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 The tradition of studies involving the combinatorial approach to recurring numerical sequences has accumulated 
a few decades of tradition, and several problems continue to attract the interest of mathematicians in several 

countries. This work specifically discusses the Fibonacci, Pell, and Jacobsthal sequences, focusing on Mersenne 

sequences. The often-used definition of board involves considering how to fill a specific regular surface -the board- 

with a limited quantity of regularly shaped tiles. On the other hand, an analogous problem can be generalized and 

exemplifies current research developments. Finally, the examples covered constitute unexpected ways of 
exploring visualization and other skills in mathematics teachers’ learning, consequently inspiring them for their 

teaching context. 
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INTRODUCTION 

In general, we can see the advances in contemporary research around the study of recurring numerical sequences and their 

countless forms of approaches and generalization (Grimaldi, 2012; Lagrange, 2013), which, recurrently, tends to be neglected by 

book authors of the history of mathematics (Grimaldi, 2012; Gullberg, 1997; Stillwell, 2010; Vorobiev, 2000). We especially 

remember the Fibonacci sequence, whose recurrence relationship allows us to determine the Fibonacci numbers and is defined 

by the following relationship: 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, 𝐹0 = 0, 𝐹1 = 1 (*). 

On the other hand, we must register the tradition of works (Benjamin & Quinn, 1999, 2003a, 2003b; Koshy, 2001, 2014, 2019) 

that introduce a combinatorial approach to the numerical sequence indicated in (*). In these terms, in a pioneering way, Benjamin 

and Quinn (2003a) introduce the notion of n-n-board and another broad set of demonstration and proof techniques that allow us 

to verify and confirm various theorems and properties derived from the generalization of the sequence indicated in (*) (Figure 1).  

Based on these and other arguments, in the following sections, we will present some examples that, from an evolutionary 

mathematical-historical perspective, highlight the origin and evolution of the combinatorial approach for some recurring 

numerical sequences (Spreacífico, 2014). First, we will discuss the most classic cases in the literature and other examples that 

involve numerical sequences disregarded by authors of the history of mathematics books based on generalized and unexpected 

forms of boards. In these terms, we will first see that the notion of board admits unexpected and pictorial forms of representation 

for the sequences of Fibonacci, Lucas, Pell, Jacobthal, and Padovan and, more recently, the Mersenne sequence.  

COMBINATORIAL APPROACH TO THE FIBONACCI SEQUENCE 

In Grimaldi (2012), we can see that the author considers a board 2×𝑛 and considers vertical dominoes  (2×1) and horizontal 

dominoes  (1×2) to fill the board.  
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Figure 2 illustrates some particular cases disregarded by Grimaldi (2012). Considering that number𝑓𝑛represents the tiling ways 

to fill the board 2×𝑛, we will find the relationship 𝑓𝑛 = 𝐹𝑛+1 , for 𝑛 ≥ 0. It is worth noting that, based on particular combinatorial 

arguments, we can state theorem 1, whose detailed demonstration can be consulted in Grimaldi (2012) and other properties 

(Bicknell-Johnson, 1970; Feinberg, 1963; Feng, 2011).  

Theorem 1: Considering board 2×𝑛 and fixing vertical dominoes  (2×1) and horizontal dominoes  (1×2), fill it by tiling. 

Defining the term 𝑓𝑛  as the number of different ways to fill it, then 𝑓𝑛 = 𝐹𝑛+1, 𝑛 ≥ 0 (Grimaldi, 2012). 

Now, through the recent works of Došlić and Podrug (2022), Dresden and Tulskikh (2021), and Ziqian and Dresden (2022), we 

will discuss the case of hexagonal boards. In fact, these works generally introduce a board shape made up of regular hexagons, 

that is, a double-strip 𝐻𝑛 constituted by 𝑛 regular hexagons. To illustrate, Figure 3 shows 𝐻8 strip, made up of eight cells, which, 

in this case, are eight regular hexagons. Ziqian and Dresden (2022) define a double track with the so-called 𝑛regular and adjacent 

hexagons (right part in Figure 3). Ziqian and Dresden (2022) define an enumeration of cells (hexagons) as indicated and describe 

the possibility of covering the 𝐻𝑛 range with horizontal and inclined dominoes.  

On the other hand, Ziqian (2019) seeks to simplify the graph by introducing the dotted configuration to locate each hexagon. 

Thus, Ziqian (2019) uses a similar method when choosing a set of pieces to tiling the 𝐻𝑛 strip using the dotted (triangular) diagram. 

