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 Mathematical generalization can take on different forms and be built upon different types of reasoning. Having 
utilized data from a series of task-based interviews, this study examined connections between empirical and 
structural reasoning as preservice mathematics teachers solved problems designed to engage them in 
constructing and generalizing mathematical ideas aided by digital tools. The study revealed closer connections 
between naïve empiricism and result pattern generalization, between naïve empiricism and recognizing a 
structure in thought, between reasoning by generic example and process pattern generalization, and between 
reasoning by generic example and reasoning in terms of general structures. Results from this study imply that the 
ability to generalize based on perception and numerical pattern does not necessarily lead learners to generalize 
based on mathematical structure. 
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INTRODUCTION 

Generalizing is a constructive activity that aims to transport a mathematical relation from a given set to a new set for which 
the original set is a subset, perhaps adjusting the relation to accommodate the larger set. It has been argued that making, 
representing, justifying, and reasoning with generalizations are crucial components of mathematical thinking and should be at 
the heart of mathematics activity in school (Blanton, Levi, Crites, & Dougherty, 2011; Mason, Johnston-Wilder, & Graham, 2005). In 
the past few decades, researchers have identified different forms of mathematical generalizations. For instance, Dörfler (1991) 
separates between empirical and theoretical generalization. The basic process of empirical generalization is to detect a common 
quality or property among two or more objects based on perception and then to record it as being common and general. 
Theoretical generalization is constructed through abstracting the essential invariants of a system of actions taken on/with 
mathematical objects rather than the perceptual features of the objects themselves. Yerushalmy (1993) distinguishes between 
generalization from examples and generalization of ideas. Generalization from examples accounts for cases where students 
establish a generalization by drawing on particular cases or examples in a given set. Generalization of ideas refers to situations 
where learners construct a more general statement from more specific ideas. Examples are not crucial in generalization of ideas 
since what matters are the relevant ideas that can be dropped, ignored, relaxed, or combined in order to gain a greater generality. 
More recently, Mason, Burton, and Stacey (2010) differentiate between empirical and structural generalization. Empirical 
generalization is the process of forming a conjecture about what might be true from numerous instances. It occurs when a learner 
looks at several, sometimes many, cases and identifies the sameness among these cases as a general property. Structural 
generalization arises when a learner recognizes a relationship from one or very few cases by attending to the underlying structure 
within these cases and perceives this relationship as a general property. These different forms of generalization imply that 
individual learners can generalize either at an empirical level (empirical reasoning) or based on mathematical structure (structural 
reasoning). A considerable body of research on pattern generalization has shown that learners of different ages tend to generalize 
on the basis of spurious numerical pattern rather than the pattern’s structure (El Mouhayar, 2018; El Mouhayar & Jurdak, 2016; 
Küchemann, 2010; Küchemann & Hoyles, 2009), which implies a dominance of empirical reasoning over structural reasoning in 
generalizing activities as well as the need for students to move from empirical to structural generalization. Although both empirical 
and structural reasoning occur in the process of constructing, representing, and justifying generalizations, it still remains unclear 
whether and if so, how the two types of reasoning interact with each other, and how learners’ reasoning gradually evolves from 
empirical to structural. 

Meanwhile, with the emergence of interactive software in the early 1990s, a large body of research in mathematics education 
has considered ways that dynamic technologies such as the Geometer’s Sketchpad (GSP) and GeoGebra, which allow their users 
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to create and act on mathematical entities (e.g., constructing and manipulating geometric figures, measuring elements of a 
geometric figure, executing calculations and algorithms, generating examples, and graphing expressions), might influence 
mathematical thinking processes among students of all ages. Indeed, researchers have argued eloquently that dynamic 
environments provide a productive means for learners to search for numerical patterns through measurement and calculation, 
observe the variants and invariants, formulate and validate conjectures based upon dynamic cases, and extend the perceived 
relation to a larger set (e.g., Baccaglini-Frank & Mariotti, 2010; Baccaglini-Frank, 2019; Yao, 2020; Yao & Manouchehri, 2019), all of 
which are essential for generalizing. The inductive nature of dynamic environments triggers researchers to explore the 
experimental-theoretical interplay during the construction and justification of mathematical knowledge. Although researchers 
have recognized the existence of an experimental-theoretical gap in dynamic environments and explored ways to bridge the gap 
through carefully designed tasks and instruction (Christou, Mousoulides, Pittalis, & Pitta-Pantazi, 2004; Leung, 2014; Sinclair & 
Robutti, 2012), it remains unclear how empirical and theoretical thinking interact with each other in a carefully designed task 
environment that promotes the habit of looking for and using mathematical structure. 

To address this gap in the literature this study aimed to explore the connections between empirical and structural reasoning 
in the process of forming and extending mathematical ideas within a dynamic geometry environment through a series of carefully 
designed tasks. It was guided by the following research question: How does empirical and structural reasoning connect in 
technology-aided generalization activities? 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

Empirical and Structural Reasoning in Generalizing Activity 

Empirical reasoning is the process of reasoning on the basis of examples to reach a general conclusion. Reid and Knipping 
(2010) identify the use of empirical reasoning in various mathematical activities, including pattern observing (noticing similarities 
of given cases), predicting (making a claim about the next case based on past cases), conjecturing (making a general statement 
from specific cases when the general statement requires additional verification), generalizing (making a general statement that 
does not require additional verification), and testing (using new cases to test predictions and conjectures). There are different 
levels of sophistication of empirical reasoning, including naïve empiricism, crucial experiment, and reasoning by generic example 
(Balacheff, 1988), which indicates that the habit of looking for and making use of structure might or might not present in empirical 
reasoning. An individual engages in naïve empiricism when (a) the individual gains confidence in the validity of a claim by checking 
it with specific examples; (b) the examples that the individual chose to consider are not based on conceptual considerations; and 
(c) the individual obtains no other information from this process apart from verification that the statement holds in these instances 
(Weber, 2013). The “number-pattern-spotting” approach to solve pattern tasks indicates the dominance of naïve empiricism in 
students’ generalization activities. A crucial experiment draws on deliberately chosen examples to reach a general conclusion or 
to make claims about a universal assertion. A generic example in mathematics is an example that illuminates the general rather 
than the particular properties of the example. When reasoning by generic example, examples are used as a tool to explain abstract 
thought or the general structure of what is occurring.  

