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ASSESSING STUDENTS’ DIFFICULTIES WITH CONDITIONAL PROBABILITY
AND BAYESIAN REASONING

Carmen Díaz

Inmaculada de la Fuente

ABSTRACT. In this paper we first describe the process of building a questionnaire directed to globally

assess formal understanding of conditional probability and the psychological biases related to this concept.

We then present results from applying the questionnaire to a sample of 414 students, after they had been

taught the topic. Finally, we use Factor Analysis to show that formal knowledge of conditional probability

in these students was unrelated to the different biases in conditional probability reasoning. These biases also

appeared unrelated in our sample. We conclude with some recommendations about how to improve the

teaching of conditional probability.
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INTRODUCTION

Conditional probability and Bayesian reasoning are important for undergraduate
students, since they intervene in the understanding of classical and Bayesian inference, linear
regression and correlation models, multivariate analysis and other statistical procedures, which
are often used in empirical research. Conditional probability reasoning is also a critical part of
statistical literacy in addition to being highly relevant in education, psychology, medicine and
other professional fields. Reasoning based on conditional probability appears in these areas in
evaluation, decision-making, diagnosis, and making inferences from samples to populations.

In spite of this relevance and the fact that a previous study of literature showed us that there is a
large amount of research on this topic, we found no comprehensive questionnaires to globally
assess students' understanding and misconceptions on these topics. Current school curriculum
documents stress the need for assessment instruments to support learning and provide
information that will allow reliable and valid inferences to be made about students’
understanding, regardless of the context of the assessment task (Callingham, 2006). Following
this need, the aim of this research was to build a comprehensive instrument that could be used
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to assess the different biases and misunderstanding related to conditional probability. A second
goal was to explore our preliminary hypothesis that formal knowledge of conditional probability
is not related to the biases described in the literature.

In this paper we first summarize previous research on conditional probability and then describe
the building of the CPR (Conditional Probability Reasoning) questionnaire whose preliminary
evaluation was presented in Díaz and de la Fuente (2006). We then explore possible relationships
between items that assess formal knowledge and those assessing the biases described in the
literature.

PREVIOUS RESEARCH ON CONDITIONAL REASONING

Research on the understanding of conditional probability has been carried out with both
secondary school and university students. Fischbein and Gazit (1984) conducted teaching
experiments with children in grades 5-7 (10-12 year-olds) and compared two types of problems:
In “without replacement” experiments (e.g., item 4 in Appendix) an element is selected from a
set and not replaced and then a second selection is done. In “with replacement” experiments the
element is put again in the initial set before selecting a second element. Fischbein and Gazit
found that conditional probability problems were harder for these children in “without
replacement” situations as compared to “with replacement” problems. Following that research
Tarr and Jones (1997) identified four levels of thinking about conditional probability and
statistical independence in middle school students (9-13 year-olds) (a more detailed description
is given in Tarr & Lannin, 2005):

• Level 1 (subjective): Students ignore given numerical information in making
predictions; they use subjective reasoning in assessing conditional probability and
independence. 

• Level 2 (transitional): Students demonstrate some recognition of whether consecutive
events are related or not; however, their use of numbers to determine conditional
probability is inappropriate. 

• Level 3 (informal quantitative): Students’ differentiation of “with and without
replacement situations” is imprecise as is the quantification of the corresponding
probabilities; they are also unable to produce the complete composition of the sample
space in judging independence.

• Level 4 (numerical): Students state the necessary conditions for two events to be related,
they assign the correct numerical probabilities and they distinguish between dependent
and independent events in “with replacement” (e.g. item 15 in appendix) and “without
replacement” (items 4, 9) situations”. 
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Even when students progress towards the upper level in this classification (see also Tarr
& Lannin, 2005), difficulties still remain at high school and university. This is shown in the
various studies we summarize below, from which we have taken some of the items in our
questionnaire. The full questionnaire is included in the Appendix.