On the other hand, on the right side of Figure 3, we note that, for each hexagonal cell, monomers or dimers can occur (contiguous 

and non-isolated hexagonal cells). For example, Došlić and Podrug (2022) comment that in the cell numbered ‘1,’ we have a 

monomer, however, when we observe ‘2’ and ‘3,’ it corresponds to a dimer. For the same reason, cell ‘8’ has a monomer, and ‘10’ 

and ‘11’ correspond to a dimer (right part in Figure 3). Figure 3 establishes the ordering and numbering of 𝐻𝑛 track. Next, we 

define the pieces that must be considered with the close interest of describing the tiles for each case indicated in Figure 3, for 

cases 𝑛 = 1, 2, … , 8. For our discussed instances, we will only consider isolated hexagonal cells (monomers only). 

 

Figure 1. 1×𝑛-type board related to Fibonacci sequence & numerous combinatorial properties (Adapted from Benjamin & Quinn, 

2003a) 

 

Figure 2. Examples of tiling related to Fibonacci, using horizontal & vertical dominoes to fill a 2×𝑛-type board (Source: Authors’ 

own elaboration) 

 

Figure 3. Board with hexagonal cells (Adapted from Došlić & Podrug, 2022 and Ziqian, 2019) 
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Figure 4 depicts cases 𝑛 = 0, 1, 2, … , 6 and their numerical relationships with the Tetranacci sequence (0, 1, 1, 2, 4, 8, 15, 29, 

56, 108, …), which we denote in Figure 4 by 𝑇𝑒0, 𝑇𝑒1, 𝑇𝑒2, 𝑇𝑒3, 𝑇𝑒4, 𝑇𝑒5.  

COMBINATORIAL APPROACH TO THE PELL SEQUENCE 

Benjamin et al. (2008) address how to fill a board with the values corresponding to the Pell sequence, which, in a standard 

way, is described by relationship 𝑃𝑛+1 = 2𝑃𝑛 + 𝑃𝑛−1, for the values 𝑃0 = 0, 𝑃1 = 1. So, let us consider a white square , a black 

square  , and a gray domino . To this end, the authors denote 𝑝0 = 1 = 𝑃1 , which corresponds to no initial tiling. For 

𝑝1 = 2 = 𝑃2 , which corresponds to filling a 1-board in two ways, with a white square and a black square. Next, for a 2-board, we 

can see in Figure 5 the tilings for a 3-board and 4-boards that determine the relationships 𝑝2 = 5 = 𝑃3, 𝑝3 = 12 = 𝑃4 , and 𝑝4 =

29 = 𝑃5 (Figure 5). Using a combinatorial argument, we will determine that the respective board can be related based on the 

number indicated by 𝑝𝑛 = 𝑃𝑛+1, 𝑛 ≥ 0.  

 

Figure 4. Visualization of particular cases proposed by Ziquian (2019) & hexagonal board with inclined tiles (dominoes & triminoes)  

(Source: Authors’ own elaboration) 

 

Figure 5. Benjamin et al. (2008) describe a 1 × 𝑛  board & rules that determine numerical relationships with Pell sequence 𝑃𝑛 

(Source: Authors’ own elaboration) 
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COMBINATORIAL APPROACH TO THE JACOBSTHAL SEQUENCE 

In the case of the board related to the Jacobsthal sequence, we will first consider a one-dimensional board of the 2×𝑛 type, 

with the following pieces attached: horizontal dominoes 1×2  and vertical dominoes 2×1 , both with weight 1, and black 

squares 2×2 , with weight 1.  

Next, in Figure 6, we will associate the weight defined by 𝑆𝑛  for each board, considering the tiles described through the 

previously defined pieces. Thus, based on Koshy’s (2019) thinking, we define that 𝑆0 = 1. And, for the corresponding boards, we 

will determine the following arithmetic-algebraic relationships: 𝑆0 = 1 = 𝐽1, 𝑆1 = 1 = 𝐽2, 𝑆2 = 3 = 𝐽3, 𝑆3 = 5 = 𝐽4, 𝑆4 = 11 =

𝐽5, 𝑆5 = 21 = 𝐽6, etc. 

From examining some particular cases through a visualization exercise, the more attentive reader acknowledges that only two 

forms of tiling occur when looking at the end. Tilings that end with vertical rectangles occur and, in this case, determine sub-tiling 

of length 𝑛 − 1. On the other hand, sub-tilings of length 𝑛 − 2 that end in black squares 2×2  or dominoes grouped in the form 

 may occur. Let us look at the examples in Figure 6.  

In fact, based on Figure 6, when we consider the tiling on the board for 𝑛 = 4, we can count five tiles with vertical rectangles, 

three tiles that end in black squares, and three tiles that end with horizontal rectangles, i.e., 𝑛 = 4 ∴ 5 + 2 ⋅ 3 = 11 = 𝐽4. Based 

on this particular analysis, we will generalize the respective argument for counting the tiles that fill a board 2 x 𝑛. Let us see the 

demonstration of the previous arguments, which can be consulted in more detail in Koshy (2019).  