Researchers have used different terms to capture learner’s generalization activity on the basis of empirical reasoning, among 
which include empirical generalization (Dörfler,1991), generalization from examples (Yerushalmy,1993), result pattern 
generalization (Harel, 2001), and naïve induction and arithmetic generalization (Radford, 2008). These forms of generalization 
indicate that the simplicity of number patterns may have a stronger appeal than the insight that might be gained from taking a 
structural approach. 

A mathematical structure is a mathematical system with certain specifically recognized properties and theorems that are the 
logical consequence of these properties. If mathematics is the science of pattern, structure determines the way the pattern is 
organized. Therefore, there exists a difference between “seeing” a number pattern and “seeing” a structure behind the pattern. A 
major goal of mathematics education is to nurture the view that conceives of mathematics as a field of intricately related 
structures rather than a series of computations to be carried out. Researchers have used “structural sense” (Hoch & Dreyfus, 2004), 
“structural thinking” (Mason, Stephens, & Watson, 2009; Mulligan & Mitchelmore, 2012), and “structural reasoning” (Harel & Soto, 
2017; Hawthorne & Druken, 2019) to capture the habit of looking for and making use of mathematical structure. 

Many forms of generalization identified in the literature entail some sort of structural reasoning, among which include 
theoretical generalization (Dörfler, 1991), generalization of ideas (Yerushalmy, 1993), process pattern generalization (Harel, 2001), 
and generalization through generalizing the reasoning and generalization through unifying specific cases (Ciosek, 2012). Although 
identified by different criteria, all these forms of generalization require learners to attend to and make use of certain structural 
aspects of object or process under consideration. Yao and Manouchehri (2019) differentiate among perception-based, property-
based, and theory-based generalizations by attending to the learner’s level of attention to mathematical structure, which 
highlights the role of structure reasoning in shaping the nature of mathematical generalizations. 

Like any other way of thinking, structural thinking/reasoning is developmental in nature and evolves gradually with individuals 
through various social and cultural interventions. Mulligan and Mitchelmore (2009) analyze young children’s responses to 
mathematical tasks and identify five levels of structural thinking. Learners at the prestructural level attend to salient features that 
are irrelevant to the underlying mathematical concepts. At the level of emergent, learners recognize some relevant features but 
are unable to organize them appropriately. Learners are said to be at the partial structural level when they can recognize most of 
the relevant features of the structure but their representations are inaccurate or incomplete. Learners reach to the structural level 
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when they correctly represent a given structure and further move to advanced level when they recognize the generality of the 
structure. 

More recently, Harel and Soto (2017) conceptualize structural reasoning as a cluster of abilities to look for and recognize 
structures, to probe into and act upon structures, to reason in terms of general structures, and to form epistemological 
justifications. They propose a typology of structural reasoning that instantiates their conceptualization, which includes pattern 
generalization, reducing an unfamiliar structure into a familiar one, recognizing and operating with structure in thought, forming 
epistemological justification, and reasoning in terms of general structures (Figure 1). Pattern generalization includes process 
pattern generalization, in which one attends to structure and invariant relationship in the process (e.g., generalizing that the sum 
of the interior angles of a polygon is (𝑛𝑛 − 2) × 180° by triangulation), and result pattern generalization, in which one attends 
solely to regularity in the numerical results (e.g., generalizing that the sum of interior angles of a polygon is (𝑛𝑛 − 2) × 180° by 
examining the numerical pattern of the sum of interior angles in the first a few polygons). Reducing an unfamiliar structure into a 
familiar one includes construction of desirable structure (e.g., drawing an auxiliary line in a geometric figure to decompose it into 
familiar shapes, transforming an algebraic expression into a previously met structure) and formation of conceptual entities (e.g., 
working with an algebraic expression for the purpose of investigating or claiming a certain property of it). This might involve 
decomposing (or chunking) mathematical objects into a variety of familiar sub-structures based on the context and goal at hand. 
Recognizing and operating with structure in thought involves first taking a step back and looking for properties that are embedded 
in a mathematical object before selecting a procedure to act on it. It might also involve recognizing equivalent or similar 
mathematical properties in different forms and multiple representations. When forming epistemological justification, a learner 
develops reasoning that explains how a piece of knowledge resolves the problematic situation under investigation. Reasoning in 
terms of general structures includes recognizing similarities between objects, tools, and methods, and making a unifying and 
generalizing concept explicit as an object. This typology provides a useful framework to examine the embodiment of structural 
reasoning in mathematical activities. Based on our experience of working with K-12 students and preservice teachers, we believe 
that pattern generalization, recognizing and operating structure in thought, and reasoning in terms of general structure are 
categories of structural reasoning closely connected to the process of generalizing. 

Mathematical Reasoning with Dynamic Technology 

Incorporating dynamic software such as GSP and GeoGebra in mathematics learning has opened a research venue for 
exploring affordances and limitations of dynamic technologies for fostering mathematical reasoning. When looking at the 
affordances of dynamic technologies, a common theme that arises is the tools’ ability to allow students to access a wide variety 
of examples. With access to a multitude of examples, students have more cases to refer to when seeking patterns (Kuzle, 2017; 
Pedemonte & Balacheff, 2016) or find unexpected properties with which they can create new conjectures (Baccaglini-Frank; 2019; 
Baccaglini-Frank & Mariotti, 2010; Hollebrands et al, 2010). The dragging feature in dynamic geometry environments (DGE) allows 
its users to quickly generate infinitely many dynamically linked examples. The use of dragging also has the added benefit of 
maintaining the invariant properties of a set of cases that are the result of the construction process (Richard et al., 2019). Moreover, 
the measuring facility in DGEs makes it convenient for students to gather data and look for numerical relationships. From this 
process, students can recognize visual or numerical patterns and abstract the invariant properties of the construction, and then 
use that information to form generalizations and justifications (Richard et al., 2019; Sinclair & Robutti, 2012). 