Conditioning and Causation

It is well known that if an event B is the cause of another event A, then whenever B is
present A is also present and therefore P(A/B)=1. On the contrary, P(A/B)=1 does not imply that
B is a cause for A, though the existence of such a conditional relationship indicates a possible
causal relationship. From a psychological point of view, the person who assesses the conditional
probability P(A/B) may perceive different type of relationships between A and B depending on
the context (Tversky and Kahneman, 1982a). If B is perceived as a cause of A, P(A/B) is viewed
as a causal relation, and if A is perceived as a possible cause of B, P(A/B) is viewed as a
diagnostic relation. At other times people confuse the two probabilities P(A/B) and P(B/A); this
confusion was termed the fallacy of the transposed conditional (Falk, 1986). Item 7 in the CPR
was included to assess these difficulties.

Causal Reasoning and the Fallacy of the Time Axis

Falk (1989) gave item 9 in Appendix to 88 university students and found that while
students easily answered part 1, in part 2 they typically argued that the result of the second draw
could not influence the first, and claimed that the probability in part B is 1/2. Falk suggested that
these students confused conditional and causal reasoning and termed fallacy of the time axis their
belief that an event could not condition another event that occurs before it. 

This is a false reasoning, because even though there is no causal relation from the second
event to the first one, the information in the problem that the second ball is red has reduced the
sample space for the first drawing. Hence, P (W1 is red/ W2 is red) =1/3. Similar results were
found by Gras and Totohasina (1995) who identified two different misconceptions about
conditional probability in a survey of seventy-five 17 to 18 year-old secondary school students:

• The chronological conception where students interpret the conditional probability
P(A/B) as a temporal relationship; that is, the conditioning event B should always
precede event A. 

• The causal conception where students interpret the conditional probability P(A/B) as an
implicit causal relationship; that is, the conditioning event B is the cause and A is the
consequence.
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Synchronic and Diachronic Situations 

Another issue involving time and conditional probability has been identified in the
literature. In diachronic situations (e.g. items 4, 8, 9 and 10 in  Appendix) the problem is
formulated as a series of sequential experiments, which are carried out over time. Synchronic
situations (e.g. items 1, 5, 14 and 17 in  Appendix) are static and do not incorporate an underlying
sequence of experiments. Formally the two situations are equivalent, however Sánchez and
Hernández (2003) in their investigation with one hundred and ninety-six 17 to 18 year-old
students found that students did not always perceive the situations as equivalent. These students
add probabilities instead of using the product rule when computing a compound probability in a
synchronic problem but use the correct rule in a diachronic situation.

Solving Bayes Problems

Considering reasoning needed to solve problems involving the Bayes’ theorem, early
research by Tversky and Kahneman (1982a) suggested that people do not employ this reasoning
intuitively (see a summary in Koehler, 1996). Their research established the robustness and wide
extent of the base-rate fallacy in students and professionals (Bar-Hillel, 1983). Mathematical
analyses of tasks used in this research and of students’ responses also reveal that their complexity
is often greater than that reported in psychological research. For example, Totohasina (1992)
analyzed the intuitive strategies of 67 pre-university students after being introduced to
probability and before being taught Bayes' theorem. Only 25% gave correct responses.
Totohasina suggested that part of the difficulty in solving Bayes' problems is due to the
representation chosen by the student to solve the problems and that the use of a two way table is
an obstacle to perceiving the sequential nature of some problems, and therefore can lead students
to confuse conditional and joint probability. Another difficulty is the need to invert A and B in
P(A|B) (condition and conditionant) in the problems, since students frequently confuse the role
of these two events in a conditional probability.

