1-4 instruction 
 

INTRODUCTION 

Mathematics is the foundation for the skills of a nation’s workforce in many areas, but especially in the sciences, engineering, 

and technology. For the mathematics skills of US students, test scores present a grim picture. 

OECD Testing 

On a 2012 international test of numeracy skills by Organization for Economic Co-operation and Development (OECD) for 

citizens aged 16-24 and 16-34, the US ranked last among 22 developed nations (Goodman et al., 2015; OECD, 2012) (Figure 1).  

NAEP LTT 

Since the 1970s, the National Assessment of Educational Progress Long-Term Trend test (NAEP LTT) has been given at multi-

year intervals to large samples of students at ages 9 and 13 in all US states. The most recent LTT administrations were in 2012 and 

January 2020 (prior to US COVID-19). For age 9 students, comparing 2012 to 2020, math scores declined slightly. For 13-year-olds, 

overall scores declined by a statistically significant amount (Figure 2). Except for the top 10% in 2012 and 2020, age 13 scores 

declined. The largest declines were seen with lower achieving students and black and Hispanic students (National Center for 

Education Statistics [NCES], 2021). A news headline (Mahnken, 2021) summarized: 

“Long-term NAEP scores for 13-year-olds drop for first time since testing began in 1970s–’A matter for national concern,’ 

experts say.”  

State Standards 

These test results followed a period of changes in mathematics teaching in conjunction with the adoption of K-12 state 

standards. In 1989, state governors endorsed ‘K-12 standards for instruction’ to be adopted by each state, which local school 

districts would be required to follow. The same year, NCTM, an organization of education school professors, K-12 curriculum 

specialists, and teachers of K-12 mathematics, issued recommendations on the content of state standards.  
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The NCTM’s 1989 standards advocated calculator use “at all grade levels” and “increased attention” to “reasoning” to solve 

problems. “Decreased attention” was recommended for “memorizing rules and algorithms” and “rote practice” (NCTM, 1989, p. 

20-21, 70-71). The NCTM standards made an unstated and untested assumption that when solving problems, the student brain 

could apply non-memorized, looked up, and mentally or ‘calculator calculated’ facts as easily as it applied facts that prior to the 

1980’s students had been required to memorize. 

These changes impacted instruction. Between 1992 and 1997, over 45 states adopted and gradually implemented K-12 

standards (Raimi & Braden, 1998). The federal No Child Left Behind Act of 2001 required all states to both adopt math standards 

and test on them annually in grades 3-8. A 2003 report by Loveless (2003) found “more than 40 states model their state math 

standards on those of the NCTM” (p. 175). By 2005, over 30 states called for calculator use in 3rd grade state testing (Klein et al., 

2005).  

 

Figure 1. Average scores in numeracy for age 16-34 (millennials) & age 16-24 by participating country/region: 2012 (Goodman et 

al., 2015, p. 12) 

 

Figure 2. US scores by percentile, 1978 to 2020, NAEP LTT (Mahnken, 2021; NCES, 2021). 
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Over 40 states in 2010-11 adopted and in 2014 implemented the ‘Common Core math standards’ (CCMS). Since 2014, a number 

of states have revised parts of their standards, but in most, standards remain quite similar to the 2010 CCMS (Norton et al., 2017). 

By the time of the 2020 NAEP LTT testing, the Common Core and similar standards had been required to be used in the classrooms 

of most states for more than five years. 

Cognitive Science 

During the period standards were being adopted, with assistance from new computerized technologies, scientists who study 

the brain were conducting research on how the brain solves mathematics problems.  

Cognitive science is the study of how the human brain thinks, learns, and solves problems. Disciplines contributing to cognitive 

science include but are not limited to neuroscience, evolutionary biology, and cognitive and educational psychology. Prior to 1995, 

what could be said with scientific certainty about how the brain works was limited, but since then, with help from new 

technologies, scientists have been able to measure many of the brain’s observable characteristics (Delazer et al., 2004; Dhond et 

al., 2003). In 2017, neuroscientist Seidenberg (2017) summarized, “although we are far from understanding how the brain works, 

many of its fundamental properties are known” (p. 138).  

This article will review findings of cognitive research that address how the brain learns mathematics and how this relates to 

current teaching practices and mathematics standards. Except where noted, citations are either from research by cognitive 

scientists or from summaries of research written for educators by cognitive experts that limit technical terminology but include 

extensive references to peer-reviewed studies. A sample of current math standards in US states are also examined for their 

alignment with best practices identified by cognitive research.  

TYPES OF LEARNING 

We, as individuals and as a species, must solve problems to survive. As a result of natural selection, programmed into our DNA 

is the ability to automatically solve problems such as breathing and walking upright. In addition to these universal abilities, to 

enable us to adapt to a wide variety of environments, customized knowledge and skills based on our experience can be learned; 

that is, stored in our long-term memory (LTM) (Geary, 2002; Dehaene, 2020, p. 25).  

Primary Learning 

Over thousands of generations, human learning in some topics has evolved to occur without conscious effort. During ‘window 

periods of development’ (also known as ‘sensitive periods’), for limited topics, the brain instinctively and automatically stores in 

LTM new knowledge gained from experience (Geary, 2002). As one example, creating speech is a task of enormous cognitive 

complexity, yet simply by exposure, virtually all human children become fluent in speaking the language they hear spoken around 

them (Pinker, 2007).  

For additional limited topics including facial recognition, conventions of familial and social relationships (evolutionary 

psychologists term this ‘folk psychology’), and a practical ‘folk physics’ and ‘folk biology’ of how things work, the LTM of children 

almost effortlessly fills with extensive knowledge. Learning that occurs automatically is termed primary learning (Geary & Berch, 

2016).  

Secondary Learning 

To focus on survival, the brain evolved to put less focus on other learning. As one example, skill in reading, writing, and 

mathematics (also known as cultural artifacts) played no role in the long-term survival of our species. As a result, in those topics, 

learning is not automatic: It requires instruction, effort at recall (effortful learning), and practice. Such learning is termed 

secondary. The central purpose of schools is to structure secondary learning: to teach students how to solve problems arising in 

modern societies they do not learn to solve automatically (Geary, 2002; Sweller, 2008).  