While these benefits of using dynamic technologies exist, there are concerns about how using these technologies may affect 
students’ mathematical thinking. There are some claims that overemphasis on empirical reasoning that comes from using 

 
Figure 1. A Typology of structural reasoning (Harel & Soto, 2017) 
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dynamic technologies may lead to impediments on student’s ability to think about abstract justifications (Kuzle, 2017; Olive & 
Makar, 2010). If this is true, then students would be stuck reasoning empirically and be unable to reason about mathematical 
structure or other abstract properties. This concern can be seen in the trend found in Hollebrands et al.’s study (2010) where 
students solely relied on computers to verify claims they were uncertain of. 

While these concerns exist and have been raised, there have been responses defending the use of dynamic technologies in 
mathematics learning. Researchers have argued that dynamic technologies have to be a tool used to develop mathematical 
thinking rather than simply a tool that executes mathematical operations (Richard et al., 2019). By using dynamic technologies as 
ways to build knowledge inductively, students can be supported to focus on the more general aspects of the cases they examine 
and move to thinking more deductively (Baccaglini-Frank, 2019; Komatsu & Jones, 2019; Lachmy & Koichu, 2014).  

The discussion around the affordances and limitations of dynamic technologies suggests that empirical and theoretical 
arguments interplay in students’ reasoning. Arzarello et al. (2002) describe ascending and descending as two main cognitive 
processes, in which students are engaged while investigating mathematical problems in dynamic environments. Ascending 
processes occur when the student moves from empirical grounds to theoretical considerations in order to freely explore a 
situation, and look for regularities, invariants, etc. Descending processes occur when the student moves from theoretical 
considerations to empirical grounds to validate or refute conjectures, and to check properties of cases described by the 
conjecture. Together, ascending and descending processes capture the back-and-forth movement between empirical and 
structural reasoning. The study reported in this paper aimed to investigate the connections between empirical and structural 
reasoning in a dynamic geometry environment through a series of carefully designed tasks. 

METHODOLOGY 

Method 

The data for this study was collected from a series of task-based interviews that were a part of a larger research project aimed 
to investigate preservice secondary mathematics teachers as learners and teachers of mathematical generalizations in a 
technology-intensive learning environment. The task-based interview was chosen to obtain knowledge about individual 
preservice teacher’s processes to generalize mathematical ideas and the mathematical knowledge resulting from those processes. 
Each task in this study often consisted of a sequence of closely related problems that aimed to promote learners to generalize a 
mathematical idea to a broader domain. Although each task contains different entry points and can be solved in different 
approaches, all the tasks were designed with the intention to engage learners in searching for and making use of mathematical 
structures. To this end, each of the tasks often included a sequence of sub-tasks that demanded the participants to recognize a 
certain structural aspect of a mathematical object under investigation, extend it to solve the subsequent sub-tasks, and reason in 
terms of the general structure. Moreover, when selecting tasks, we considered how technology could potentially be used by the 
participants to explore and analyze mathematical relationships, to develop alternative approaches for problem-solving, or to 
generate new problems that could not otherwise be posed. Figure 2 presents the tasks used in the interviews. Each task contained 
one or more GSP or GeoGebra files that allowed the participants to explore the problems. These tasks were chosen to elicit 
participants’ generalizing activities in both geometry (Task 1 and Task 2) and algebra (Task 3 and Task 4) within both familiar (Task 
1 and Task 3) and relatively unfamiliar (Task 2 and Task 4) knowledge contexts. These tasks are appropriate for this study in that 
within each task the participants could generalize either at the empirical level or on the basis of a perceived mathematical 
structure. 

Participants 

The participants were 8 junior undergraduate preservice secondary mathematics teachers, of whom 4 are male and 4 are 
female. The participants were selected based on voluntary participation. The mathematics courses they had taken thus far include 
the following: Calculus series, discrete mathematics, elementary combinatorics, concepts of real analysis, basic abstract algebra, 
and linear algebra. The GPA of the 8 participants rang from 3.16 to 3.98 with an average of 3.69 and only the GPA of two participants 
was below the average. This indicates that most participants in this study performed well academically. During the semester of 
their participation, all participants were concurrently enrolled in a course that aimed to engage them to learn and teach 
mathematics with various types of mathematical action technologies (e.g., GeoGebra, Geometer’s Sketchpad, TI-Nspire CX CAS, 
and Fathom Dynamic Data Software). The course took a problem-solving approach and engaged the preservice teachers in the 
processes of representing, conjecturing, generalizing, and justifying by solving and extending mathematically rich problems in 
technology-rich learning environments. It also invited preservice teachers to contemplate different ways they could use 
technology to engage their future students in these mathematical processes. Each participant participated in two task-based 
interviews, each of which was approximately 1.5~2 hours. During each interview, a participant attempted to solve two 
mathematical tasks with the technologies they had learned in the course. Participants’ interactions with technology were screen-
recorded, which allowed the researchers to examine the participant’s awareness of mathematical structure and generalizing 
actions after each session. During each session, the interviewer frequently asked the participant to articulate his/her thinking 
process and to make a general statement based on his/her exploration. To advance the problem-solving process, the interviewer 
sometimes also engaged the participant in reflecting on his/her current mathematical activities. Those interactions between the 
interviewer and the participant were recorded with a camera, focusing on the interviewer’s interventions and the participant’s 
reaction. The technology files produced during each interview were collected. 
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Data Analysis 

Data analysis in this study consisted of three phases. Firstly, videos of each interview were segmented based on the transition 
of mathematical tasks and instances of generalizing attempts in each video segment were identified. An activity was identified as 
a generalizing attempt if a participant engaged in one of the four activities: (1) relating or making a connection between two (or 
more) situations, problems, ideas, or object; (2) searching for a pattern or a procedure through performing repeated actions; (3) 
expanding a pattern, a relationship, or a procedure into a more general structure; and (4) deriving a new general statement from 
an existing generalization. A participant could demonstrate multiple generalizing attempts while completing one mathematical 
task. Each instance of a generalizing attempt was then transcribed verbatim, including what was said and what was done with 
technology by the participant. Secondly, each instance of a generalizing attempt was analyzed to determine the types of reasoning 
that dominated the participant’s mathematical actions. Balacheff’s (1988) category of empirical reasoning and Harel and Soto’s 
(2017) typology of structural reasoning were used to code the types of reasoning involved in each generalizing attempt. Because 
of our interest in the types of reasoning that support participants’ construction of mathematical generalizations, our analysis of 
the types of structural reasoning mainly focuses on categories of structural reasoning closely connected to the process of 
generalizing, including structural reasoning pattern generalization, recognizing and operating structure in thought, and reasoning 
in terms of general structure. To ensure reliability of coding, the two authors first watched a few sample video excerpts together 
and coded the types of reasoning involved in each sample video excerpt. This was to ensure that the authors developed a shared 
understanding of each type of empirical and structural reasoning. The two authors then independently coded all the rest of 
generalizing attempts in the data. To calculate the percent agreement we took the total number of times in which the two authors 
agreed and divided that by the total number of classifications made. By this method, the percentage of agreement between the 
authors was 90.7%, which indicates a high percentage of agreement. The small number of discrepancies in coding were resolved 
through discussion. The third phase of data analysis involved identifying the instances where a participant shifted from empirical 
to structural reasoning in his/her process of generalizing a mathematical idea. The number of transitions from one type of 
empirical reasoning to a particular type of structural reasoning was counted to look for general pattern. Each instance was 
carefully analyzed to understand mechanism of transition. 