Recent research suggests that Bayesian computations are simpler when information is
given in natural frequencies, instead of using probabilities, percentages, or relative frequencies
(Cosmides & Tooby, 1996; Gigerenzer, 1994; Gigerenzer & Hoffrage, 1995). The suggested
reason is that natural frequencies (absolute frequencies) correspond to the format of information
humans have encountered throughout their evolutionary development. In particular, Bayes
problems transform to simple probability problems if the data are given in a format of absolute
frequencies. Sedlmeier (1999) analyzes and summarizes recent teaching experiments carried out
by psychologists that follow this approach and involve the use of computers. The results of these
experiments suggest that statistical training is effective if students are taught to translate
statistical tasks to a suitable format, that includes tree diagrams and absolute frequencies.
Martignon and Wassner (2002) organized a teaching experiment where students were taught to
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solve Bayes problems with the help of tree diagrams and absolute frequencies. Participants in
their study achieved about 80% of success in these problems after instruction.

Other Difficulties in Conditional Probability

Other difficulties include problems in defining the conditioning event (Bar-Hillel &
Falk, 1982) and misunderstanding of independence (Sánchez, 1996; Truran & Truran, 1997).
People also have problems with compound probabilities. Kahneman and Tversky (1982a) coined
the term conjunction fallacy for people’s unawareness that a compound probability cannot be
higher than the probability of each single event.

METHOD

The building of our questionnaire was based on a rigorous methodological process,
which included the following steps:

1. Definition of the variable: In educational measurement (e.g. Millman & Greene, 1989) a
distinction is made between constructs (unobservable psychological traits, such as
understanding of conditional probability) and the variables (e.g. score in a questionnaire)
we use to make inferences about the construct. In order to achieve objectivity in defining
our variable, we decompose the construct “understanding conditional probability” into
content units. These content units were selected on the basis of a content analysis of 19 text
books used in the teaching of statistics to undergraduates. To select the books, the list of
references recommended in statistics courses was requested from 31 different universities in
Spain. All the textbooks recommended by at least 4 different universities were analyzed,
after discarding some books in which conditional probability was not included. The
conditional probability content in these textbooks was analyzed and the definitions,
properties, relationships with other concepts and procedures were classified into a reduced
number of content units by means of a systematic and objective identification. The list of
content units identified from this analysis is included in Table 1.

2. Constructing an item bank: The aforementioned analysis was complemented with our
review of previous research on conditional probability reasoning. This review that also
served to compile a sample of n=49 different items used in this research, some of which had
been used by different authors. The topics of the item pool covered the range of content units
defined in step 1. These items were translated into Spanish and reworded to make their
format homogeneous and improve their understanding.

3. Selection of items: The item difficulty (percentage of correct responses) and discrimination
(correlation with test total score) were estimated from the answers by different samples of
students (between 49 and 117 students answered each pilot item). Selection of items to build
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the pilot questionnaire took into account these two parameters as well as results from expert
judgment. Ten statistics education researchers from five different countries (Brazil,
Colombia, Mexico, Spain and Venezuela) who had themselves carried out research related
to conditional probability or independence were asked to collaborate. They were asked to
rate (in a 5-point scale) the adequacy of the content units to understanding conditional
probability as well as the suitability of each item to assess understanding for each specific
content unit. The items in the pilot questionnaire were selected in such a way that a) the
intended content of the questionnaire was covered (see Table 1); b) there was an agreement
from the experts about the item adequacy; and c) item difficulty and discrimination were
suitable.

Table 1. Primary content assessed by each item in the CPR questionnaire

4. Formatting and revising the item: We included two different formats: a) Multiple choice
items with 3-4 possible responses were used to allow quick evaluation in the sample of some
of the most pervasive biases described in the previous literature, e.g. item 2, taken from
Tversky and Kahneman (1982a) evaluates the base-rate fallacy, item 3 taken from Sánchez
(1996) assesses the confusion between independent and mutually exclusive events and item

