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ABSTRACT 
This articles discusses the characteristics of students’ mathematical understanding in solving 
multiple representation tasks. Qualitative explorative methods were used to clarify the 
characteristics of mathematical understanding. Data were obtained by assigning multiple 
representation tasks to and interviewing 25 students. It is concluded that there are two 
characteristics of mathematical understanding in solving multiple representation tasks: flexibility 
and compartmentalization. Flexible understanding consists of complete and incomplete flexibility. 
SOLO taxonomy level for students who have flexible understanding is relational. Multi-structural 
level refers to students whose comprehension is incomplete flexible, while uni-structural level 
refers to students whose understanding is compartmentalized. The findings of this study can be 
used as a guide to assess the depth of students’ mathematical understanding and a foothold in 
developing learning mathematics based multiple representations. 
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INTRODUCTION 
The use of various mathematical representation forms is important to be considered in mathematics 

learning. It could be derived both from aspects of the process and mathematical learning evaluation. 
Associated with the process of learning mathematics, Bal P (2015), Jao (2013), and Mhlolo et al. (2012) suggest 
that students work more on various forms of mathematical representation. 

On the other hand, in assessing the quality of students’ mathematical understanding, it is compulsory to 
develop task-based multiple representations. The reason is that when students solving multiple 
representation tasks, they can form a network of connections between mathematical concepts with various 
representational structures (Barmby et al., 2007). In addition, various forms of representation usage on the 
task or problem can be identified students’ difficulties in understanding mathematical concepts.  

Specifically, about the relationship between understanding and multiple representations that the level of 
understanding is determined by the number and strength of connections between mathematical concepts and 
external representational structures (Goldin, 1998). Some researchers have examined this connection. For 
example, Gagatsis et al. (2006) find that there was a compartmentalization phenomenon in understanding the 
concept of addition and subtraction. The characteristic of this phenomenon is the lack of connection between 
mathematical content and various forms of representation. Adu-Gyamfi et al. (2017) found that students built 
different connections between graphical and symbolic representations. Previous research has not yet discussed 
the quality of students’ understanding of building connections between the two representations. Furthermore, 
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Rahmawati et al. (2017) suggest to research about the characteristics of the subject deeply as the level of 
ability that might affect the representation translation process and this can be seen when students work with 
mathematical multiple representation tasks. Therefore, this study focuses on knowing the characteristics of 
students’ understanding in solving multiple representation tasks. 

This study is crucial in order to recognize the strong connection between mathematical concepts and 
various representational structures (Adu-Gyamfi et al., 2017). The aim is to see the real difference among each 
level of students’ mathematical understanding dealing with multiple representation tasks. Assignment of 
representational tasks was considered in this study because curriculum reform in Indonesia emphasizes more 
on multiple representation-based learning. However, the effectiveness of the learning needs to be seen from 
the quality of students’ mathematical concepts understanding through creating their characteristics. 

The framework used to create the characteristics of students’ mathematical understanding in solving 
multiple representation tasks is the Structure of the Observed Learning Outcome (SOLO) taxonomy 
(Jimoyiannis, 2011). SOLO taxonomy could be employed to evaluate students’ understanding in solving 
multiple representation tasks and categorize them into five levels, starting from pre-structural, uni-structural, 
multi-structural, relational and abstract extended (Chick, 1998). Working with various forms of 
representations brings about varying degrees of performance and complexity. Therefore, this article is 
interested in making her understanding characteristics based on SOLO taxonomy. 

METHOD 
The explanatory method in qualitative research was used to obtain the students’ understanding 

characteristics in solving multiple representation tasks. Twenty-five students mathematics major in the 
Universitas Islam Negeri Malang participated in solving multiple representation tasks. The mathematical 
translation task can be seen in Figure 1. 

This task was classified as a non-routine task because mathematics books and mathematics learning rarely 
ask students to find the composition function value from three different forms of representation. Shortly after 
the students solving the task, an interview was conducted to investigate and confirm the mathematical 
understanding which determined their task solving. The questions posed around the understanding of register 
representation, the mathematical concepts represented by the register and the connection between the 
mathematical concepts with different representation registers. 