  

  
Figure 2. Sample mathematical tasks used in the interviews 
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RESULTS 

In this section we report on the participants’ engagement in different types of empirical reasoning, focusing on the connection 
of a particular type of empirical reasoning to the different types of structural reasoning. Our goal is to show the connections 
between empirical and structural reasoning that arose from the data. 

Connections between Naïve Empiricism and Structural Reasoning 

A participant was said to engage in naïve empiricism when the participant formulated and gained confidence in a claim solely 
based on data from specific examples and the choice of examples was not based on conceptual considerations. Table 1 shows 
that naïve empiricism occurred 67 times in the four tasks and in 19 times it did not connect to any type of structural reasoning. 
This indicates that there was a good chance that a participant engaged in naïve empiricism that did not result in a sense of 
structure to the problem. The table also shows that the movements from naïve empiricism to result pattern generalization and 
from naïve empiricism to recognizing and operating with structure in thought were the most prominent types of connection 
between naïve empiricism and structural reasoning. This indicates that naïve empiricism could often lead to the discovery of a 
number pattern or recognition of a mathematical relation based on numerical data and visual clues. Meanwhile, the table shows 
that it was unlikely for participants to move from naïve empiricism to other types of structural reasoning, such as reasoning in 
terms of general structures and process pattern generalization. The three examples below illustrate the most prominent types of 
connection between naïve empiricism and structural reasoning. 

Table 1. Connections between naïve empiricism and structural reasoning 
 Task 1 Task 2 Task 3 Task 4 Total 

Naïve empiricism disconnected to structural reasoning 4 2 6 7 19 
Naïve empiricism → Result pattern generalization 9 3 8 10 30 

Naïve empiricism → Process pattern generalization 0 0 0 0 0 
Naïve empiricism → Recognizing and operating with structure in thought 7 8 1 2 18 

Naïve empiricism → Reasoning in terms of general structures 0 0 0 0 0 
Total 20 13 15 19 67 

 

Example 1: Naïve empiricism disconnected to structural reasoning 

When asked to find the number of unit squares whose interiors a diagonal of the rectangular grid would pass through (Task 
#4), Skylar attempted to spot number patterns based on a very few cases and used them for prediction. The following transcript 
excerpts demonstrate how Skylar imposed number patterns and used them to predict the number of interior crossings to new 
cases.  

“3 by 5, I am going to say it’s 8. It looks there is a nice little pattern here (referring to the pattern that a 3 × 2 rectangular grid 
has 4 interior crossings and a 3 × 4 has 6 interior crossings in Figure 3). (Count the number of interior crossings in the 3 × 5 
rectangular grid) 1, 2, 3, 4, 5, 6, 7, it is actually 7.” 

 
Figure 3. Skylar’s number patterns 

 “3 by 8, I think this is going to be 8 because we have 3 by 2 equals 4, 3 by 4 equals 6, we just forget about 3 by 6, 3 by 8 should 
equal 8. And also we have 3 by 5 equals 7, 3 by 7 equals 9, 3 by 9 equals 9, I dare say 3 by 11 is going to be 11 plus 2, which is 13 
(Figure 3). Now it is going to just follow this pattern. I wager 3 by 10 is going to be 12.” 

In this example, Skylar first imposed a number pattern to the problem situation solely based on the number of interior 
crossings in the cases of 3×2 and 3×4 rectangles. His prediction that the number of interior crossings in the case of 3×5 was 8 
indicates that the prediction was made based on that perceived number pattern. After counting the number of interior crossings 
in the cases of 3×6 and 3×7 rectangles, Skylar predicted that the number of interior crossings in the cases of 3×8 rectangle was 8 
because “we have 3 by 2 equals 4, 3 by 4 equals 6”. While making the prediction, Skylar treated the number of interior crossings in 
a 3×6 rectangle as an anomaly of the number pattern. In a similar fashion, Skylar predicted that the number of interior crossings 
in a 3×11 was 11 plus 2 because in the case of a 3×5 rectangle it was 5 plus 2, and in the case of a 3×7 it was 7 plus 2. It seemed that 
the number of interior crossings in the case of a 3×9 rectangle was treated as an anomaly of the number pattern. Skylar then 
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noticed that the same pattern existed for the case where m was an even number, in which the case of a 3×6 rectangle was again 
treated as an anomaly. The way in which Skylar detected number patterns provides some evidence that naïve empiricism 
dominated his thinking. His subsequent exploration showed that none of the perceived number patterns led Skylar to develop a 
generalizable number pattern or to notice a structure element inherent in the problem. 

Example 2: Connection between naïve empiricism and result pattern generalization 

This example came from Cameron’s exploration of the trace of the midpoint of a segment drawing by connecting a point on a 
circle and a point outside the circle (Task 2). Cameron started by tracing the midpoint while dragging the point on the circle. He 
observed that the trace formed a circle. Cameron then drew a circle and fit it on top of the trace. He then measured the radii of the 
two circles on the screen and calculated their ratio. The calculation yielded a number close to 2. Cameron then drew a circle of 
different size and a point outside the circle. By repeating the above process, Cameron obtained another ratio of the radii of the 
circles, which was also close to 2. Cameron then checked the third case and concluded that the ratio of the radii of any given circle 
and the circle formed by the trace would always be 2. Figure 4 is a snapshot of the three cases Cameron considered. 