Content units included in the CPR questionnaire CPR item

1. Defining conditional probability; giving appropriate examples 11

2. Recognizing that a conditional probability involves a restriction in the sample space 12

3. Base rate fallacy 2

4. Distinguishing conditional, simple and joint probabilities 1

5. Distinguishing a conditional probability and its inverse (transposed conditional fallacy 7

6. Conjunction fallacy 6

7. Distinguishing independent and mutually exclusive events 3

8. Computing conditional probabilities in a single experiment 13

9. Solving conditional probability problems in a sampling “with replacement” setting 15

10. Solving conditional probability problems in a sampling “without replacement” setting 4, 9

11. Computing conditional probabilities from joint and compound probabilities 5

12. Solving conditional probability problems when the time axis is reverted 8, 9

13. Distinguishing conditional, causal and diagnosis situations 7

14. Solving conditional probability problems in a diachronic setting 4.8, 9,10

15. Solving conditional probability problems in a synchronic setting 1,5,14,17

16. Solving compound probability problems by applying the product rule to independent events 16

17. Solving compound probability problems by applying the product rule to dependent events 10, 17

18. Solving total probability problems 14

19. Solving Bayes problems 2, 18



6 taken from Tversky and Kahneman (1982b) assesses the conjunction fallacy; b) Open-
ended items were also used to better understand students’ strategies in problem solving (e.g.
item 18) and their understanding of definitions and properties (e.g., items 11, 12).

5. Pilot trial of the instrument: The pilot study took place in the academic year 2003-2004 with
a small sample of n=57 psychology major students in order to make a preliminary
estimation of the questionnaire reliability and validity. A second sample of n=37 students
majoring in mathematics was used to compare the performances in the two groups and to
identify items with and without discriminative properties.

6. Revising the pilot questionnaire. After discarding those items with bad psychometric
features, there was a second revision of the questionnaire. Thirteen expert methodology
instructors were given three alternative wordings for each item and asked to select the best
version, considering methodology standards, as well as give the reasons for their choice. For
each item the version preferred by the majority was selected and additional suggestions by
the methodology instructors were used to improve readability further.

The final questionnaire (see an English translation in Appendix) is composed of 18
items, with some sub-items which score independently, and some open-ended items. Table 1
presents the items’ primary contents that cover the content in the books analyzed as well as main
biases described in the literature. 

Sample

Students from the Universities of Granada (4 different groups of students; n=308
students total) and Murcia (two different group of students; n= 106 students total) comprised the
sample (n=414). The students were enrolled in an introductory statistics course in the first year
of University studies (typically, 18-19 year-olds). They had studied conditional probability at
secondary school level and were taught conditional probability and the Bayes theorem with the
help of tree diagrams, two-way tables and meaningful examples, for about 2 weeks before they
completed the questionnaire. The questionnaire was given to the students as an activity in the
course of data analysis. 

RESULTS AND DISCUSSION

Reliability and Validity

Once the data were collected, we analysed the response of each student in each item,
taking into account the completeness of response in the open-ended items. Students were given
one point per each correct response in items 2-8, and correct response in each part of items 1 and
9. In items 10-17, they were given 1 point if the response was basically correct with minor
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mistakes (e.g. in carrying out an arithmetic operation; see Table 2). In item 18 students were
given a score ranging between 0-4 according the correctness of response (see Table 4). 

The empirical distribution of scoring ranged between 3 and 30 with an average value of
19.12, a little higher than half the maximum possible score (33 points) and a standard deviation
of 5.91. A first approach to the reliability of the instrument was carried out by computing the
Alpha coefficient that gave a moderate value (Alpha=0.79), which is reasonable, given that the
questionnaire was designed to assess a wide range of knowledge (see Table 1), so that a
particular student might understand some of the concepts but not others. A second estimation of
reliability using test-retest in a sub-sample of 106 students, who were given the questionnaire a
second time a month later, provided a reliability coefficient of 0.91. Mean scores and variance
in the two occasions were almost identical, and thus, a learning effect in the second time was
unlikely. The theoretical analysis of the questionnaire content as well as the results from experts’
judgment served to justify content validity, by comparing the content evaluated by each item to
the content units included in the definition of the variable (Table 1). 

Responses to Items

In computing several probabilities from a two-way table (item 1) 90% of the students
correctly computed the simple probability, 61%, the joint probability and 59% and 56%,
respectively the two conditional probabilities. This confirms Falk´s (1989) opinion that verbal
ambiguity in linguistic expression of conditional probability makes it difficult for the student to
distinguish conditional and joint probabilities, even after instruction. 