Data on written work and interviews data characteristics were reduced, coded and described based on the 
SOLO taxonomy level. The SOLO taxonomy response indicator was developed from (Chick, 1998) described in 
Table 1. Table 1 contains indicators of student understanding in solving multiple representation tasks at 
each level of thinking. The indicator is used to assess the student’s response, so as to know the position of the 
thinking level of each category of acquired understanding. 

 
Figure 1. Multiple Representation Tasks 
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FINDING AND DISCUSSION 
Based on data reduction derived from 25 students, it was revealed that there were two types of students’ 

mathematical understanding in solving multiple representations tasks, which were flexible understanding 
and compartmentalized understanding. The flexible understanding character was flexible in making the 
relation or the composition function concept network through various forms of representation. The 
characteristic of compartmentalized understanding was the students’ ability to make the relation between the 
composition function concepts withal one form of representation but failed to find a connection to other forms 
of representation. 

Students who were able to determine 𝑓𝑓 ∘ 𝑔𝑔(0) graphic, symbolic, and table representations were classified 
as having a complete flexible understanding (CFU), meanwhile, those who were only able to determine 𝑓𝑓 ∘
𝑔𝑔(0) from two of three representations were categorized as having an incomplete flexible understanding (IFU). 
Students who could determine 𝑓𝑓 ∘ 𝑔𝑔(0) from one particular form of representation, for instance, graphic, 
symbol, or table regarded having a compartmentalized understanding (CU). Students who could not determine 
𝑓𝑓 ∘ 𝑔𝑔(0) absolutely classified as failed. 

Quantitative data showed that from 25 students solving multiple representation tasks about composition 
function, there were 7 (28%) students who had flexible understanding, 12 (48%) students who had 
compartmentalized understanding, and 6 (24%) students who were failed to solve the tasks. Students who 
have a flexible understanding are divided into two, namely complete flexible (12%) and flexibly incomplete 
(16%). Students who have a compartmentalization comprehension are divided into three, namely 
compartmentalized into symbolic (36%) and compartmentalized on the graph (0%) and compartmentalized on 
the table (12%). 

Students categorized as incomplete flexible understanding could only find 𝑓𝑓 ∘ 𝑔𝑔(0) from symbolic-table, 
table-graphs. In the compartmentalized understanding category, students’ understanding of composition 
functions is more compartmentalized on symbolic representation, less in table representation, and not in the 
graphical representation. 

Table 1. Indicators of Student’s Understanding in Solving Multiple Representation Tasks based on SOLO 
Taxonomy 
Level response Indicators 
Pre-structural • Lack of knowledge in representation register terms. 

• Having a little information about representation register, nevertheless cannot explain 
mathematical concept represented by the register itself. 

• Trying to get the tasks done, but failed to find out the right answer. 
Uni-structural • Only understand specific representation register (symbolic,table,or graphic). 

• Doing composition function concept interpretation only from the registered particular 
type of representation. 

• Understanding compositional function concept from one kind of representation only. 
Multi-
structural 

• Understanding symbolic, table, and graphic representation register.  
• Doing interpretation of symbolic, table, and graphic representation register to come 

across composition function concepts. 
• Understanding composition functions concept from various types of representation 

(graphics, symbolic and tables). 
• Connecting the concept of composition function to two forms of representations only. 

Relational • Understanding symbolic, table, and graphic representation register. 
• Doing interpretation towards symbolic, table, and graphic representation register to 

discover composition function concept.  
• Understanding composition function concept from many kinds of representations 

(symbolic, table, and graphics).  
• Connecting composition function concept to three representation forms. 

Extended 
Abstract 

• Understanding the register of all mathematic representations which reflects real 
function. 

• Doing interpretation towards register of all mathematic representations to abstraction 
composition function concept.  

• Understanding composition function concept of all mathematic representation varieties.  
• Creating flexible connection among mathematic representation and being able to 

generalize all mathematic concepts. 
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Flexible Understanding 

Students who had a complete flexible understanding (CFU) can solve multiple representation tasks. The 
CFU students were able to establish the connection of the concept of composition function with various forms 
of representation such as symbolic, graphics and table. Meaning that CFU students have an understanding of 
the composition of deep composition function (Barmby et al., 2007) and flexible (Ainsworth, 1999; Eisenberg 
& Dreyfus, 1991; Warner et al., 2009). 