Theorem 2: Given board 2×𝑛 , and considering the horizontal dominoes 1×2  and vertically , both with weight 1, black 

squares 2×2 , with weight 1. In light of the sum of the weights of length 𝑛, then the relation 𝑆𝑛 = 𝐽𝑛+1, for 𝑛 ≥ 0 is valid (Koshy, 

2019).  

Proof: Let us consider a board 2×𝑛. We will denote by 𝑆𝑛 the number of different tile shapes on this board. Immediately, in 

cases 𝑛 = 0, 1 we will define that 𝑆0 = 1 = 𝐽1,  𝑆1 = 1 = 𝐽2. In the following cases, we can examine the numerical relationships 

shown in Figure 5. Now, considering any arbitrary tile, which we will denote by 𝑇, we will consider the following cases:  

(a). when it ends with a vertical domino , 

(b). when it ends with a square , and  

(c). when it ends with the following configuration .  

Note that when case (a) does not occur, we will only have two possibilities that do occur, which are the sub-tilings of the (n-2) 

 form or sub-tilings of the (n-2)  form. Thus, since the previous configurations are independent, the final total contribution 

of all cases, by an additive and counting principle, results in the expression 2 × 𝑆𝑛−2. And, adding the cases of the item (a), for the 

cases of sub-tilings of the (n-1) form , we will determine that: 1 × 𝑆𝑛−1 + 2 × 𝑆𝑛−2 = 𝑆𝑛−1 + 2𝑆𝑛−2 . Finally, since 𝑆0 = 1 =

𝐽1, 𝑆1 = 1 = 𝐽2 and the previous expression corresponds to the case and the same recurrence rule of the Jacobsthal sequence, we 

determine that 𝑆𝑛 = 𝐽𝑛+1, for 𝑛 ≥ 0 ■. 

 

Figure 6. Koshy (2019) describes tiles & a board 2×𝑛 that corresponds to elements of Jacobsthal sequence (Source: Authors’ own 

elaboration) 
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In the Jacobsthal sequence, we can see other forms of generalization that correspond, for example, with the introduction of 

weights for specific board pieces. In this case, based on the illustration of the previous cases, we can verify properties related to 

the polynomial Fibonacci sequence, the polynomial Pell sequence, and even the polynomial Jacobsthal sequence. On the other 

hand, it is worth noting that in the work by Soykan (2021), we come across the third-order Pell sequence, described by 𝑃𝑛+2 =

2𝑃𝑛+1 + 𝑃𝑛 + 𝑃𝑛−1, 𝑃0 = 0, 𝑃1 = 1, 𝑃2 = 2. Employing, once again, the arrangement indicated in Figure 5, if we add a trimino 

 (in green), we will be able to determine the corresponding numerical correlation with the third-order Pell sequence. A 

similar strategy can be developed for Tribonacci, Tetranacci, etc. 

COMBINATORIAL APPROACH TO THE PADOVAN SEQUENCE 

Let us consider the following pieces of the board that we will indicate, according to Tedford (2019), for  (dominoes) and 

 (triminoes). Next, we contemplate some rules for the composition and description of tiling. In fact, we will represent the 

following element ℑ𝑛  , which defines a partition into two sets of dominoes (𝐷) and triminoes (𝑇): ℑ𝑛 = 𝐷 ∪ 𝑇. Then, according to 

Tedford’s (2019, p. 291) description, we will consider the subset 𝐷 of possible tiling that always ends with a domino . And on 

the other hand, the subset 𝑇 of possible tiling always ending with a trimino .  

For example, let’s determine the initial elements denoted by ℑ1, ℑ2. ℑ3, ℑ4. ℑ5. Considering the previous definition ℑ𝑛 = 𝐷 ∪

𝑇, in case ℑ1 , we will assume that, by fixing a 1-board, it is not possible to perform any form of tiling, i.e., we will designate it as 

ℑ1 = ∅ and, numerically, we can indicate it by |ℑ1| = 0 = 𝑃−1. On the other hand, setting a 2-board, we will naturally conclude 

that only ℑ2 = {1 dominó} ∪ ∅ occurs, that is, we see that |ℑ2| = 1 + 0 = 1 = 𝑃0. In the next step, for a 3-board, we can infer that 

ℑ3 = ∅ ∪ {1 trimino}; that is, we determine that |ℑ3| = 0 + 1 = 1 = 𝑃1. Repeating the previous arguments, setting a 4-board, we 

will see that ℑ4 = {1 domino} ∪ ∅ , that is, we can determine that |ℑ4| = 1 + 0 = 1 = 𝑃2 . Our last case that exemplifies the 

previous arguments, when we set a 5-board, we have the possibilities ℑ5 = { tridomino,domino} ∪ {domino,tridomino } . 