Table 2. Percentages of the different responses in multiple-choice items of the CPR (n=414)

(*) Does not apply (+)Correct 

Response

Item a b c d Blank

Item 2 8 7 29 50(+) 5

Item 3 28 15 29(+) 20 8

Item 4 1 89(+) 10 (*) 0

Item 5 35(+) 31 34 (*) 0

Item 6 25(+) 9 62 (*) 4

Item 7 6 32(+) 59 (*) 9

Item 8 77 9 10 (+) 2 2

Item 9(1) 6 17 69 (+) 7 1

Item 9(2) 24(+) 25 9 36 6

Item 10 9 13 76(+) (*) 2
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Results in Table 2 suggest the existence of the following reasoning conflicts among the
students in the sample: 

1. As regards independence: We found confusion of independence with mutual exclusiveness
in 28 % of the responses to distracter (a) in item 3, a bias also noticed by Sánchez (1996).
The chronological conception of independence described by Gras and Totohasina (1995)
was also shown in 29% of the responses to distracter (b) in item 3.

2. Concerning conditional probability: 31% of the students confused conditional with a joint
probability (response (b) in item 5) or with a simple probability (34% responses c in item
5). The conjunction fallacy was observed in 71% of the responses to item 6 and the
confusion of the transposed conditional in 59% of the responses in item 7. Difficulties in
computing probabilities when the time axis is inverted are suggested by the responses to
items 8 and 9(2), although the chronological conception of conditional probability described
by Gras and Totohasina (1995) was not so clearly shown in these two items.

The base rate fallacy was not so pervasive as suggested in previous research (Bar-Hillel,
1983) as shown in the responses to distracters (a) and (b) in item 2: The majority of students gave
the correct response (d) in this item, thus suggesting improvement of base rate with instruction.
Item 4 (computing conditional probabilities in a “without-replacement” setting) was also very
easy. 

Considering responses in open-ended items, results in Table 3 suggest that students had
difficulties in giving a sound definition and an example of conditional probability (item 11) but
were conscious of the restriction of sample space (item 12). They had difficulties in solving a
conditional probability problem in a single experiment (item 13) due to a lack of distinction of
dependent and independent experiments in the context (synchronic situation; l), so that many of
them did not appear to have completely reached Level 4 in the conditional probability reasoning
scheme by Tarr and Jones (1997). Solving total probability (item 14) and solving conditional
probability problems “with replacement” problems (item 15) was easier than computing
compound probability in the case of independent (item 16) and dependent (item 17) events.

Table 3. Percentage of solutions in open-ended items (n=414)

In solving an open-ended Bayes problem (item 18, see Table 4), more than half the
students were able to compute the total probability and a little less gave the complete solution;
the majority was at least capable of correctly identifying the data and even identifying the

Item 11 Item 12 Item 13 Item 14 Item 15 Item 16 Item 17

Blank or totally wrong 29 15 47 18 21 30 24

Partly correct 30 21 18 21 9 18 16

Correct solution 41 64 35 61 70 52 60
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probability to be computed although 16% failed in developing the total probability formula. We
remark that data were given in the percentage format, which is considered harder than absolute
frequency formats in Gigerenzer (1994) and Gigerenzer and Hoffrage´s (1995) research.

Table 4. Completeness of solutions in solving a Bayes problem (Item 18)

We conclude that, in general, the instruction was successful as regards problem solving
capabilities, whenever there was no psychological bias involved in the situation. However, some
of the biases described in the literature seemed not to be overcome with instruction.

Structure of Responses 

To explore our conjecture that biases of conditional probability reasoning are unrelated
to mathematical performance in the tasks, we carried out a factor analysis of the set of responses
to all the items using the SPSS software. As we have described, students were given a score in
the range (0-1) in items 2-8 and in each part of items 1 and 9, a score (0-2) in items 10-17 and a
score (0-4) in item 18, according to the correctness of response. Before carrying out the factor
analysis we standardized all the variables, so that all of them had the same contribution to the
analysis. The factor extraction method was principal components, which is the most conservative
method, as it does not distort the data structure. In Table 5 we present the factor loadings
(correlations) of items with the different factors after Varimax rotation (orthogonal rotation;
maximizing variance of the original variable space). 