The CFU students did interpretation against the register representation to accessing the concept of 
composition function. As in graphical representation, it concludes that the horizontal axis represents the 
function domain, the vertical axis represents the co-domain function, the line graph represents the linear 
function of one variable and the parabolic graph represents the squared function. In the table representation, 
CFU students have made a correspondence between the values in the left column and the right column, for 
instance, it is obtained 𝑔𝑔(𝑥𝑥) = 1. 

In symbolic representations, CFU students could see the correlation between domains and co-domain. They 
understood that the domain value from the function 𝑔𝑔(𝑥𝑥) has function value at 𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥. This indicates 
that CFU students understand the register of symbolic representations, tables and graphics (Adu-Gyamfi, 
2016) and are able to interpret the registers (Boote, 2012). The procedure done by CFU student in determining 
𝑓𝑓 ∘ 𝑔𝑔(0) on the representation graphic was started by spelling out 𝑓𝑓 ∘ 𝑔𝑔(0) into 𝑓𝑓(𝑔𝑔(0)). Furthermore, CFU 
student explained that 𝑔𝑔(0) would be done earlier through looking at the domain (horizontal axis) at zero, 
then pulled up and met at co-domain (vertical axis) at one, then it was obtained 𝑔𝑔(0) = 1. On the next step, 
CFU students enacted that 𝑔𝑔(0) = 1 as a domain for 𝑓𝑓(𝑥𝑥). Its domain produced a co-domain which was the 
same as one. In another word, it could be written 𝑓𝑓(𝑔𝑔(0)) =  𝑓𝑓(1) = 1. 

The same process also did by CFU students on finding. 𝑓𝑓 ∘ 𝑔𝑔(0) from the table.The students picked 𝑥𝑥 = 0 
on the left column of function table 𝑔𝑔 and got 𝑔𝑔(𝑥𝑥) = 1, then move onto the table 𝑓𝑓 and picked 𝑥𝑥 = 1 on the left 
column so that 𝑓𝑓(𝑥𝑥) = 1 was acquired. In Figure 2 it seemed that the process of finding 𝑓𝑓 ∘ 𝑔𝑔(0) on symbolic 
representation tended to be procedural specifically by substituting 𝑔𝑔(𝑥𝑥) = 1 + 𝑥𝑥 onto 𝑓𝑓(𝑥𝑥) =  −𝑥𝑥2 − 2𝑥𝑥 + 4 so 
that we got 𝑓𝑓(𝑔𝑔(𝑥𝑥)) =  −(1 + 𝑥𝑥)2 − 2(1 + 𝑥𝑥) + 4. 

Furthermore, 𝑥𝑥 = 0 was substituted to 𝑓𝑓(𝑔𝑔(𝑥𝑥)) so that 𝑓𝑓(𝑔𝑔(0)) was obtained. Referring to the process which 
was done, it could be assumed that CFU students have understood that the concept of composition function 
𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) had a rule that 𝑥𝑥 worked on 𝑔𝑔(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) worked on 𝑓𝑓(𝑥𝑥) which eventually formed 𝑓𝑓 ∘ 𝑔𝑔(𝑥𝑥). It 
can be said that this concept could actually be applied to the three representations. On the interview section, 
CFU student made the conclusion that all three representations had the same content. The CFU students are 
able to maintain the semantic structure of the three representations (Goldin, 1998). Based on the description 
of the work and interviews, CFU students could be categorized into the relational level of SOLO taxonomy. 

Unlike CFU students, IFU students were only able to find 𝑓𝑓 ∘ 𝑔𝑔(0) from only two representations are 
symbolic-tables and graphs. IFU students were right in finding 𝑓𝑓 ∘ 𝑔𝑔(0) either symbolic representation and 
table or graphic and table. They were capable to recognize the registers of both representations. They were 
capable of interpretation composition function concept from the second register of the representation and being 
able to connect the composition function concept with both representations. 

After an investigation through interviews with IFU students working on symbolic and tables, information 
was derived that they had no idea at all on how to find 𝑓𝑓 ∘ 𝑔𝑔(0) from the graphic. This condition is due to when 
working with composition functions, it focuses more on symbolic representation (Knuth, 2000). They realized 
that symbolic and graphical representations were equivalent. Hence they assumed that 𝑓𝑓 ∘ 𝑔𝑔(0) from the 

 
Figure 2. The Example of CFU Students’ Work in Task 1 
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graphic was the same as one as well, but could not prove from the graphic. It also happened to IFU students 
who were only able to find 𝑓𝑓 ∘ 𝑔𝑔(0) from the graphic and table. 