Therefore, we will conclude that |ℑ5| = 1 + 1 = 2 = 𝑃3.  

In Figure 7, we exemplify the cases of 1 ≤ 𝑛 ≤ 9 . In the middle column, we indicate by 𝐷  the tiling configurations 

corresponding to the tiling ending up in a domino . In the last column on the right, we can identify the tiling that end in a 

trimino . For example, we see the following numerical correspondence: |ℑ6| = 1 + 1 = 2 = 𝑃4 , |ℑ7| = 2 + 1 = 3 = 𝑃5 , 
|ℑ8| = 2 + 2 = 4 = 𝑃6, |ℑ9| = 3 + 2 = 5 = 𝑃7, etc… 

In Figure 8, we provide examples of particular cases for ℑ10, ℑ11,  ℑ12  and we can perform the following numerical 

correspondences when we view the configurations indicated in columns 𝐷 and 𝑇. Thus, we establish ℑ10 = 4 + 3 = 7 = 𝑃8, ℑ11 =

5 + 4 = 𝑃9, ℑ12 = 8 + 4 = 𝑃10.  

 

Figure 7. Description of cases 1 ≤ 𝑛 ≤ 9 based on combinatorial model, via board (Adapted from Tedford, 2019) 
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To verify the following theorem, we will define the terms 𝑝𝑛, which involves considering all the ways to fill the board with tiles 

indicated previously (see Figure 7 and Figure 8). Therefore, when we consider an n-board, we can write that 𝑝𝑛 = |ℑ𝑛|.  

Theorem 3: For every whole 𝑛 ≥ 1, the following relation holds |ℑ𝑛| = 𝑃𝑛−2 , where the numbers {𝑃𝑛−2} describe the Padovan 

sequence, defined by 𝑃𝑛+1 = 𝑃𝑛−1 + 𝑃𝑛−2, 𝑃0 = 1, 𝑃1 = 1, 𝑃2 = 1 (Tedford, 2019). 

Proof: We will consider the numerical values corresponding to the terms indicated in the sequence ℑ1,  ℑ2. ℑ3,  ℑ4. ℑ5,  ℑ6, . .. 

and that, from the examples noted above, we find the relations 𝑝1 = |ℑ1| = 0 = 𝑃−1, |ℑ2| = 1 = 𝑃0, |ℑ3| = 1 = 𝑃1, |ℑ4| = 1 =

𝑃2 , |ℑ5| = 2 = 𝑃3 . We now observe that the numbers determined by the initial values coincide with the initial values of the 

Padovan sequence, at least of the order. Now, for 𝑛 ≥ 3 , we will consider the decomposition of sets into two subsets that we can 

visualize in Figure 7 and Figure 8, which we will designate asℑ𝑛 = 𝐷 ∪ 𝑇. The first set 𝐷 of the tiling that end up as one piece 

 (dominoes), and we can determine the following quantity 𝑝𝑛−2 = |𝐷|. The second set 𝑇 of the tiling that end up as one 

piece  (triminoes), and we can write that 𝑝𝑛−3 = |𝑇|. We have that 𝑝𝑛 = |ℑ𝑛| = |𝐷| ∪ |𝑇| = 𝑝𝑛−2 + 𝑝𝑛−3 and that, from the 

initial values, such recurrence coincides precisely with the Padovan sequence, i.e., it is worth that |ℑ𝑛| = 𝑃𝑛−2, for all 𝑛 ≥ 1 ■. 

LITERATURE REVIEW: BOARDS OF OTHER NUMERICAL SEQUENCES 

The diversity and other unexpected forms of tiling make it possible to establish a numerical correspondence with specific 

recurring numerical sequences. For example, in the case of the Jacobsthal sequence, whose recurrence relation we indicate in 

Table 1, we must consider a board of dimensions 3×𝑛. In Figure 9, on the left side, we establish the tiles as white squares 1×1 and 

red squares 2×2, as described in Craveiro (2004). 