We found seven factors with eigenvalues higher than 1 that explained the following
percentages of the total variance: 21% (the first factor), 7 % (the second factor), and about 6%
in each of the remaining factors. A total of 59% of the variance was explained by the set of
factors, which suggests the specificity of each item, and multidimensional character of the
construct, even when there is a common part shared by all of the items.

These percentages of variance also revealed the greater importance of the first factor, to
which most of the open- ended problems contribute, in particular solving Bayes’ problems had
the higher contribution, followed by solving total probability and compound probability
problems. All of these problems require a solving process with at least two stages, in the first of

Percentage

Blank or totally wrong 16

Correct identification of data 15

Identifies the inverse conditional probability, 16

Correct computation of denominator (total probability) 7

Correct solution 46



138 Díaz & Fuente

which a conditional probability is computed, which is used in subsequent steps (e.g. product
rule). We interpret this factor as solving complex conditional probability problems ability.

Table 5. Factor Loadings for Rotated Components in Exploratory Factor Analysis of Responses to Items (only

values >.3 are shown)

Computing simple, joint and conditional probability from a two-way table (item 1)
appeared as a separate factor, probably because the task format affected performance, a fact
which has also been noticed by Ojeda (1996) and Gigerenzer (1994), among other researchers.
A third factor showed the relationships between definition, sample space and computation of

Factor

Item 1 2 3 4 5 6 7

Item 18. Bayes .77

Item 14. Total probability .76

Item 17. Product rule, dependence, synchronic .76

Item 16. Product rule, independence .67

Item 15. Conditional probability, “with replacement” .43 .42

Item 12. Sample space .40 .46

Item 2. Base rates/ Bayes .34 .48

Item 1b. Conditional probability, table .32 .61

Item 1c. Joint probability, table .79

Item 1a. Simple probability, table .61

Item 1d. Conditional probability. table .77

Item 13. Conditional probability, single experiment .67

Item 11. Definition .59

Item 4. Conditional probability, “without

replacement”, diachronic
.39 .44

Item 5. Conditional probability. from joint and

compound probability, synchronic
.66

Item 6. Conjunction fallacy .62

Item 7. Transposed conditional /causal-diagnostic -.65

Item 9b. Time axis fallacy, diachronic .71

Item 8. Time axis fallacy, diachronic .70

Item 10. Product rule dependence, diachronic .35 -.46

Item 9a. Conditional probability, “without

replacement”
.66

Item 3. Independence /mutually exclusiveness .68



conditional probabilities in “with and without replacement” situations. These relationships
suggest that the third factor  requires Level 4 reasoning in Tarr and Jones (1997) classification.

The remaining factors suggested that the different biases affecting conditional
probability reasoning that are described in this paper, appeared unrelated to mathematical
performance in problem solving understanding (Factor 1), computing conditional probability
from a two-way table (Factor 2), and to Tarr and Jones’s (1997) level 4 reasoning (Factor 3) (as
the related items were not included in the three first factors). Each of the biases (transposed
conditional, time axis fallacy, conjunction fallacy, independence/mutually
exclusiveness/synchronic setting) also appeared unrelated to one another; in some cases some of
them were opposed or related to some mathematical components of understanding conditional
probability. For example, independence was linked to the base rate fallacy (where people have
to judge whether the events are independent or not) and opposed to the idea of dependence.

IMPLICATIONS FOR TEACHING

In this research the students’ performances in the formal components of the test was
quite good. In particular, we observed a high percentage of correct or partly correct solutions to
problems (including total probability and Bayes problems). However, some of the biases
described in the literature were widespread in these students’ thinking.