 
Figure 4. The three cases Cameron considered when exploring the trace of the midpoint 

Although Cameron gained confidence in a claim by checking it with specific examples his choice of examples was not based 
on conceptual considerations. Moreover, Cameron did not gain any mathematical insight from this process apart from verifying 
that the ratio of the radii of the given circle and the circle formed by the trace was always 2. All the above suggests that Cameron’s 
reasoning was dominated by naïve empiricism. The results from the three cases led Cameron to generalize that the ratio of the 
radii of any given circle and the circle formed by the trace of the midpoint would always be 2. The generalization was a result 
pattern generalization in that it was constructed based on the results of the calculations in the three different cases. Therefore, 
the above example illustrates the movement from naïve empiricism to result pattern generalization. 

Example 3: Connection between naïve empiricism and recognizing structure 

When asked to determine the condition under which the area of the largest square would be the sum of the area of the other 
two squares drawing from each side of a triangle (Task 1), Jordan started by measuring the areas of the three squares and then 
calculating the sum of the areas of the two smaller squares in the diagram. By dragging a vertex of the triangle Jordan created a 
few instances that satisfied the problem condition (Figure 5a), through which he conjectured that the right angle in the triangle 
might affect the relationship among the areas of the square. To verify this conjecture, Jordan constructed a right triangle and then 
drew a square from each side of the triangle by using the square tool in the GSP. He measured the areas of the three squares and 
calculated the sum of the areas of the two smaller squares. The measurement data confirmed that the sum of the areas of the two 
smaller squares was the area of the third square (Figure 5b). Jordan then wondered whether isosceles triangles would also work. 
He measured the sides of the triangle and adjusted the triangle to make it look like an isosceles triangle (Figure 5c). Based on 
measurement data in different cases of isosceles triangle, Jordan concluded that isosceles triangle did not work. Jordan then 
tested scalene triangles and concluded that they did not work either. As a result, Jordan concluded that the sum of the areas of 
two small squares would be the area of the third square drawing from each side of the triangle when there is a right angle in the 
triangle. 

In this example, Jordan relied on the measuring and dragging features of GSP to create instances that satisfied the problem 
condition. Jordan’s heavy reliance on dragging and measuring features as well as the feedback from the GSP screen indicates that 
his reasoning was dominated by naïve empiricism. Meanwhile, the visual-spatial clues in each instance created by measuring and 
dragging allowed Jordan to observe a common property that the triangle was a right triangle when the area of the largest square 
was the sum of the areas of the two smaller squares. This property was then verified through construction and measurement data. 
Once verified, this property became a structural element of the desired configuration of the diagram. The way in which this 
property was observed indicates the occurrence of transition from naïve empiricism to recognizing structure. 
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As shown in the above examples, various tools in the dynamic geometry software allowed the participants in this study to 
easily create a multitude of examples, obtain measurement data, and compare and contrast visual images on the screen, all of 
which might support the participants’ observation of numerical patterns and geometric relation. The perceived numerical 
patterns and geometric relations might lead the participants to attend a structural element of a problem. Meanwhile, as seen in 
the data, the participants sometimes became so obsessed with numerical data and visual clues that they imposed patterns and 
relations that were not inherent to the problem. 

Connections between Crucial Experiment and Structural Reasoning 

A participant was said to engage in crucial experiment when the participant drew on deliberately chosen examples to reach a 
general conclusion. It is different from naïve reasoning in that the choice of examples in crucial experiment is intentional and 
based on conceptual considerations. Table 2 shows that crucial experiment occurred only 18 times in the four tasks and there was 
no instance of crucial experiment that did not lead to some sort of structural reasoning. Compared with naïve empiricism and 
reasoning by generic example, crucial experiment was the least frequently observed in this study. Table 2 also shows that the 
connection between crucial experiment and result pattern generalization was most prominent. This indicates that crucial 
empiricism often led to the discovery of a number pattern. Meanwhile, the table shows that it was less likely for the participants 
to transit from crucial experiment to other types of structural reasoning, such as reasoning in terms of general structures and 
process pattern generalization. 

Table 2. Connections between crucial experiment and structural reasoning 
 Task 1 Task 2 Task 3 Task 4 Total 

Crucial experiment → Result pattern generalization 2 1 1 5 9 
Crucial experiment → Process pattern generalization 0 0 1 0 1 

Crucial experiment → Recognizing and operating with structure in thought 1 0 1 2 4 
Crucial experiment → Reasoning in terms of general structures 0 0 0 0 0 

Total 3 1 3 7 14 
 

Since crucial experiment frequently led to result pattern generalization, we share one example from the data to demonstrate 
this connection. The connections between crucial experiment and other types of structural reasoning are not shared because they 
were less frequently observed.  

Example 4: Connection between crucial experiment and result pattern generalization 

This instance occurred during Cameron’s exploration of the number of unit squares whose interiors a diagonal of the 
rectangular grid would pass through (Task #4). Cameron first considered the case where 𝑚𝑚 was 2 and changed 𝑛𝑛 from 1 to 10. 
When considering different values of 𝑛𝑛, Cameron organized the data in a table. He observed a pattern and then generalized that 
when n was even the number of interior crossings was 𝑛𝑛 and when 𝑛𝑛 was odd the number of interior crossings was 𝑛𝑛 + 1. Cameron 
then considered the case where 𝑚𝑚 was 3 and made a similar table to find patterns. By manipulating the numbers in the table, 
Cameron started to observe patterns. He observed that if 𝑛𝑛 was 2 mod 3 the number of interior crossings was 𝑛𝑛 + 2, if n was 1 mod 
3 the number of interior crossings was 𝑛𝑛 + 2 , and if n was 0 mod 3 the number of interior crossings was 𝑛𝑛 . Cameron then 
considered the case where 𝑛𝑛 was 4 and found similar patterns. Cameron then looked across the tables and observed that the 
number of interior crossings could be grouped into quadruple when 𝑚𝑚 = 4, triple when 𝑚𝑚 = 3, and double when 𝑚𝑚 = 2. Based 
on this observation, Cameron conjectured that a similar pattern (i.e., quintuple) would exist for 𝑚𝑚 = 5 and concluded that he 
could use this pattern and modular arithmetic to figure out the number of interior crossings. Figure 6 is a reproduction of 
Cameron’s data tables. 