 

Figure 8. Description of cases based on 10 ≤ 𝑛 ≤ 12 model (Adapted from Tedford, 2019) 

Table 1. Set of recurring numerical sequences & their corresponding formation rule 

Sequence Recurring rule Numerical values 

Fibonacci 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝐹0 = 0, 𝐹1 = 1 1, 1, 2, 3, 5, 8, 13, 21, 34, … 

Tribonacci 𝑇𝑛 = 𝑇𝑛−1 + 𝑇𝑛−2 + 𝑇𝑛−3, 𝑇0 = 0, 𝑇1 = 1, 𝑇2 = 2 0, 1, 1, 2, 4, 7, 13, 24, 44, … 

Tetranacci 𝑇𝑒𝑛 = 𝑇𝑒𝑛−1 + 𝑇𝑒𝑛−2 + 𝑇𝑒𝑛−3 + 𝑇𝑒𝑛−4, 𝑇𝑒0 = 0, 𝑇𝑒1 = 1, 𝑇𝑒2 = 2, 𝑇𝑒𝑛 = 4 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, … 

Pentanacci 𝑃𝑒𝑛𝑡𝑛 = 𝑇𝑒𝑛−1 + 𝑇𝑒𝑛−2 + 𝑇𝑒𝑛−3 + 𝑇𝑒𝑛−4 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, … 

Pell 𝑃𝑛+1 = 2𝑃𝑛 + 𝑃𝑛−1, 𝑃0 = 0,  𝑃1 = 1 0, 1, 2, 5, 12, 29, ... 

Tri-Pell 𝑃𝑛+2 = 2𝑃𝑛+1 + 𝑃𝑛 +  𝑃𝑛−1, 𝑃0 = 0,  𝑃1 = 1,  𝑃2 = 2 0, 1, 2, 5, 13, 33, 84, … 

Jacobsthal 𝐽𝑛+1 = 𝐽𝑛 + 2𝐽𝑛−1, 𝐽0 = 0,  𝐽1 = 1 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, … 

Lucas 𝐿𝑛+1 = 𝐿𝑛 + 𝐿𝑛−1, 𝐿0 = 0,  𝐿1 = 3 1, 3, 4, 7, 11, 18, 29, 47, … 

Padovan 𝐶𝑛+1 = 𝐶𝑛−1 + 𝐶𝑛−2, 𝐶0 = 1,  𝐶1 = 1,  𝐶2 = 1 1, 1, 1, 2, 2, 3, 4, … 

Perrin 𝑄𝑛+1 = 𝑄𝑛−1 + 𝑄𝑛−2, 𝑄0 = 3,  𝑄1 = 0,  𝑄2 = 2 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, … 

Tridovan 𝑇𝑟𝑖𝑛+1 = 𝑇𝑟𝑖𝑛 + 𝑇𝑟𝑖𝑛−1 + 𝑇𝑟𝑖𝑛−2, 𝑇𝑟𝑖0 = 0,  𝑇𝑟𝑖1 = 1,  𝑇𝑟𝑖2 = 0,  𝑇𝑟𝑖3 = 1 0, 1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, … (Vieira & Alves, 2019) 

Mersenne 𝑀𝑛+2 = 3𝑀𝑛+1 − 2𝑀𝑛 , 𝑀0 = 0,  𝑀1 = 1 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, … 

Jacobsthal 𝐽𝑛+1 = 𝐽𝑛 + 2𝐽𝑛−1, 𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝐽0 = 0,  𝐽1 = 1 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, … 

ҒOresme 𝑂𝑛+2 = 𝑂𝑛+1 − (1/4)𝑂𝑛 , 𝑂0 = 0,  𝑂1 = 1/2 0,
1

2
,

2

4
,

3

8
,

4

16
,

5

32
, … 

Narayanna 𝑁𝑛+1 = 𝑁𝑛 + 𝑁𝑛−2, 𝑁0 = 1,  𝑁1 = 1 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, … 

Leonardo 𝐿𝑒𝑛+1 = 2𝐿𝑒𝑛 − 𝐿𝑒𝑛−2, 𝐿𝑒0 = 1,  𝐿𝑒1 = 1 1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, … 

Ernst 𝐸𝑛 = 𝐸𝑛−1 + 2𝐸𝑛−2 + 1, 𝐸0 = 0,  𝐸1 = 1, 𝑛 ≥ 2 0, 1, 2, 5, 10, 21, 42, 85, … 

Francois 𝐼𝐹𝑛 = 𝐼𝐹𝑛−1 + 𝐼𝐹𝑛−2 + 1, 𝐼𝐹0 = 2,  𝐼𝐹1 = 1 2, 1, 4, 6, 11, 18, 30, 49, 80, 130, 211, … 
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Next, we can verify a theorem established by Koshy (2019) and, some time later, by Craveiro (2004), considering the distinction 

between the ways to fill and the tiles chosen, and the different dimensions of each board.  

Theorem 4: Considering a 3×𝑛 board, with only two types of tiles, a tile 1×1 in white  and a tile 2×2 in red . Then, 𝑗𝑛 

represents the number of possible tiles for the board and is determined by 𝑗𝑛 = 𝐽𝑛, 𝑛 ≥ 1 (Koshy, 2019; Craveiro, 2004).  