The complex relationship between probabilistic concepts and intuition was also shown
in the results of Factor Analysis where items assessing the biases in conditional probability
reasoning were unrelated to those assessing formal knowledge. This complex relationship was
also shown in the historical development of the topic, as described in Batanero, Henry and
Parzysz (2005). Even when independence and conditional probability was informally used from
the very beginning of the study of chance games, only in the middle of the 18th century these
two concepts were made explicit in the mathematical theory. Furthermore, the formal modern
definition of independence was criticized by von Mises (1928/1952), because even when this
definition expanded the concept, it is not intuitive at all. It is natural that these historical
difficulties recur in the students’ learning of probability.

Consequently, our research suggests the need not only for reinforcing the study of
conditional probability in teaching data analysis at university level but also for a change of
approach in this teaching. As suggested by Feller (1968, p. 114) “the notion of conditional
probability is a basic tool of probability theory, and it is unfortunate that its great simplicity is
somewhat obscured by a singularly clumsy terminology”. Following Nisbett and Ross’
recommendations (1980), students should be “given greater motivation to attend closely to the
nature of the inferential tasks that they perform and the quality of their performance” (p. 280)
and consequently “statistics should be taught in conjunction with material on intuitive strategies
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and inferential errors” (p. 281) of the sort presented in their book and in this paper. In this sense
we support Rossman and Short (1995), who suggest conditional probability can be taught in line
with new statistics education ideas, in presenting a variety of applications to realistic problems,
proposing interactive activities and using valuable representations (such as two-way tables and
tree diagrams), as well as technology to facilitate learning.
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APPENDIX: ENGLISH TRANSLATION OF THE CPR (CONDITIONAL PROBABILITY REASONING)

QUESTIONNAIRE

Note: The CPR questionnaire was developed and applied in Spanish and have been translated to English to be included

in this paper. The authors are happy to give permission to other researchers to use either this version or the Spanish

version or to send the Spanish version to those requesting it.

Part I: Reading a table

Read the questions carefully and then reply to each question. Include all the numbers and operations you used to get

the response.

Item 1. (Estepa, 1994)

In a medical centre a group of people were interviewed with the following results:

Suppose we select at random a person from this group: 
a. What is the probability that the person had a heart stroke? 

b. What is the probability that the person had a heart stroke and, at the same time is older than 55? 

c. When the person is older than 55, what is the probability of having had a heart stroke? 

d. When the person had a heart stroke, what is the probability of being older than 55?

Part II. Multiple-choice items

The following items consist of multiple choice questions. Read the questions carefully and then choose only a

response.

Item 2 (Tversky & Kahneman, 1982a)

A witness sees a crime involving a taxi in a city. The witness says that the taxi is blue. It is known from previous

research that witnesses are correct 80% of the time when making such statements. The police also know that 15% of

the taxis in the city are blue, the other 85% being green. What is the probability that a blue taxi was involved in the

crime?
a. 80/100

b. 15 /100

c. (15/100) X (80/100)

d.  1 5 8 0
8 5 2 0 1 5 8 0

×
× + ×

55 years-old or younger Older than 55 Total

Previous heart stroke 29 75 104

No previous heart stroke 401 275 676

Total 430 350 780
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Item 3. (Sánchez, 1996)

A standard deck of playing cards has 52 cards. There are four suits (clubs, diamonds, hearts, and spades), each of

which has thirteen numbered cards (2,..., 9, 10, Jack, Queen, King, Ace). We pick a card up at random. Let A be the

event “getting diamonds” and B the event “getting a Queen”. Are events A and B independent? 
a. They are not independent, since there is the Queen of diamonds.

b. Only when we first get a card to see if it is a diamond, return the card to the pack and then get a second card
to see if it is a Queen.

c. They are independent, since P(Queen of diamonds)= P(Queen) x P(diamonds).

d. They are not independent, since P(Queen /diamonds)   P(Queen).

Item 4. 

There are four lamps in a box, two of which are defective. We pick up two lamps at random from the box, one after

another, without replacement. Given that the first lamp was defective:
a. The second lamp is more likely to be defective

b. The second lamp is most likely to be correct.

c. The probabilities for the second lamp being either correct or defective are the same.