 
Figure 5. Jordan’s exploration in the triangle 
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The example shows that Cameron kept fixing one side length while altering the other side length of the rectangular grid. 
Cameron was very systematical during the exploration in that he deliberately broke the problem into different case scenarios and 
organized the data in each case into a table to search for patterns. Since Cameron used this purposeful strategy rather than 
randomly examining cases it is clear that he engaged in crucial experiment. 

By purposefully examining cases in groups sharing a specific property Cameron was able to observe and extend patterns in 
each group of cases. Moreover, by looking at the tables across each group Cameron observed a pattern that he could use to figure 
out the number of interior crossings for m=5, which indicates that Cameron started to generalize across case scenarios. Meanwhile, 
the generalizations that Cameron made were based on numerical patterns. These numerical patterns were not connected to the 
structural elements inherent in the triangular grid. In other words, these generalizations are result pattern generalizations. 

Although the participants who engaged in crucial experiment also relied on technology to generate examples, there was a 
difference in technology usage between naïve empiricism and crucial experiment. When engaging in crucial experiment the 
participants were more intentional in terms of what kinds of examples to consider and how to organize data obtained from these 
examples. 

Connections between Reasoning by Generic Example and Structural Reasoning 

A generic example in mathematics is an example that illuminates a general property rather than a particular relation within 
the example. The participants in this study were said to engage in reasoning by generic example when the participant used 
examples as a tool to communicate abstract thought or the general structure of what is occurring. Table 3 shows that reasoning  
by generic example occurred 26 times in the four tasks and there was no instance of reasoning by generic example that did not 
lead to some sort of structural reasoning. Reasoning by generic example was less frequently observed than naïve empiricism but 
more frequently observed than crucial experiment. Table 3 also shows that the connections between reasoning by generic 
example and process pattern generalization and between reasoning by generic example and reasoning in terms of general 
structure were the most prominent types of connection to structural reasoning. This indicates that reasoning by generic example 
often led to the generalization of a pattern based on invariant relationships in the process rather than regularity in the numerical 
results. It could also likely lead to reasoning in terms of general structure, in which the participants generalized a general property, 
a method, or a chain of reasoning to a set of new problem situations. 

Table 3. Connection between reasoning by generic example and structural reasoning 
 Task 1 Task 2 Task 3 Task 4 Total 

Reasoning by generic example → Result pattern generalization 0 0 0 0 0 
Reasoning by generic example → Process pattern generalization 3 5 2 1 11 

Reasoning by generic example → Recognizing and operating with structure 
in thought 2 2 1 1 6 

Reasoning by generic example → Reasoning in terms of general structures 4 3 0 2 9 
Total 9 10 3 4 26 

 

As shown in Table 3, connections between reasoning by generic example and process pattern generalization and between 
reasoning by generic example and reasoning in terms of general structures were the most prominent types of connection to 
structural reasoning in the data. The two examples below illustrate the two types of connections. 

Example 5: Connection between reasoning by generic example and process pattern generalization 

This instance occurred when Jordan was exploring the number of unit squares whose interiors a diagonal of the rectangular 
grid would pass through (Task #4). When considering the rectangular grid with distinctive side lengths, by adjusting values 𝑚𝑚 and 
𝑛𝑛 to create a few cases, Jordan noticed that the diagonal has to pass through at least m squares, wherein this case m is equal to 
the larger side length of the rectangle. In the case of 3 × 6 rectangle in which the diagonal only passes through the interiors of 6 
unit squares, Jordan reasoned that it was because there were “perfect intersections”, by which Jordan meant that the vertices of 

 
Figure 6. Reproduction of Cameron’s data tables in Task 4 
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the unit squares the diagonal passed through. Jordan then moved to consider the situation where no “perfect intersections” 
exists. Jordan altered the rectangle to be a 7 × 3 rectangle (Figure 7) and made the following discovery: 

 “…here it (the diagonal) starts with 7 because it has to go across, but then it’s making steps down. So, it (the diagonal) has to 
go all the way across and it has to go down two intersections. So, would it be like m plus n minus 1? … 1, 2, 3, 4, 5, 6, 7, 8, 9. So 
that’s nine yeah. So I think in the case like I’m saying where um where it has no perfect intersections I think it will cut through m 
plus n minus 1 where m is the greater side.” 

“So, I’m just thinking in this case it obviously has to go through at least m to get to the other side of the rectangle. But it also 
has to jump down two. Yeah, it has to jump down two, so n-1 in general” 

By looking at the verbal disclosure we can see that while Jordan was using an example (i.e., the case of a 7× 3 rectangle) to 
explain his reasoning, the reasoning was not tied to the specifics of the example. Jordan used the example to describe his thinking, 
which can be seen through statements mentioning that the diagonal has to move each possible column and row in order to reach 
the other side of the rectangle. By using a specific example Jordan was able to describe a structural element inherent in the 
problem. Since Jordan was able to reason about and described his general mathematical thinking through the example it is clear 
he used this example as a generic example. 

This segment also demonstrates how Jordan was able to use the property in the generic example to develop a process pattern 
generalization. Based on the observation that the diagonal has to pass through each column and row if there are no vertices of the 
unit squares the diagonal passes through (i.e., “no perfect intersections” in Jordan’s words), Jordan concluded that the number 
of unit squares whose interiors the diagonal passes through would be 𝑚𝑚 + (𝑛𝑛 − 1), where m is the number of steps to go across 
and (𝑛𝑛 − 1) is the number of steps to go down. It is a process pattern generalization because it was developed as a result of 
attending to an invariant relationship between the number of “perfect intersections” and the number of steps to go down in the 
process. By using this relationship, Jordan then further generalized that for any rectangular grid the number of unit squares whose 
interiors the diagonal passes through would be 𝑚𝑚 + ((𝑛𝑛 − 1) −  the number of “perfect intersections”).  