For a primary topic, after the window period closes, learning requires significantly more effort (Dehaene, 2020, p. 103-108). As 

one example, after about age 17, most of us lose the ability to learn to automatically apply the grammatical rules of a second 

language based on exposure alone (Hartshorne et al., 2018). 

In disciplines such as history, economics, and law, domain knowledge is a mix of facts (such as names and dates) that are 

secondary (require effort to learn) with knowledge of human behavior that is primary (learned automatically as ‘folk psychology’). 

In mathematics, however, minimal knowledge enters LTM without effort to make it recallable (Sweller, 2008). 

PROBLEM CATEGORIES 

Among scientists who study secondary learning, a ‘problem’ is broadly defined as “cognitive work that involves a moderate 

challenge” (Willingham, 2009a, p. 9). A math problem can range from “what does a + sign mean?” to complex calculus. Knowledge, 

problems, and problem-solvers separate into categories. 

Verbatim vs. Gist 

Verbatim (precise) and gist (summary) learning differ, and the brain treats them differently. Gist learning stores the basic 

concept of a larger quantity of knowledge. As an example, when listening to speech, to manage comprehension, the brain tends 
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to store a summary rather than “word for word recall” of what it hears. In contrast, in mathematics most facts that must be stored 

are verbatim (6×7 is not approximately 40, but rather 42). In the brain, verbatim facts are “encoded separately” from gist memories, 

and a precise fact “often requires more effort to learn than the gist … Verbatim recall … requires a great deal of time, effort, and 

practice” (Geary et al., 2008, p. 4-9).  

Well- vs. Ill-Structured 

Mathematics problems can be well-structured or ill-structured. Well-structured problems have a specific goal, initial state, 

constraints, and precise answers that can be found by applying structured procedures (algorithms). All other types of problems 

can be categorized as ill-structured, including those for which correct answers are debatable or not known (Jonassen, 1997; King 

& Kitchener, 1994). In pre-graduate-level math courses, problems assigned to students are nearly always well-structured.  

Expert vs. Student 

Problem solvers can be divided into experts (including teachers) and novices (students). After years of study of a secondary 

topic, the LTM of experts contains a vast storehouse of well-organized knowledge. This enables experts to solve problems in their 

field by generalized reasoning strategies in ways students cannot (de Groot, 1946/2014; Kirschner & Hendrick, 2020, p. 4-12; 

Willingham, 2009c, p. 98).  

In primary topics including social norms, folk biology and folk physics, adults are able to solve some problems using 

generalized reasoning (often some form of trial-and-error or weak problem-solving approaches) because our LTM has filled 

automatically with some topic knowledge (Anderson, 1987). But for complex problems in secondary topics including mathematics, 

non-experts (students) cannot solve by reasoning in the way experts can (Sweller et al., 2010). 

For the remainder of this article, except where noted, we limit the scope to how the brain of students learns to use mathematics 

as a tool to solve well-structured problems. 

WORKING MEMORY LIMITS AND STRENGTHS 

Cognitive science explains how the brain solves problems based primarily on the interaction of three of the brain’s 

components: the attention filter, working memory (WM), and long-term memory (LTM) (Figure 3).  

Storing Information 

In working and long-term memory, elements of information are stored in networks of specialized cells called neurons. Each 

neuron can connect to other neurons and share information (Furst, 2020). Information is encoded in neurons in ways that allow it 

to be remembered: retrieved from LTM into WM and applied to solve problems (Figure 3) (Dehaene, 2020, p. 89-92; Trafton, 2017). 

To share stored information, a neuron fires, creating an electrical signal that can travel to connected neurons. Thousands of 

fibers carry incoming signals to and outgoing signals from the nucleus of each neuron. Synapses are narrow gaps between the 

fibers from two neurons. When a fired outgoing signal reaches a synapse, molecules termed neurotransmitters are released, cross 

the gap, and may cause the adjacent neuron to fire. Together, these nuclei, fibers, and synapses are termed the brain’s wiring 

(Dehaene, 2020, p. 10). 

WM Overview 

WM has multiple functions. It is a temporary memory that can focus on the limited information we attend to and are conscious 

of at the moment, such as unique problem data. WM can be described as composed of slots that can briefly store chunks of encoded 

information (Luck & Vogel, 2013; Willingham, 2006).  

WM is where the brain solves problems. To solve a math problem, WM can use its stored problem-data to search LTM for 

matching data. By a process termed cued recall, additional data connected to located matching data by wiring can be retrieved 

from LTM into WM. The retrieved relationships can then be used to process problem data, converting the data step-by-step to 

reach the problem goal (Gathercole & Alloway, 2004). During problem solving, processing in WM can be observed as “the vigorous 

firing of many neurons” primarily in the brain’s cortex (Dehaene, 2020, p. 90, 150). 

 

Figure 3. The (simplified) steps of information processing (adapted from Atkinson & Shiffrin, 1968) 
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WM is also where learning begins: New and known information processed at close to the same time in WM tends to become 

stored and connected in LTM (Clark et al., 2012; Dehaene, 2020, p. 160-161). WM is also a bottleneck during both problem solving 

and learning because storage in WM is very limited.  

WM Limits  

During problem solving, the slots of WM must hold the novel (new or problem specific) chunks of problem data. Cognitive 

science defines a chunk as a collection of encoded sensory (e.g., visual, sound) elements that have been stored and wired together 

in LTM and have meaning (Anderson, 1996; Dehaene, 2020, p. 6; Willingham, 2006). Novel data chunks that must be stored in WM 

slots include the problem goal, initial data/information, and answers found at middle-steps that must be looked up or mentally 

calculated rather than quickly recalled from LTM (Alloway, 2006; Luck & Vogel, 2013; Willingham, 2006). 

WM is limited in capacity by its number of slots. During problem solving, if the data are sounds or symbols such as letters, 

words, or numbers. WM capacity is an average of 2 to 3 slots at age 7, gradually increasing to an adult average of four slots at age 

14. WM capacity varies among individuals but is 3 to 5 slots for most adults. It remains essentially constant through adulthood 

until old age, when it has been found to decrease (Cowan, 2001, 2010; Gathercole, 1999, 2011). 