Bodeen et al. (2014) consider a board of triangular cells, as shown in Figure 10. From fixing four pieces , the 

authors describe the following recurring numerical sequence, starting from the following initial values: 𝐼𝑛 = 𝐼𝑛−1 + 3𝐼𝑛−2 + 𝐼𝑛−3, 

𝐼1 = 1, 𝐼2 = 4, 𝐼3 = 8. From the previous relationship, we can determine the numerical list: 1, 4, 8, 21, 49, 120, 288, 697, 1681, 4060, 

9800, ... Theorem 5 expresses the results discussed by Bodeen et al. (2014). 

Theorem 5: Denoting the element 𝐼𝑛 that represents the ways of filling a triangular board composed of a double strip of the 

2 × 𝑛 type and using triangular pieces of the  type. Thus, it is true that 𝐼𝑛 = 𝐼𝑛−1 + 3𝐼𝑛−2 + 𝐼𝑛−3, 𝐼1 = 1, 𝐼2 = 4, 

𝐼3 = 8 (Bodeen et al., 2014).  

Furthermore, given a wide range of other recurring numerical sequences that we indicate in Table 1, we highlight the natural 

interest in the possibility of highlighting the description of new boards and determination of tilings that produce the desired 

numerical relationships that characterize the numerical sequences. However, we highlight some particular cases of sequences 

whose representation via the board cannot yet be found and have not been introduced in the scientific literature, such as the 

Narayanna and Leonardo sequences (Catarino & Borges, 2020). To illustrate, in Table 1 we provide a simplified set of eleven 

recurring numerical sequences that, for the most part, constitute examples disregarded by history of mathematics books (Vieira 

et al., 2022). However, when we consider its combinatorial properties and relationship with the notion of Board, we can verify that 

not all numerical sequences indicated in Table 1 have a corresponding representation, via Board and rules for the tiles.  

Based on the recent work by Soykan (2022), when he presents (in a pioneering way) and defines a recursive relationship that 

produces a numerical set called, by the author himself, as Ernst numbers and which, despite being little detailed and/or explained 

in a specialized scientific article on pure mathematics, we infer a historical relationship with the German mathematician and 

physicist Ernst Eduard Kummer (1810-1893). 

Definition 1: The Ernst number sequence is defined by the following recurrence relation 𝐸𝑛 = 𝐸𝑛−1 + 2𝐸𝑛−2 + 1, with the 

following initial numerical values indicated by 𝐸0 = 0, 𝐸1 = 1, 𝑛 ≥ 2 (Soykan, 2022). 

Definition 2: A sequência numérica de François é definida pela seguinte relação de recorrência 𝐼𝐹𝑛 = 𝐼𝐹𝑛−1 + 𝐼𝐹𝑛−2 + 1, com 

os seguintes valores numéricos iniciais indicados por 𝐼𝐹0 = 2, 𝐼𝐹1 = 1, 𝑛 ≥ 2 (Diskaya et al., 2023).  

A partir da definição 1, considerando a recorrência não homogênea (com a presença de constantes) indicada por 𝐸𝑛 = 𝐸𝑛−1 +

2𝐸𝑛−2 + 1, vamos considerar ainda que 𝐸𝑛−1 = 𝐸𝑛−2 + 2𝐸𝑛−3 + 1. Next, we will consider the following difference 𝐸𝑛 − 𝐸𝑛−1 =
(𝐸𝑛−1 + 2𝐸𝑛−2 + 1) − (𝐸𝑛−2 + 2𝐸𝑛−3 + 1) = 𝐸𝑛−1 + 2𝐸𝑛−2 − 𝐸𝑛−2 − 2𝐸𝑛−3 = 𝐸𝑛−1 + 𝐸𝑛−2 − 2𝐸𝑛−3 . Therefore, we find that 

𝐸𝑛 + 𝐸𝑛−1 = 𝐸𝑛−1 + 𝐸𝑛−2 − 2𝐸𝑛−3 and then we will determine that 𝐸𝑛 = 2𝐸𝑛−1 + 𝐸𝑛−2 − 2𝐸𝑛−3, that is, we find a homogeneous 

recurrence relation (without the presence of non-zero constants). 