A condition when the IFU students could not find 𝑓𝑓 ∘ 𝑔𝑔(0) from the symbolic one was astonishing. This was 
in contrast to the quantitative data, that the students were frequently correct in finding 𝑓𝑓 ∘ 𝑔𝑔(0) which was 
from symbolic. This finding is in contrast to the findings of of Greer (2009), that students more effectively work 
with the symbolic rather than tables and graphics. These findings need to be explored further in the future 
research. Referring to the characteristics of work and interviews, IFU students could be categorized into multi-
structural levels in the SOLO taxonomy. 

Compartementalized Understanding 

The quantitative information showed that in part students have compartmentalization understanding 
(CU) and most frequencies are compartmentalized on symbolic representation (SCU). These data imply that 
the SCU students’ learning experience about composition functions mostly use symbolic representation rather 
than tables and graphs (Greer, 2009). The CU students’ work results in symbolic representation can be seen 
in Figure 3. 

From Figure 3, the students seem to understand dependence relationship among 𝑥𝑥 with 𝑔𝑔(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) 
with 𝑓𝑓(𝑥𝑥). Implicitly, it shows that SCU students understand about symbolic representation registers (Adu-
Gyamfi & Bossé, 2014; Boote, 2014) and are able to interpretation composition functions concept. 

There were three students who had compartmentalized understanding on the table (TCU). The three 
students did not write too much of their answers on paper. They worked directly on the table by encircling a 
pair of values in the table 𝑔𝑔(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) table. Example of student working of TCU could be seen in Figure 4. 

There were three students who had compartmentalized understanding on the table (TCU). The three 
students did not write too much of their answers on paper. They worked directly on the table by encircling a 
pair of values in the table 𝑔𝑔(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) table. Example of student working of TCU could be seen in Figure 4. 
Confirmation through interviews obtained explanation that student of TCU firstly worked on the table and 
assumed that for 𝑥𝑥 = 0 it would be 𝑔𝑔(𝑥𝑥) = 1. Hereinafter, 𝑔𝑔(0) = 1 became the domain of 𝑓𝑓(𝑥𝑥) table through 
choosing 𝑥𝑥 = 0 on the 𝑓𝑓(𝑥𝑥), it was obtained that 𝑓𝑓(𝑥𝑥) = 1. Eventually, the students assumed that 𝑓𝑓 ∘ 𝑔𝑔(0) = 1. 

 
Figure 3. Example of SCU Students’ Work Result 

 
Figure 4. Example of TCU Students’ Work Result 
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Based on the working result and interview, it could be assumed that TCU students understood table register 
(Adu-Gyamfi & Bossé, 2014) and were able to interpret the of composition function concept (Boote, 2012). 

The quantitative data also showed that the students have no graphic compartmentalization understanding 
(GCU). The students’ failure in a finding 𝑓𝑓 ∘ 𝑔𝑔(0) of the graphic was because they admitted difficulty and had 
no idea at all. There were still some GCU students trying to translate the graphics into its symbolic but failed. 
Result of previous research mentions that the translation process is considered difficult by students (Greer, 
2009). Confirmation through interviews obtained information that GCU students claimed that 𝑓𝑓 ∘ 𝑔𝑔(0) could 
not be found from a graphical representation and could only be found in a symbolic representation. Based on 
the description of the work result and interviews, the characteristics of students’ understanding of CU both 
SCU and TCU could be classified into the uni-structural level of the SOLO Taxonomy. 

CONCLUSIONS 
This research found some characteristics of students’ mathematical understanding in solving multiple 

representation tasks. Characteristics of students’ mathematical understanding namely complete flexible 
understanding, incomplete flexible understanding, and compartmentalized understanding. SOLO taxonomy 
level for students who have a complete flexible understanding of relational and students who have an 
incomplete flexible understanding is in multi-structural level. Students who have a compartmentalization 
understanding go to the uni-structural level. The multiple representation tasks in this study have limitations 
to assess all mathematical understanding indicators of students at the level of abstract extended. Therefore, 
there is an opportunity for further research to examine the characteristics of students’ mathematical 
understanding at the level of extended abstract. The findings of this study can be used as a guide to assess the 
characteristics of students’ understanding of learning based on multiple representations. 
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