WM is also limited in duration. Repeatedly reciting information orally or mentally can keep it stored in WM, but during other 

processing, including problem solving, each slot in WM can retain a chunk of novel data for only 30 seconds or less (Peterson & 

Peterson, 1959).  

WM Strengths 

If there were no way around WM limits, with only 3 to 5 limited-duration slots in WM, we could solve only very simple problems. 

But WM also has strengths. Studies have found a virtually unlimited number of facts and procedures can be applied to solving 

problems–if they are quickly recallable from an individual’s LTM (Ericsson & Kintsch, 1995; Geary et al., 2008). Kirschner et al. (2006) 

summarize that for facts and procedures that have not previously been well-memorized, WM is “very limited in duration and in 

capacity,” but “when dealing with previously learned information stored in long-term memory, these limitations disappear” (p. 

77). 

WM Implications 

How does memorization circumvent WM limits? Try this brief experiment.  

Place a sheet of paper where you can write on it. Hold a pencil or pen.  

Now read silently three times in succession: 3.14159265 

Look away and write only the value 100 times larger. 

Then read silently three times in succession: 26494.1783 

Look away and write only the value 10 times larger. 

Which problem was easier? You have previously memorized all or part of the first number as one ‘chunk.’ Holding that chunk 

takes one WM slot. Holding each number not memorized and applying the processing instruction took additional slots, but 

needing limited slots, your processing likely reached an answer close to correct. 

The second problem required storage of a larger number of chunks of numerical data in WM slots, plus the slot or two for 

processing. The higher the number of slots needed, the more WM is likely to overload and lose stored information, leading to 

confusion and/or less success (Willingham, 2009c, p. 15). 

Your ability to solve math problems in a topic depends in large measure on the number and size of chunks you have thoroughly 

memorized about the topic. 

WM Summary 

Neuroscience and cognitive psychology explain learning using varied terminology, but all current models for problem solving 

include space in WM that is stringently limited for novel data with few recallable relationships but essentially unlimited for 

relationships quickly recallable from LTM.  

HOW THE BRAIN STORES LEARNING 

The limits and strengths of working memory are one important discovery of recent cognitive research. How information is 

stored in and recalled from LTM is another. Sweller et al. (2010) note LTM “is not used to store random, isolated facts but rather to 

store huge complexes of closely integrated information that results in problem-solving skill” (p. 1304). 

To learn is to change LTM in ways that either store and/or connect new information, or better connect and/or more strongly 

store previously stored information. The human brain has over 80 billion neurons. Each can be wired to about 10,000 other neurons 

via synaptic connections whose strength can vary (Dehaene, 2020, p. 10, 86-89). This structure gives human LTM an enormous 
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potential capacity, but knowledge must be stored gradually. As one example, between infancy and college graduation, US 

students on average learn the meaning of about 17,000 ‘root words’ at a rate of about 2-3 words per day (Biemiller, 2001).  

Firing and Wiring 

WM and LTM store sensory inputs, such as images and sounds, as encoded elements. For example, when first learning to 

recognize the symbol ‘5’, a child by attention moves the symbol into WM, and with instructional guidance processes the shape by 

noting its component lines and curves (Anderson & Neely, 1996; Dehaene, 2020, p. 6, 86; Furst, 2020). 

WM then uses each line and curve as a data cue to search LTM for a match (Dehaene, 2020, p. 90, 150; Ericsson & Kintsch, 1995). 

Because lines and curves are fundamentals stored early in LTM development, those WM cues find their match. LTM neurons storing 

the match are then said to activate: They fire (Furst, 2018, 2020). In neuroscience, a fundamental (but simplified) rule of learning 

is, ‘neurons that fire together, wire together’ (Hebb, 1949).  

During repeated processing in WM, the visual image of ‘5’ that becomes stored in LTM and its component elements in LTM fire 

at close to the same time, become wired together, and form a chunk of stored knowledge. With varied practice, different ways to 

represent ‘5’ in fonts and hand-written become wired into a larger chunk of ways to represent the symbol ‘5.’ 

Chunking 

With additional instruction and practice, a child stores and connects in LTM additional chunks of learning, including that ‘5’ is 

spelled ‘five’ (if in English), is a number not a letter, represents a count of ••••• objects, and the concept that a number ‘counts how 

many.’ 

After this larger chunk is wired into LTM (memorized), in a future problem, if ‘five’ or ‘5’ or ••••• objects enters WM, it serves as a 

cue to search LTM for its match. If found, both the match and chunks wired to the match tend to activate (fire). Chunks previously 

retrieved together most often tend to be most quickly and strongly activated and most likely to be recalled by WM to solve the 

problem (Dehaene, 2020, p. 88). WM treats LTM chunks activated as a part of the single stored WM-data chunk. As a result, activated 

LTM chunks do not require additional slots in WM and do not increase the risk of WM overload. 

More complex problem solving and learning follows similar steps. By the process of cued recall (or cued retrieval), data entering 

WM activates prior learning in LTM, which can be applied to solve the problem (Willingham, 2008). A chunk of problem data moved 

into a WM slot becomes a larger chunk, including many recallable relationships, if its match in LTM has many previously wired 

connections (Ericsson & Kintsch, 1995; Furst, 2020).  

How Learning Happens 

Neuroscience educator Efrat Furst (2018) writes that “processing in working memory is … information’s ‘entry ticket’” to LTM 

storage and retrieval. During problem solving, if a step is “perceived as successful” (Clark, 2010, p. 2), a record of any new data 

chunks plus other chunks activated in LTM is stored in what can be termed the brain’s ‘middle-term’ memory (located in the brain’s 

hippocampus) (Trafton, 2017). If similar problems are not solved again over several days, the initial ability to recall the new 

knowledge and its relationships to previously stored knowledge tend to be lost (Dehaene, 2020, p. 216; Willingham, 2015). 

But if chunks are repeatedly processed together over multiple days, a record of the processing tends to become consolidated: 

related chunks that fire at close to the same time wire to form larger chunks in LTM (Furst, 2020; Trafton, 2017). As problems of 

increasing complexity are solved, chunking gradually wires into LTM larger, more strongly wired, and better-organized conceptual 

frameworks for topics (each termed a schema, plural schemata) (Kalyuga et al., 2003).  