Example 6: Connection between reasoning by generic example and reasoning in terms of general structures 

This instance occurred during Jesse’s exploration of Task 1. After Jesse connected Pythagorean theorem to the problem and 
realized that the area of each square is the square of a side length of the triangle, the interviewer prompted Jesse to explore the 
conditions under which the area of the largest square is the sum of the areas of the other remaining squares drawing from each 
side of a quadrilateral. After extensive exploration, Jesse was able to use the Pythagorean theorem to create the quadrilaterals 
that satisfy the relationship. When asked to further extend a similar relationship to other polygons, Jesse constructed an octagon 
in which the area of the largest square is the sum of the areas of the remaining squares drawing from each side of the octagon. The 
following excerpt shows Jesse’s reasoning activities with the octagon. 

Interviewer:  Now let’s think a little bit of what we have done here (referring to the octagon in Figure 8a). What if it is a nonagon, 
decagon, or an n-sided polygon, how can you create the polygon such that the area of the largest area is equal to 
the sum of the areas of the other squares drawing from each side of the polygon? 

Jesse:  From one of the vertices of the octagon, the vertex on the largest square, I need the side of each square and the 
line connecting 𝐴𝐴 to each vertex of the octagon or the n-gon to form a 90-degree angle. So, you need to make 𝑛𝑛 −
2 right angles because the only ones that aren’t (right angles) are the two vertices from the largest square. 

Interviewer:  Very nice. What if I want the sum of the areas of two squares equal to the sum of the areas of the remaining 
squares drawing from each side of a polygon, how would you adjust your diagram?  

Jesse:  I think I need a right angle here (pointing to angle 𝐴𝐴𝐴𝐴𝐴𝐴). From here then I think it is kinda like the same, just draw 
five right angles, so 𝑛𝑛 − 3  (Jesse deletes AB and BC in Figure 8a and creates configuration in Figure 8b to 
demonstrate the idea). 

The above excerpt demonstrates that Jesse used the octagon case to communicate a more general relationship. Although 
Jesses frequently referred to elements of the octagon (e.g., vertices of the octagon, specific number of right angles in the octagon, 
and angle ABC) in his thinking, the relationship that Jesse perceived holds beyond octagon. Indeed, Jesse’s thinking often 
switched from the specific case to the more general situation. For instance, Jesse stated that “from here then I think it is kinda like 

 
Figure 7. Jordan’s generic example 
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the same, just draw five right angles, so n-3”. Since Jesse was describing more general mathematical relations through the octagon 
case it is clear he used the octagon case as a generic example. 

The above excerpt provides evidence that Jesse extended the Pythagorean theorem to any polygon and made the 
generalization that the area of the largest square is equal to the sum of the areas of the 𝒏𝒏 − 𝟏𝟏 squares drawing from each side of 
an n-sided polygon when the polygon is created by sequentially drawing n-2 right angles from a vertex of the polygon to the sides 
of the polygon. Symbolically, ( 𝐀𝐀𝟏𝟏𝐀𝐀𝟐𝟐�������)𝟐𝟐 + ( 𝐀𝐀𝟐𝟐𝐀𝐀𝟑𝟑�������)𝟐𝟐 + ⋯+ ( 𝐀𝐀𝐧𝐧−𝟐𝟐𝐀𝐀𝐧𝐧−𝟏𝟏�������������)𝟐𝟐 = ( 𝐀𝐀𝟏𝟏𝐀𝐀𝐧𝐧�������)𝟐𝟐 𝐢𝐢𝐢𝐢 ∠𝐀𝐀𝟏𝟏𝐀𝐀𝟐𝟐𝐀𝐀𝟑𝟑 = ∠𝐀𝐀𝟏𝟏𝐀𝐀𝟑𝟑𝐀𝐀𝟒𝟒 = ⋯ =
∠𝐀𝐀𝟏𝟏𝐀𝐀𝐧𝐧−𝟏𝟏𝐀𝐀𝐧𝐧 = 𝟗𝟗𝟗𝟗°. Moreover, Jesse further extended this generalization to the situation where the sum of the areas of 2 squares 
would be the sum of the areas of remaining squares created from each side of an n-side polygon, which implies a more general 
statement that ( 𝐀𝐀𝟏𝟏𝐀𝐀𝟐𝟐�������)𝟐𝟐 + ( 𝐀𝐀𝟐𝟐𝐀𝐀𝟑𝟑�������)𝟐𝟐 + ⋯+ ( 𝐀𝐀𝐦𝐦−𝟏𝟏𝐀𝐀𝐦𝐦������������)𝟐𝟐 = ( 𝐀𝐀𝟏𝟏𝐀𝐀𝐧𝐧�������)𝟐𝟐 + ( 𝐀𝐀𝐧𝐧𝐀𝐀𝐧𝐧−𝟏𝟏����������)𝟐𝟐 + ⋯+ ( 𝐀𝐀𝐦𝐦+𝟏𝟏𝐀𝐀𝐦𝐦������������)𝟐𝟐 𝐢𝐢𝐢𝐢 ∠𝐀𝐀𝟏𝟏𝐀𝐀𝟐𝟐𝐀𝐀𝟑𝟑 =
∠𝐀𝐀𝟏𝟏𝐀𝐀𝟑𝟑𝐀𝐀𝟒𝟒 = ⋯ = ∠𝐀𝐀𝟏𝟏𝐀𝐀𝐦𝐦−𝟏𝟏𝐀𝐀𝐦𝐦 = 𝟗𝟗𝟗𝟗° 𝐚𝐚𝐚𝐚𝐚𝐚 ∠𝐀𝐀𝟏𝟏𝐀𝐀𝐧𝐧𝐀𝐀𝐧𝐧−𝟏𝟏 = ∠𝐀𝐀𝟏𝟏𝐀𝐀𝐧𝐧−𝟏𝟏𝐀𝐀𝐧𝐧−𝟐𝟐 = ⋯ = ∠𝐀𝐀𝟏𝟏𝐀𝐀𝐦𝐦+𝟏𝟏𝐀𝐀𝐦𝐦 = 𝟗𝟗𝟗𝟗° . These generalizations 
were made by reasoning with the Pythagorean theorem rather than by searching for and extending a numerical pattern. 