About the set of sequences indicated in Table 1, we recall the case of the Mersenne sequence, indicated by 𝑀𝑛+2 = 3𝑀𝑛+1 −

2𝑀𝑛, 𝑀0 = 0,  𝑀1 = 1. On the other hand, we recall Catarino et al.’s (2016) work, which employs some elementary properties of 

the number theory and indicates the following initial relationship for the Mersenne sequence, which we designate by 𝑀𝑛+1 =

2𝑀𝑛 + 1. Furthermore, Chelgham and Boussayoud (2021) describe the k-Mersenne sequence through the relationship 𝑀𝑘,𝑛+2 =

3𝑘𝑀𝑘,𝑛+1 − 2𝑀𝑘,𝑛, 𝑀𝑘,0 = 0,  𝑀𝑘,1 = 1. Thus, from the relationship 𝑀𝑛+1 = 2𝑀𝑛 + 1, with initial values 𝑀0 = 0, 𝑀1 = 1 , let us 

 

Figure 9. Viewing a 3 × 𝑛 board related to numerical values of Jacosbsthal sequenceAdapted from Craveiro, 2004) 

 

Figure 10. Representation of a triangular board (Adapted from Bodeen et al., 2014) 
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determine some rules aimed at filling out a 1×𝑛 board, with squares  (in pink) and squares (in green color). In Figure 11, 

we exemplify the particular cases 𝑛 = 0, 1, 2, … , 5.  

We will define the term 𝑚𝑛, which designates the total number of ways to fill a board of length 𝑛. For our correspondence, we 

will define 𝑚0 = 0 and 𝑚1 = 1. Furthermore, we will establish the following rules:  

(a) in every tiling, there must be at least one square  (in white) in the highest order cell (i.e., always to the right of the board) 

and  

(b) tiles that use green squares and pink squares at the same time cannot be used, for example, tiles of the type  or 

 cannot be employed.  

Thus, with visual support from the diagram, we can verify that 𝑚0 = 0 = 𝑀0 , 𝑚1 = 1 = 𝑀1 , 𝑚2 = 3 = 𝑀2, 𝑚3 = 7 = 𝑀3 , 

𝑚4 = 15 = 𝑀4, 𝑚5 = 31 = 𝑀5, etc ... 

In Figure 12, we bring another case 𝑛 = 6 that corresponds to the following numeric values that correspond to the elements 

𝑚6 = 31 + 31 + 1 = 63 = 𝑀6 determined by rule (a) and rule (b).  

Based on the previous cases and emphasizing a visual verification of specific properties, we will establish the following 

theorem 6 and theorem 7, which corresponds to the board. 

Theorem 6: Considering a board of order 1 x 𝑛, with squares  (in pink) and squares (in green color). Considering that, 

in every tiling, there must be at least one square  (in white) in the highest order cell (i.e., always to the right of the board). 

Colored tiles of different colors cannot occur, and the term 𝑚𝑛 designates the total number of ways to fill a board 1 x 𝑛 of length 

𝑛. Then 𝑚𝑛 = 𝑀𝑛, for all 𝑛 ≥ 0 and the elements 𝑀𝑛  satisfy the recurrence relation 𝑀𝑛+1 = 2𝑀𝑛 + 1, with initial values 𝑀0 =

0, 𝑀1 = 1.  

 

Figure 11. Determination of rules for using tiles corresponding to Mersenne sequence, according to previously defined rules 

(Source: Authors’ own elaboration) 

 

Figure 12. Determination of rules for using tiles corresponding to Mersenne sequence, n=6 according to previously defined rules 

(Source: Authors’ own elaboration) 
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Proof: Consider an n-order board and let us denote 𝑚𝑛 the number of possible tilings of this board. According to the previously 

defined rule (a) and rule (b), considering that in every tile there must be at least one square  (in white) in the highest order cell, 

when we fill it with only the tiles , we will have a total of 𝑚𝑛−1 = 𝑀𝑛−1. Similarly, every tile must have at least one square  

(in white) in the highest order cell; when we fill it with only the tiles , we will have a total of 𝑚𝑛−1 = 𝑀𝑛−1. Finally, in the case 

of only square  (in white), we will have only one possibility, that is, resulting in a total of 𝑚𝑛 =  𝑚𝑛−1 +  𝑚𝑛−1 + 1 = 𝑀𝑛−1 +

 𝑀𝑛−1 + 1 = 2𝑀𝑛−1 + 1 = 𝑀𝑛, for every integer 𝑛 ≥ 0 ■. 

Theorem 7: Considering a Board 1 × 𝑛 with the tiles: a green square  (1 × 𝑛), a yellow domino  (1 × 𝑛) a pink domino 

 (1 × 𝑛),We will define the following rule: tiles made up only of restricted combinations of pink dominoes are disregarded. 

Defining the number 𝑒𝑛, which represents the number of tiles obtained by filling the Board, then 𝑒𝑛 = 𝐸𝑛, 𝑛 ≥ 0. 

Proof: Let’s define the number 𝑒𝑛, which represents the number of tiles obtained when filling the Board, based on the rules 

and tiles defined as previously. Let’s consider a table numbered with ‘n’ cells of the type 1 × 𝑛. Now let’s consider two cases:  

(a) suppose ‘n’ is even and considering fixing the tiles in the last positions of the Board, say in the positions (𝑛 − 2, 𝑛 − 1, 𝑛). 