Using advanced microscopy, neuroscientists have imaged the growth of new connections among neurons in response to 

repeated successful problem solving. Imaging has also recorded the gradual decay of connections that have not been activated 

recently, which tends to result in forgetting. The brain’s ability to learn and forget is termed its plasticity (Dehaene, 2020, p., 87, 

137; Furst, 2019; Yang et al., 2014). 

WORKING AROUND WM LIMITS 

For a given topic, if LTM has many relevant chunks that can be activated by cues, substantial resources are available to solve 

problems. But what happens if the chunks a student has previously stored are few in number or limited in connections?  

Avoiding Overload 

At each step in problem-solving, if a needed relationship is not activated by a problem cue, it must be looked up and/or 

calculated. WM then needs to store in its slots both the data cue and the looked-up relationship. Unless the problem is very simple, 

the limited slots for data will tend to be already full, resulting in WM overload (Gathercole & Alloway, 2004; Willingham, 2004).  

Furst (2018) writes, “overload leads to information loss–either incoming information will not be processed, or an ‘in-process’ 

item will be dropped for a new one.” For example, in a multi-step problem, if solving 56/7=? is a required step and 56/7=8 has been 

memorized as a single chunk, one slot for the data and answer is needed. If a calculator or mental calculation is needed to answer, 

the 56 and seven and division operator require three WM slots and calculating then storing ‘8’ requires at least one more slot. If 

the available slots have already been filled by other problem data, WM likely overloads (Willingham, 2009b). 

When solving a problem, speed is also important. Using a calculator, mentally calculating, or searching the internet takes time. 

Because WM storage during processing is 30 or fewer seconds, a search or calculation tends to cause data being held in novel slots 
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to ‘time out’ and be lost from WM, leading to confusion. In contrast, if a relationship is quickly recallable, activation that decays 

can quickly be reactivated by the data cues (Geary et al., 2008; Kirschner et al., 2006).  

Automating Fundamentals 

Students learn more quickly when instructors teach the strategies necessary to work around WM limits. Cognitive scientist 

Daniel Willingham has been a leader in efforts to inform educators of findings of research on learning. Willingham (2004) writes 

that the “lack of space in working memory is a fundamental bottleneck of human cognition” but identifies three strategies found 

by science that circumvent WM limits: chunking (discussed above), automaticity, and algorithms.  

In mathematics, a 2008 report by cognitive experts Geary et al. (2008) advised educators: 

[T]here are several ways to improve the functional capacity of working memory. The most central of these is the 

achievement of automaticity, that is, the fast, implicit, and automatic retrieval of a fact or a procedure from long-term 

memory. (p. 4-5) 

Let us examine the components of this central finding of cognitive research. Achieving recall with automaticity is also termed 

automatization or automating recall. For a fact such as six times seven, automated recall means the fact is so well memorized that 

“the answer is not calculated but simply retrieved from memory” (Willingham, 2009b, p. 16). If recall has been automated, slots in 

WM are not needed for processing, so the calculation and answer do not cause overload.  

Automated recall of a procedure is retrieval of an algorithm: a sequence of steps, remembered as a single chunk, that 

successfully solves a certain type of problem.  

Geary et al. (2008) add:  

[I]n support of complex problem solving, arithmetic facts and fundamental algorithms should be thoroughly mastered, 

and indeed, over-learned, rather than merely learned to a moderate degree of proficiency. (p. 4-6) 

Overlearning is defined by cognitive science as “sustained practice, beyond the point of mastery” in recalling knowledge from 

LTM (Willingham, 2004).  

Together, these findings mean that to work around WM limits, students must thoroughly memorize facts and procedures used 

frequently. The good news is cognitive science has also identified strategies that help students overlearn both facts and algorithms 

efficiently and effectively. 

OVERLEARNING FACTS 

Mathematical facts include wired chunks that precisely state a relationship among smaller chunks of knowledge (e.g., 14-8=6), 

or definitions such as “a right triangle has one interior 90o angle,” or rules such as the Pythagorean theorem.  

Rehearsal 

Automating factual recall begins with rehearsal. Repeating new information orally, mentally, or in writing is termed 

maintenance rehearsal (Belmont & Butterfield, 1971). To speed learning, maintenance rehearsal should involve as many senses as 

possible. Hearing, seeing, saying, and writing both words and symbols help to multiply encode a new fact into LTM (Paivio, 2014). 

MacLeod and Bodner (2017) found, relative to silent reading, “saying, writing, or typing” items yields substantial benefits in cued 

recall. 

Elaborative rehearsal is thinking about meaning how new information is related to knowledge already retrievable. Elaborative 

rehearsal especially assists when facts are complex or likely to be encountered in specific contexts (Reder & Anderson, 1980). When 

learning math facts, elaborative rehearsal might involve manipulatives or number lines.  

For simple facts such as ‘8+6=14’, both types of rehearsal should be practiced, but to gain automated recall, maintenance 

rehearsal will be more efficient. 

Retrieval Practice 

Retrieval practice is effort to use one part of a relationship as a cue to recall other parts from LTM. Specific strategies include 

flashcards, cover/copy/compare, writing memorized algorithms (such as the quadratic formula or the mnemonic SohCahToa), or 

recalling sequences (2, 4, 8, 16, 32, …). To efficiently learn a significant number of unfamiliar verbatim facts, repeated retrieval 

practice is nearly always required (Carpenter & Agarwal, 2019; Powell, 2018). 

Rehearsal should be sufficiently practiced before retrieval. Flashcards can assist in both. To rehearse, read the question, flip, 

read the answer. To retrieve, read, try to recall, flip. In his book How We Learn, neuroscientist Dehaene (2020) explains, 

The more you test yourself, the better you remember … [A]ctive engagement followed by error feedback maximizes 

learning … Using flashcards, try to remember the answer (prediction) before checking … (error feedback). (p. 186) 

Retrieval practice applies the testing effect: a finding that both storage of information in and recall from LTM are improved 

when the learner practices retrieval. Cognitive studies have found recall is strengthened more by retrieval testing, including low 

stakes self-testing, than strategies such as highlighting or re-reading (Dunlosky, 2013; McDaniel et al., 2014).  
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Willingham (2008, p. 18) advises, “memories are formed as the residue of thought.” We tend to remember (learn) what we think 

about.  