Item 5. Eddy (1982)

10.3 % of women in a given city have a positive mammogram. The probability that a woman in this city has both

positive mammogram and a breast cancer is 0.8%- A mammogram given to a woman taken at random in this

population was positive. What is the probability that she actually has breast cancer?

a. , 7.76%

b. , 8.24%

c. 0.8 %

Item 6. (Tversky & Kahneman, 1982 b)

Suppose a tennis player reaches the Roland Garros final in 2005. He has to win 3 out of 5 sets to win the final. Which

of the following events are more likely or are they equally likely? 
a. The player will win the first set

b. The player will win the first set but lose the match

c. Both events a) and b) are equally likely

Item 7. (Pollatsek at al. 1987)

A cancer test was given to all the residents in a large city. A positive result was indicative of cancer and a negative

result of no cancer. Which of the following results is more likely or are they equally likely? 

24.88.03.10 =×

 0.8 0.0776
10.3

=



a. That a person had cancer if they got a positive result

b. Having a positive test if the person had cancer.

c. The two events are equally likely.

Item 8. Ojeda (1996)

We throw a ball in the entrance E of a machine (see the figure). 

If the ball goes out through R, what is the probability of having passed by channel I? 
a. 1/2

b. 1/3

c. 2/3

d. Cannot be computed

Item 9. (Falk, 1986, 1989)

Two black marbles and two white marbles are put in an urn. We pick a white marble from the urn. Then, without

putting the white marble in the urn again, we pick a second marble at random from the urn. 

1. If the first marble is white, what is the probability that this second marble is white? P (W2/ W1)
a. 1/ 2

b. 1/ 6

c. 1/ 3

d. 1/ 4

2. If the second marble is white, what is the probability that the first marble is white? P (W1/ W2)
a. 1/ 3

b. Cannot be computed

c. 1/ 6;

d. 1/ 2

Item 10. 

An urn contains one blue marble and two red marbles. We pick up two marbles at random, one after the other without

replacement. Which of the events below is more likely or are they equally likely? 
a. Getting two red marbles.

b. The first marble is red and the second is blue

c. The two events a) and b) are equally likely.
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Part II. Open-ended items

In the following items, please explain your reasoning in detail. Include all the numbers and operations you used.

Item 11. Explain in your own words what a simple and a conditional probability is and provide an example for each.

Item 12. Complete the sample space in the following random experiments:
a) Observing gender (male/female) of the children in a three children family (e.g. MFM,...)

b) Observing gender (male/female) of the children in a three children family when two or more children are 
male.

Item 13. 

In throwing two dice the product of the two numbers was 12. What is the probability that none of the two numbers is

a six (we differentiate the order of numbers in the two dice).

Item 14. 

60% of the population in a city are men and 40% women. 50% of the men and 35% of the women smoke. If we pick

a person from the city at random, what is the probability that the person is a smoker?

Item 15.

A person throws a die and writes down the result (odd or even). It is a fair die (that is all the numbers are equally

likely). These are the results after 15 throws:

Odd, even, even, odd, odd, even, odd, odd, odd, odd, even, even, odd, odd, odd

The person throws once more. What is the probability to get an odd number this time?

Item 16.

A group of students in a school take a mathematics test and an English test. 80% of the students pass the mathematics

test and 70% of the students pass the English test. Assuming the two subjects score independently, what is the

probability that a student passes both tests (mathematics and English)?

Item 17. 

According to a recent survey, 91% of the population in a city usually lie and 36% of those usually lie about important

matters. If we pick a person at random from this city, what is the probability that the person usually lies about

important matters?
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Item 18. Totohasina (1982)

Two machines M1 and M2 produce balls. Machine M1 produces 40 % and M2 60% of balls. 5% of the balls produced

by M1 and 1% of those produced by M2 are defective. We take a ball at random and it is defective. What is the

probability that that ball was produced by machine M1?
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