Let’s consider the case, where we fill with only green tiles , which is equivalent to +1. On the other hand, yellow 

dominoes  (1 × 2), a pink domino  (1 × 2),however, a tile with only pink dominoes is discarded. Fixing the 

dominoes in the last position (𝑛 − 1, 𝑛) , we can count tiles in a quantity of 𝑒𝑛−2. The same argument applies to the 

case of pink dominoes with the domino fixed in the last position (𝑛 − 1, 𝑛). Thus, we will count a total of tiles 𝑒𝑛−1 +

𝑒𝑛−2 + 1 = 𝑒𝑛−1 + 2𝑒𝑛−2 + 1. 

(b) suppose ‘n’ is odd and considering fixing the tiles in the last positions of the Board, say in the positions (𝑛 − 2, 𝑛 − 1, 𝑛). 

Note that we automatically eliminate tiles completely filled with pink dominoes . In the case, where a green tile occurs 

in the last position and is fixed in position 𝑛, we will start counting in the form 𝑒𝑛−1 for all tiles that end in a green square. 

When yellow dominoes occur  (1 × 2), a pink domino  (1 × 2), we will have a total amount of the 𝑒𝑛−2 + 𝑒𝑛−2, 

with the positions fixed in (𝑛 − 1, 𝑛). In the case of a tile made up of green squares we will have the quantity +1. Again, we 

will find the total amount of 𝑒𝑛−1 + 𝑒𝑛−2 + 1 = 𝑒𝑛−1 + 2𝑒𝑛−2 + 1. Finally, if we define that, for a Board with no cells, that 

is, 𝑛 = 0 ∴  𝑒0 = 0 = 𝐸0, an for the particular case 𝑛 = 1 ∴  𝑒1 = 1 = 𝐸1, we conclude that the total contribution of tiles 

coincides with the recurrence 𝐸𝑛 = 𝐸𝑛−1 + 𝐸𝑛−2 + 1, for every integer 𝑛 ≥ 0 ■. 

According to Sánchez (2020), periodic tilings and regular polygons have been studied since Archimedes (287 BC – 212 BC), 

which can be explored in the plane or on a sphere. The first attempt at a systematic study of tilings of the plane with regular 

polygons appears in Kepler’s book, Harmonices Mundi, published 400 years ago (Sánchez, 2020, p. 1). Sanchéz (2020) discuss 

examples of flat periodic tilings and further explain that tiling, in mathematical terms, “is a subdivision of the plane into closed 

faces delimited topologically equivalent to a disk. We focus on periodic tilings whose faces are regular and periodic polygons.” 

Figure 13 shows examples of flat periodic tiling described, in an unprecedented way, in the doctoral thesis titled “Sobre 

ladrilhamentos periódicos com polígonos regulares” [“On periodic tiling with regular polygons”] and that the author describes a 

simple computational representation based on integers for periodic tiling of the plane with regular polygons using complex 

numbers, which constitutes the new state of the art for these objects. On the other hand, geometry problems consisting of covering 

a surface with a specific collection of tiling that is never repeated have intrigued mathematicians for decades! 

FINAL CONSIDERATIONS 

In the previous sections, we discussed properties and ways of representing recurring numerical sequences through the notion 

of board that come in different dimensions. We discussed the emergence and dissemination of the first works and some important 

books involving the combinatorial approach (Benjamin & Walton, 2009; Benjamin et al., 2011) and properties and representations 

of numerical sequences via boards using tiling. However, our work highlighted the importance of delimiting a historical and 

 

Figure 13. Unprecedented tiling patterns (Adapted from Sánchez, 2020) 
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evolutionary component (Bicknell-Johnson, 1987; Gould, 1991) that transmits strategic knowledge to the mathematics teacher 

(Alves, 2017, 2022). 

Faced with an even larger set of examples of numerical sequences, as indicated in Table 1, we found that, in particular, the 

Fibonacci, Tribonacci, Pell, Jacobsthal, and Perrin sequences–and, more recently, Mersenne sequence and its representation via 

a 2D/3D board, which we introduced in this work–can indicate different learning itineraries for the mathematics teacher (Figure 

14).  

Finally, a perspective we incorporated in our work concerns understanding mathematical knowledge from a non-static and 

evolutionary perspective (Alves & Catarino, 2022). Thus, the examples we discussed demonstrate the vigor of contemporary 

research around combinatorial representations of sequences (Lagrange, 2013; Spivey, 2019), whose tradition and research in 

several countries have already accumulated at least two decades of tradition and consolidation of an area with broad interfaces 

with other branches of investigation, in addition to pure mathematics and its respective research in Brazil.  
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