Distributed Practice 

Retrieval practiced several times in one sitting (such as the night before a test) but not over multiple days is termed massed 

practice or cramming. Crammed knowledge can help on a test within a day or two (increasing performance) but tends to be quickly 

forgotten (it tends not to be learned) (Willingham, 2002, 2015). 

Retrieval practiced over several days is termed distributed practice (Carpenter and Agarwal, 2019). This spaced retrieval tends 

to ‘flatten the forgetting curve,’ meaning what has been learned tends to be forgotten more slowly and, thus, better remembered 

for longer periods (Ebbinghaus, 1885/1913/2013). By providing intervening sleep, spaced practice promotes better memory 

consolidation: the improved organization of wired chunks within LTM (Dehaene, 2020, p. 221-230; Yang et al., 2014). 

Spacing day or longer time gaps between retrieval-practice sessions leads to some forgetting, creating what is known as a 

desirable difficulty: The increased mental effort required for later retrieval (the difficulty) promotes longer lasting cued recall 

(which is desirable). Bjork and Bjork (2011) write, 

Many difficulties are undesirable during instruction and forever after. Desirable difficulties … are desirable because they 

trigger encoding and retrieval processes that support learning, comprehension, and remembering. (p. 62) 

Overlearn With Spacing 

Recall repeatedly practiced to perfection, repeated over days and on occasion in weeks and months thereafter, is termed 

spaced overlearning. After spaced overlearning, forgetting may occur, but quick recall can generally be restored with far less re-

study. Cognitive scientists call this the ‘savings in relearning’ effect (Willingham, 2002, 2015).  

Which facts are a priority to overlearn? Willingham (2004) suggests, “Knowledge that will be used again and again.” During 

careers, specifics of work will change, but fundamentals overlearned with spacing will likely be recallable, with occasional 

‘refreshing of memory,’ for a lifetime (Bjork & Bjork, 2019).  

AUTOMATION OF ALGORITHMS 

An algorithm (also termed a well-structured or fixed procedure) is a ‘recipe’ that solves a type of complex problem in a fixed 

sequence of steps (Van Merriënboer & Kirschner, 2007; Willingham 2009b). A useful algorithm is one that, for a specific type of 

problem, has empirically proven to convert problem data step-by-step, without overloading WM at any step, to reach a correct 

answer (Geary et al., 2008; Willingham, 2009a, 2009b). Examples of algorithms in mathematics include sequences remembered by 

mnemonics (PEDMAS or PEMDAS), standard algorithms of arithmetic and algebra, and steps of a worked example.  

Most (but not all) algorithms work by breaking complex problems into a series of smaller steps that can each be answered by 

applying memorized fundamentals. If the middle-step answers of an algorithm can be stored on a medium, such as a manipulative 

or paper and pencil, instead of in the mental slots of WM, overload is less likely. Examples of ‘non-mental storage on paper’ are 

seen in the standard algorithms of multi-digit arithmetic (Geary et al., 2008 p. 4-32). 

Neuroscience and Algorithms 

Dehaene (2020) describes WM as the brain’s “central bottleneck” during problem solving, but explains how neuroscience has 

found automated algorithms circumvent WM limits: 

Automatization mechanisms ‘compile’ the operations we use regularly into more efficient routines. They transferred them 

to other brain circuits, outside our conscious awareness … As long as a mental operation remains effortful because it has 

not yet been automated by overlearning, it absorbs valuable executive attention resources … Consolidation is essential 

because it makes our precious brain resources available for other purposes. (p. 222-223) 

Implicit Retrieval 

Working around WM limits requires the “fast, implicit, and automatic retrieval of a fact or a procedure” from LTM (Geary et al., 

2008, p. 4-5). Science defines implicit retrieval as intuitive or tacit, which may not include a conscious ability to state what was 

recalled or why it was recalled (Clark, 2006, 2010). For example, take a moment to solve (try ‘in your head’ first): 3x+2=29 for x.  

Most likely, if you teach math (i.e., you are an expert), the visual structure intuitively activated a well-memorized algorithm. 

You quickly recalled steps and facts to reach x=9. You did not ‘explain why’ you subtracted two before dividing by three. That’s 

important because if a procedure is part of a more complex problem, by solving quickly, stored problem data is less likely to ‘time 

out’ of WM.  

Mathematicians and math educators must be able to explicitly explain why they do steps. When first learning a procedure, 

students aided by a teacher (by modelling) need to be able to explain how it works. But for the vast majority of students, after 

initial learning, explicitly ‘explaining why’ takes time and is not necessary. Most students need math as a tool to solve problems in 

other complex fields. When using a tool, the goal is to automate: to carry out the right steps quickly without conscious attention 

to ‘why.’ Automated recall is often subconscious (Clark, 2006, 2010). 
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As one measure of relative need, US colleges graduate about 25,000 math majors each year (Trapani & Hale, 2019) but millions 

enter careers in which automated math is needed as a tool to solve problems. While they are students, those millions need time 

to practice learning and applying facts and procedures. With that practice, they gain the implicit understanding needed to solve 

math problems using facts and steps recalled intuitively (Clark 2006, 2010). 

Retrieval Cues 

Out of hundreds of algorithms that students learn in K-12 math, how does the brain recall which algorithm to apply to a specific 

type of problem? As the steps, typical cues, and typical contexts for an algorithm’s use are practiced when solving a topic’s 

problems, all become wired into a larger chunk in LTM. After a topic’s problems have been practiced in a variety of distinctive 

contexts, the brain automatically notes a new problem’s components and retrieves an appropriate algorithm to apply–in a manner 

similar to how the brain intuitively chooses an appropriate phrase to express an idea (Clark, 2006, 2010; Pinker, 2007). 

When teaching a new algorithm, cognitive studies recommend including both different typical retrieval cues and distinctive 

topic contexts to help the brain sense when the algorithm is needed (Willingham, 2003, 2008). Anderson and Neely (1996) write,  

Retrieval cues can be anything from components of the desired memory to incidental concepts associated with that item 

during its processing … Retrieving a target item [occurs] when the cues available at the time of recall are sufficiently related 

to that target to identify it uniquely in memory. (p. 239) 

Keeping Slots Open 

To be useful, an algorithm must work whether data are single digits that can be solved by mental math or multi-digit solved 

with a calculator. But learning a new algorithm is accelerated if examples and initial calculations are contrived to be solved using 

overlearned mental arithmetic. Why?  