Analysis of the instances of connections between reasoning by generic example and structural reasoning revealed that the 
participants at this level of reasoning mostly used tools in GSP or GeoGebra to produce generic examples that they could use to 
communicate the more general idea. Various tools in the dynamic geometry environment made it easy for the participants to 
quickly produce generic examples. For instance, Jordan created the case of 7 × 3 rectangular grid by adjusting 𝑚𝑚 and 𝑛𝑛 and used 
the example communicate the notion of “perfect intersection” (Example 5). Jesse used the various construction tools in GSP to 
create an octagon and used it to communicate a generalization (Example 6). The analysis also showed that the dynamic nature of 
GSP and GeoGebra could facilitate the participants’ observations of the general properties inherent in the examples. As shown in 
Example 5, it was likely that the adjustment of m and n to different values supported Jordan to formulate the notion of “perfect 
intersection”. 

DISCUSSION AND CONCLUSION 

This study examined the connections between empirical and structural reasoning when a group of preservice mathematics 
teachers engaged in solving mathematical problems that were designed to promote learners to generalize mathematical ideas. 
We reported the instances of connections between empirical reasoning (i.e., naïve empiricism, crucial experiment, reasoning by 
generic example) and different types of structuring reasoning. The results revealed that naïve empiricism was the dominant type 
of empirical reasoning, which is consistent with the existing literature on pattern generalization (e.g., EI Mouhayar, 2018; El 
Mouhayar & Jurdak, 2016; Küchemann, 2010; Küchemann & Hoyles, 2009). Although the inductive nature of the dynamic geometry 
environment made it relatively easy for the participants to observe, conjecture, validate, and generalize mathematical relations 
on the basis of perception and numerical patterns, identifying mathematical structure underlying these relations and using them 
to generalize the relations to broader contexts proved to be challenging for them. Learners need additional support to choose 
examples based on conceptual considerations and to use generic examples in their reasoning. 

The results also revealed connections between certain types of empirical reasoning and certain types of structural reasoning. 
More specifically, the following connections between a specific type of empirical reasoning and a specific type of structural 
reasoning occurred more frequently: connection between naïve empiricism and result pattern generalization, connection 

 
Figure 8. Jesse’s generalization of the Pythagorean theorem 
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between naïve empiricism and recognizing and operating with structure in thought, connection between crucial experiment and 
result pattern generalization, connection between reasoning by generic example and process generalization, and connection 
between reasoning by generic example and reasoning in terms of general structures. By identifying these specific connections, 
this study deepened our understanding of the complex relationship among the various types of empirical and structural reasoning 
in the process of generalizing. 

Pattern generalization is a typical generalization activity in school mathematics, in which a figurative, numerical, or tabular 
pattern is usually presented in the form a systematic sequence of elements, and learners are expected to generate a systematic 
set of ordered pairs from which an empirical relationship can be induced. This approach often promotes learners to identify and 
express a numerical relationship (i.e., a result pattern generalization) without necessarily seeing the mathematical structure that 
produces it (Küchemann, 2010). The results from this study showed close connections between result pattern generalization and 
naïve empiricism and between process pattern generalization and reasoning by generic example. In doing so, this study provides 
empirical evidence that the ability to generalize based on perception and numerical patterns does not necessarily lead learners 
to generalize on the basis of mathematical structure. We argue that one plausible reason that many participants in this study were 
not able to create generalizations based on mathematics structure is that they were not provided sufficient opportunities to 
engage in this way of thinking in their own mathematical learning experiences. To promote process pattern generalization, the 
pattern tasks should be designed in a way to encourage reasoning by generic example. Pattern tasks that only include one single 
example seem to be more likely to promote reasoning by generic example than tasks in which pattern elements are presented 
sequentially. 

The results also showed close connections between naïve empiricism and recognizing a structure in thought and between 
reasoning by generic example and reasoning in terms of general structures. Although various tools available in GSP or GeoGebra 
supported the participants to recognize mathematical properties based on empirical cases, it rarely occurred that the participants 
moved directly from naïve empiricism to reasoning in terms of general structures. Meanwhile, it was quite common for the 
participants to move from reasoning by generic example to reasoning in terms of general structures. This implies that a learner 
might be able to recognize a structural element based on naïve empiricism but unable to reasoning with the perceived structure. 
For instance, in this study many participants recognized the Pythagorean theorem in Task 1 but only a very few of them were able 
to reason with it as Jesse did in Example 7. This is consistent with the differentiation described in Mason et al. (2009) between 
perceiving properties and reasoning on the basis of the identified properties while discussing different states of learner’s attention 
to mathematical structure. Perceiving properties occurs when a learner perceives the discerned relationships as instantiations of 
general properties which can apply in many different situations. It involves the transition from seeing something in its particularity 
to seeing it as representative of a general class. Reasoning based on the identified properties involves extending the perceived 
structure to novel contexts and transforming inductive and abductive reasoning about specific objects into deductive reasoning. 
Learners should be provided with opportunities to engage in both recognizing structures and reasoning with the perceived 
structures.  

In addition, this study showed that there seem to be at least three prominent types of generalization based on the connections 
between empirical and structural reasoning. They are result pattern generalization based on naïve empiricism (Example 2) or 
crucial experiment (Example 4), process pattern generalization based on reasoning by generic example (Example 5), and 
generalization through generalizing the reasoning (Example 6). These different types of generalization have been discussed in the 
literature. This study provides a way to organize the different types of generalization by the types of mathematical reasoning that 
contribute to their generation. Current literature identified different forms of generalization based on, for instance, object of 
abstraction (Dörfler, 1991), level of connection to context (Radford, 2003), or change of cognitive schema (Harel &Tall, 1991). This 
categorization is different from these existing categorizations in that it foregrounds reasoning in differentiating forms of 
mathematical generalization.  

This study has a few limitations. First, the results of this study were based on a series of task-based interviews with a small 
number of learners. Although we deliberately chose tasks from different mathematical domains, the tasks cannot represent all 
the wide variety of contexts in which mathematical generalizations occur. Larger scale studies (in terms of both the number of 
participants and mathematical contexts) are needed to validate the findings from this study. Second, we limited our analysis to 
instances of transitions from empirical reasoning to structural reasoning in technology-aided generalization activity and did not 
consider the instances in which the participants moved from structural to empirical reasoning. Further research is needed to 
examine the dynamic relationship between empirical and structural reasoning and the mechanism for engendering and sustaining 
productive transition in reasoning. 
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