When practicing the use of an algorithm, as more steps are automated, more slots in WM become available to hold and process 

(and thereby learn) the sequence. If sample problems can be solved using automated mental math, more slots are available to 

hold and process the context cues that differentiate problem types. By designing sample problems to keep WM slots open, new 

algorithms and appropriate contexts to implicitly apply them are learned more quickly.  

Interleaved Practice 

Assignments that repeat problems of the same type are termed blocked practice. Mixing different types within a problem set 

is interleaved practice (Taylor & Rohrer, 2010). After initial blocked practice of a new algorithm, interleaved practice that follows 

helps the learner explicitly and implicitly spot differences amongst similar problems (i.e., discrimination learning), and 

spot/remember similarities among different problems. Using interleaving, solving is initially more difficult, but the difficulty is 

desirable because long-term, students will better remember the cues and contexts associated with each algorithm (Bjork & Bjork, 

2019).  

Standard Algorithms 

For each problem type, many algorithms will likely work, but for students, cognitive studies support initial mastery of one 

‘standard’ algorithm for each problem type. If multiple algorithms are practiced before the standard is overlearned, choosing an 

effective algorithm to apply is less likely to become intuitive. Further, practicing several algorithms that are similar but not the 

same leads to cognitive ‘interference’ when attempting to remember which steps and sequence comprise each procedure 

(Anderson & Neely, 1996; Dewar et al., 2007).  

CONCEPTS AND REASONING 

Knowledge in mathematics can be categorized as factual (declarative), procedural (algorithmic), or conceptual. Geary et al. 

(2008, p. 4-7) write that “conceptual knowledge refers to general knowledge and understanding” stored in LTM. An example of a 

concept is the commutative property of addition: (a+b=b+a).  

Cognitive studies emphasize conceptual understanding is vitally important and needs to be taught (Siegler & Lortie-Forgues, 

2015). Conceptual understanding helps “facilitate transfer and long-term retention” of knowledge, organizing knowledge within 

LTM by the deeper structure of its meaning (Geary et al., 2008, p. 4-7). After initial consolidation (wiring of chunks), during 

additional topic learning, conceptual understanding helps as LTM re-consolidates: re-wires to better organize topic schema (Furst, 

2020). Repeated re-consolidation leads to “a shift from slow, conscious, and effortful processing to fast, unconscious, and 

automatic expertise” (Dehaene, 2020, p. 222). 

Facts Before Concepts  

However, independent of how important concepts are, they need to be preceded by the learning of facts upon which the 

concepts are based. Willingham (2009b) writes that among facts, procedures, and concepts, “conceptual knowledge is the most 

difficult to acquire … [A] teacher cannot pour concepts directly into students’ heads. Rather, new concepts must build on 

something students already know” (p. 18). 

When teaching concepts, Willingham (2002) notes that if examples have components that are concrete and familiar (well-

memorized), slots in WM are more likely to be available to hold conceptual elements during processing. Willingham (2009b) 
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suggests instructors should “[E]xplain to students that automaticity in facts is important because it frees their minds to think about 

concepts” (p. 19).  

Reasoning–or Remembering?  

For students, without reliance on a memorized algorithm, reasoning based on concepts may work to solve very simple 

problems. However, in a math problem with multiple steps, ‘general reasoning’ is nearly always too general to provide reliable 

cognitive guidance on which steps to solve the problem will be successful (Sweller et al., 2010). For novice learners, trying to 

evaluate different reasoning approaches nearly always overloads WM (Kirschner et al., 2006).  

The non-expert brain is strong at remembering, not reasoning. Anderson (1996), a leader in cognitive research, advises: 

One fundamentally learns to solve problems by mimicking examples of solutions … [A]cquiring competence is very much 

a labor-intensive business in which one must acquire one-by-one all the knowledge components … We need to recognize 

and respect the effort that goes into acquiring competence. (1996, p. 359) 

Willingham (2009c, p. 68-72) states as the cognitive principle, “the brain was not designed for thinking.” Willingham (2009a) 

notes, “much of the time that we see people apparently engaged in logical thinking, they are actually engaged in memory retrieval” 

(p. 8). When students seem to solve complex problems based on “understanding” without a recalled algorithm, research nearly 

always finds “understanding is remembering in disguise” (Willingham, 2009c, p. 70). 

STANDARDS FOR ARITHMETIC FACTS 

In 2010-11, over 40 US states adopted the CCMS to govern K-12 instruction. As in the 1989 NCTM standards, the CCMS state as 

a fundamental assumption that students can “reason abstractly” to solve problems (NGA and CCSSO, 2010, p. 6). The CCMS make 

no mention of what science has discovered regarding WM limits, automaticity, distributed retrieval practice, or reasoning. Among 

those who drafted and voted to approve the 2010 CCMS, none included a scientist who studies how the brain solves problems 

(NGA, 2010; Zimba, 2014). 

In preparation for this paper, math standards were examined in all U.S. states as of January 2020. This search found that since 

2014, as reported elsewhere (Heitin, 2015; Norton et al., 2017), a number of states have dropped the ‘original CCMS’ as their 

adopted standards, but in over 30 states, math standards remained either the same as, or very similar to, the 2010 CCMS.  

Cognitive research can help in designing effective standards, but when new science is discovered, assumptions that are the 

basis of current standards must be reviewed. How do the 2010-type standards still in use in most states compare to strategies 

informed by cognitive science in 2023? 

Grade 1 and 2  

In over 30 states in 2020, standards for learning addition and subtraction facts were either the same as or essentially identical 

to the following two CCMS standards (the standard’s first number is the grade level).  

1. 1.OA.6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as 

counting on; making 10 (e.g., 8+6=8+2+4=10+4=14); decomposing a number leading to a ten (e.g., 13-4=13-3-1=10-1=9); 

using the relationship between addition and subtraction (e.g., knowing that 8+4=12, one knows 12-8=4); and creating 

equivalent but easier or known sums (e.g., adding 6+7 by creating the known equivalent (6+6+1=12+1=13). 

2. 2.OA.2. Fluently add and subtract within 20 using mental strategies [from 1.OA.6]. By the end of grade 2, know from 

memory all sums of two one-digit numbers. (NGA and CCSSO, 2010) 

In a 2016 interview, one of three ‘lead writers’ of the CCMS was asked if in the standards, “being fluent” means “knowing from 

memory.” He answered: 

“They are not the same thing, and the language of the standards makes this clear … [In 2.OA.2], if being fluent were the 

same thing as knowing from memory, the second sentence would not have been necessary … In every case, fluency 

pertains to an act of calculation.” (Northern, 2016) 

To summarize: CCMS and most states ask students in grades 1 and 2 to solve the basic addition and subtraction fundamentals 

by “fluent calculation” using the “mental strategies” (2.OA.2) in standard 1.OA.6. These standards raise multiple concerns. 

First, most of the 1.OA.6 strategies call on students to mentally solve calculations in ways science says the brains of most 

cannot. At ages 6-8, children have especially limited WM capacity. To add single-digits, grade 1-2 students may be able to use the 

memorized algorithm that is counting to mentally manage “counting on.”  

But to solve the more complex 1.OA.6 calculations mentally, a student would need to move into WM the problem goal (add or 

subtract?) and its two data numbers, requiring three WM slots. Reasoning to choose a strategy to use would take additional slots. 

Applying the strategy may also require slots. Cowan’s (2001, 2010) measurements found for grade 1-2 students, WM capacity 

averages only 2-3 slots.  

Gathercole (2008) notes that “poor working memory skills are relatively commonplace during childhood” and advises to 

“restructure complex tasks” to “avoid working memory overload” (p. 384). 
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Facts recallable from memory do not contribute to overload, but the CCMS and similar standards do not call for any basic 

addition facts to be known “from memory” until “the end of grade 2.” How will they solve the complex 1.OA.6 mental calculations 

during grade 1? 

A second concern: The complex strategies required in the grade 1-2 standards of most states are unlikely to result in 

fundamentals becoming recallable. Kirschner and Hendrick (2020) emphasize “children are not ‘little adults.’” In grade 1-2, 

students lack the combination of WM capacity and knowledge that adults possess that is needed to solve multi-step calculations.  

What students can do in grades 1-2 is to make math facts recallable using flashcard-type strategies. Recallable facts will be 

needed to avoid overload when learning to solve more complex problems in higher grades. Science says “the most effective” 

strategy to make facts quickly recallable is distributed retrieval practice (Dunlosky, 2013).  

Starting from infancy, retrieval with feedback can achieve automated recall (Fazio & Marsh, 2019; Fritz et al., 2007). Burns et 

al. (2019) found the combination of rehearsal and retrieval practice to be both efficient and effective in the elementary grades. For 

teachers, a measurement that a fact has been automated, not calculated, is recall within 2 to 3 seconds (Burns et al., 2014). 

During childhood, learning spoken phrases is powerfully instinctive. With practice, most kindergarteners can recite lengthy 

word sequences (counting to 100, book passages, songs). If a first-grader practices reciting “eight plus six is fourteen” repeatedly 

over several days, it becomes one of thousands of phrases they can complete automatically (MacLeod & Bodner, 2017; Pinker, 

2007).  

Manipulatives can help with calculations, but their use takes time and WM slots. Strategies less efficient than spaced retrieval 

will result in knowing some facts eventually, but time for math is limited in grade 1-2 classrooms. Until recall of all arithmetic 

basics is automated, understanding examples to learn higher-level calculations will be limited. 

A third concern: Most states do not ask that any subtraction facts be known “from memory” at any point, asking instead that 

subtraction facts be “fluently” calculated “using the relationship between addition and subtraction” (1.OA.6). 

During grade 1, most states ask that students calculate addition facts, rather than know them from memory. Asking grade 1 

students to first calculate the addition fact, then calculate the subtraction fact, given grade 1 WM capacity, is likely to cause 

overload. 

In higher grades, if the paired addition fact is by then recallable, using the inverse relationship to find a simple subtraction fact 

may work, but the calculation requires a WM slot to hold the answer. To learn higher-level algorithms and concepts efficiently, the 

strategy must be to automate as many components of problem solving as possible. WM slots will be needed to process step 

sequences and conceptual elements. For simple facts, calculation to subtract may make sense mathematically, but to prepare for 

higher-level learning, it is the wrong strategy cognitively.  

Summarizing cognitive research, Willingham (2009b) writes that for all of the basic facts  

of addition, subtraction, multiplication and division, … answers must be well learned so that … the answer is not 

calculated but simply retrieved from memory, … [A]utomatic retrieval of basic math facts is critical to solving complex 

problems … Calculating simple arithmetic facts does indeed require working memory. (2009b, p. 16-17) 

Concepts 

Students need implicit understanding of concepts, facts, and procedures, but “new concepts must build on something 

students already know” (Willingham, 2009b). 

To begin to learn mathematics, by rehearsal and retrieval, students ‘rote memorize’ how to count. The concept of addition 

and subtraction can then be learned from simple examples of “counting on” (1.OA.6) and ‘counting back’ on fingers using 

numbers 10 and under. 

To teach place value, simple examples of other 1.OA.6 calculations may be manageable on paper or using manipulatives. But 

learning concepts by solving complex calculations mentally, as called for in 2.OA.2, is not likely to be reliably successful for most 

students until they are older, when WM capacity has increased, and basic facts have been overlearned. 

Grade 3 and 4  

The CCMS and most states call for learning the over 120 verbatim, non-trivial multiplication and division facts in a manner 

similar to the addition and subtraction facts. They do not ask that any division facts be recallable. They call for learning the 

multiplication facts ‘from memory’ using calculation strategies far too inefficient to automate recall in the time available for math 

in elementary classrooms.  

The foundations for mathematics are the over 120 non-trivial addition and subtraction and over 120 multiplication and 

division facts. Automaticity in recall of all basic facts must be a priority in grades 1-4. Distributed retrieval practice is the most 

efficient way to achieve automaticity. Even with this efficiency, standards should make clear: Substantial class time must be 

budgeted to not just learn but overlearn these over 240 verbatim fundamentals. 

To learn the procedures for multi-digit arithmetic, in grades 3-4 the CCMS and most states call for a year or more practicing 

non-standard algorithms before learning the standard algorithms. Because of cognitive ‘interference,’ science-informed 

standards would call for automating a standard algorithm for each operation before practicing non-standard procedures.  
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Non-Typical States 

From two states, there is good news. TIMSS is a test given every four years to 4th and 8th graders in about 50 nations including 

the US. In 2011 results, evaluating 8th grade “number” skills, top scoring nations in order were South Korea, Singapore, and Japan.  

Subdivisions of nations may also ask to have scores reported. Among US states that did so, Massachusetts scored 567, above 

Japan’s 557 (MDESE, 2017). Minnesota scored 556. The US ranked poorly overall with a score of 514 (Hartman & Nelson, 2016; 

NCES, 2015; Provasnik, 2012). 

What accounts for the high scores from Massachusetts and Minnesota? One factor may be, unlike most states, in most years 

from 2000 to 2020, Massachusetts required memorization of all basic math facts (MDESA, 2017; Riordan & Noyce, 2001). Minnesota 

did not adopt the CCMS and has had a policy of ‘no calculators’ on state elementary tests since 2003, encouraging the overlearning 

of arithmetic fundamentals (MDE, 2003, 2019).  

CONCLUSIONS 

Science has discovered that when the brain tries to reason with not-well-memorized information, stringent limits apply. In 

publications for educators, the importance of automaticity to work around WM limits has been noted since 1996 (Hirsch, 1996). 

Yet since that time in most states, key K-12 standards have continued to require young students to solve math problems by 

reasoning in ways science says their brains simply cannot manage.  

Why has the progress of science been ignored? In every US state, political officials decide K-12 standards (Loveless, 2021). In 

most states, those officials have been lobbied, often with success, by education-theorists who philosophically oppose the 

repeated effort (‘drill’) that cognitive science says is required to circumvent the brain’s working memory limits. As test scores 

indicate, resulting standards have not been effective. 

In this article, our review of US standards has been limited to fundamentals of arithmetic. Our analysis is not intended to be 

the final word, and we invite responses. But the authors posit that these data show in most states, K-12 standards would benefit 

from a review–with participation by scientists who study learning. In medicine, standards are set by practicing doctors guided by 

science. In teaching, the most effective standards will be set by practicing front-line educators guided by science.  

If the science of learning becomes a more significant factor in mathematics standards and curricula, student learning will 

gradually improve. But to prepare for careers in the sciences, engineering, and technology, students need 17 years under effective 

standards–in grades K-12, then college. When will those who decide standards put the progress of science to good use? How long 

can the US afford to wait? 
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APPENDIX: DESIGNING MATHEMATICS STANDARDS IN AGREEMENT WITH SCIENCE 

Working Memory Capacity 

Cognitive studies find that the WM capacity of students is highly dependent on their age.  

Experiments by Cowan (2001) found that when allowed to focus on (“attend to”) a list of digits, adults could on average remember 

four to six, depending on the length (span) of the list, but when the digits were “ignored” to carry out steps of other cognitive processing, 

adult WM capacity averaged “4  1.”  

Cowan’s (2001) measurements also found 4th graders had lower WM capacity than adults, and first graders even less: a WM capacity 

during processing of only two-three digits (Figure A1). 

In the case of some calculations, Cowan (2010) reported an average adult WM capacity of three, and WM capacity of seven year olds 

averaging 1.5. 

Award-winning UK psychologist Gathercole (1999) has extensively studied working memory capacity in children. In tests of different 

components of working memory, Gathercole (1999) found relative increases in WM with age (Figure A2). 

In another test, Gathercole (1999) measured relative WM capacity, rather than Cowan’s (2010) measurements of absolute WM capacity, 

based on a recall test, the Working Memory Test Battery for Children (WMTB-C) (Gathercole, 2011, 2015; Gathercole & Alloway, 2004). Her 

results can be found in Figure A3:  

1. WM capacity increases gradually after age five, then plateaus at about age 12.  

2. Six-year olds average about half the WM capacity of 12-year olds. 

3. WM capacity at each age varies widely among individuals. At age eight, the WM capacity of the 10th percentile have the same 

capacity as the average 5-year old, and at 90th percentile have same capacity of the average 12-year old (red arrows, Figure A3). 

4. For the age six cohort (typically first-graders), those at the 10th percentile have half the WM capacity of the 90th percentile. 

 

Figure A2. Performance on measures of relative working memory capacity by age (Gathercole, 1999) 

 

Figure A1. Measures of working memory capacity by age (Cowan, 2001) 
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Figure A3. Mean scores on listening recall test from Working Memory Test Battery for Children (WMTB-C) as a function of age, with 10th & 

& 90th percentiles (Gathercole, 2011, 2015) 


	INTRODUCTION
	OECD Testing
	NAEP LTT
	State Standards
	Cognitive Science

	TYPES OF LEARNING
	Primary Learning
	Secondary Learning

	PROBLEM CATEGORIES
	Verbatim vs. Gist
	Well- vs. Ill-Structured
	Expert vs. Student

	WORKING MEMORY LIMITS AND STRENGTHS
	Storing Information
	WM Overview
	WM Limits
	WM Strengths
	WM Implications
	WM Summary

	HOW THE BRAIN STORES LEARNING
	Firing and Wiring
	Chunking
	How Learning Happens

	WORKING AROUND WM LIMITS
	Avoiding Overload
	Automating Fundamentals

	OVERLEARNING FACTS
	Rehearsal
	Retrieval Practice
	Distributed Practice
	Overlearn With Spacing

	AUTOMATION OF ALGORITHMS
	Neuroscience and Algorithms
	Implicit Retrieval
	Retrieval Cues
	Keeping Slots Open
	Interleaved Practice
	Standard Algorithms

	CONCEPTS AND REASONING
	Facts Before Concepts
	Reasoning–or Remembering?

	STANDARDS FOR ARITHMETIC FACTS
	Grade 1 and 2
	Concepts
	Grade 3 and 4
	Non-Typical States

	CONCLUSIONS
	REFERENCES
	APPENDIX: DESIGNING MATHEMATICS STANDARDS IN AGREEMENT WITH SCIENCE
	Working Memory Capacity


