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In this paper, we present and evaluate a symbolic package based teaching-learning model for triple 

integral calculus. The model utilizes presentation and visualization technologies to assist in the 

teaching and learning of mathematical concepts and methods. The key mathematical concepts and 

integration techniques for triple integrals are introduced to students utilizing the animation feature of 

PowerPoint display supported by the graphic visualization function of the Maple software. To enhance 

students’ learning process, a series of workbooks and symbolic tools are developed utilizing Maple 10 

to guide students step-by-step in their studies. The developed symbolic tools also enable students to 

display the three-dimensional (3D) integration domain graphically and to check their calculation 

results. An investigation undertaken shows that with the proposed teaching-learning model, a higher 

percentage of students achieved a better understanding of the concepts and a better capacity in 

evaluating triple integrals with complicated integration domains, compared to traditional teaching and 

learning with no technology use. We purport that our technology model supports understanding by 

showing the 3D figures in integration from different angles, and also facilitates independent learning 

by reducing the need to draw these figures by the students themselves.   
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Over the last two decades, a number of symbolic packages for mathematics courses have 

been developed using MATHEMATICA, MATLAB or MAPLE. These symbolic packages 

have been used widely as tools in mathematics education. A computer algebra system (CAS) 

was used to teach double integration (Mathews, 1990), number theory (Cheung, 1996), graph 

sketching (Kong and Kwok, 1999), matrix multiplication (Cecil, 2002), mathematical 

analysis of electronic signals and circuits (Røyrvik, 2002). Recently, Cook (2006) developed 

a MAPLE graphing tool named calcIIIplots for 3D calculus teaching. Man (2007) introduced 

CAS Maple and its applications in mathematics education at school level. Students were 

provided with opportunities in using MAPLE to perform mathematics exploration or problem 

solving. Symbolic packages have also been used in teaching other subjects such as physics 

and engineering (Beltzer &    Shenkman, 1995; Johnson & Buege, 1995; Ward, 2003) and 

computation (Tonkes, Loch, & Stace, 2005). Tonkes et al. (2005) developed a learning model 

and designed a workbook for teaching computation using MATLAB to the first year students 

at the University of Queensland. Throughout the learning model, students work through the 
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workbook to cover all topics to improve their proficiency in MATLAB.  They found that the 

learning model has captured increased student support and has improved learning outcomes. 

The quality of student questions was improved and students displayed a deeper understanding 

of the mathematics. 

Many researchers have measured and evaluated student learning of mathematics using 

symbolic packages (Kramarski & Hirsch, 2003; Tall, 1991; Lagrange, 1999; Drijvers, 2000; 

Perjési, 2003; Heid, 1988; Kendal & Stacey, 2002; Hayden & Lamagna, 1998). It is found 

that symbolic packages enable students to achieve high level of logical analytical reasoning 

by visually supporting the concepts and the proofs with graphics presented through the 

packages (Fuchs, 2001; Drijvers, 2002; Peschek & Schneider, 2002). Maple, based on a 

powerful scientific programming environments and libraries packages of special routines, is 

found to be one of the most popular systems because it is well-suited to aid college students 

to learn mathematics through verifying calculation and plotting complicated graphs, and also 

combines mathematical capabilities with a text editor. 

Via the use of PowerPoint and Maple, we have developed an Integrated PowerPoint-

Maple based (IPM) teaching-learning tool to aid in the teaching and learning of multivariate 

integral calculus,
 
and an introduction of the tool has been published as a conference paper for 

the “Thirteenth Asian Technology Conference in Mathematics – 2008 (Noinang, 

Wiwatanapataphee, & Wu, 2008)”. In this paper, we present further details of the tool and 

investigate its effectiveness in improving the outcomes of teaching and learning.  Briefly, the 

tool includes two parts: a teaching tool and a learning tool. The teaching tool consists of a 

series of PowerPoint slides integrated with Maple animations, and is designed for teachers to 

use in classroom teaching. The learning tool consists of a set of interactive Maplets and 

Maple worksheets. It is designed to enable students to have self-planned learning and self-

assessment, and to reinforce students’ conceptual understanding of integral calculus. The rest 

of the paper is organized as follows. First, the teaching model supported by symbolic 

calculation and graphic visualization of the teaching tool is presented. Afterwards, the Maple 

based step-by-step symbolic learning model using the learning tool is given. Evaluation of the 

teaching-learning model is then given and various maple procedures used in this paper are 

presented in Appendices. 

Powerpoint based Presentation with Computer Graphic Visualization Support 

Teaching triple integral calculus is a challenging task. In traditional mode of classroom 

teaching, students often find it difficult to understand instructors’ explanations due to the 

difficulty in imagining the 3D integration domain. To overcome this problem, a teaching tool 

is developed utilizing the animation feature of PowerPoint display and the graphic 

visualization function of the Maple software. 

For students to understand the concept of triple integrals and know how to evaluate triple 

integrals in different coordinate systems, the IPM teaching tool is designed to cover the 

following four essential components; (a) concepts of triple integrals; (b) evaluation of triple 

integrals in rectangular coordinates; (c) evaluation of triple integrals in cylindrical 

coordinates; (d) evaluation of triple integrals in spherical coordinates. 
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For each of the components, the teaching tool consists of a number of PowerPoint slides 

and Maple graphs. The PowerPoint slides are used to explain the concepts and theories, while 

the Maple graphs are used to help students to visualize the concepts and methods graphically. 

For the concept of triple integrals (Stewart, 2003), a PowerPoint slide is used to define the 

triple integral as a triple Riemann Sum, as shown in Figure 1a. Then, based on the definition, 

a number of examples are given to demonstrate the application of triple integrals. For 

example, if f(x, y, z) is the material density of the object Ω, then 

, ,
1 1 1

( , , ) lim ( , , )
l m n

ijk ijk ijk ijk
l m n

i j kD

f x y z d f x y z V
→∞

= = =

Ω = ∆∑∑∑∫∫∫  

is the total mass of the object, as 
ijk ijk

f V∆ is the approximation of the mass of one of the sub-

boxes of Ω and the summations are to add the mass of all the sub-boxes in Ω together. The 

concept of triple integral, as a triple Riemann sum, can be clearly illustrated graphically by 

the Maple graphic visualization function as shown in Figure 1b. 

 

 

 

Figure 1a. The concept of triple integral –

Mathematical definition of triple integral. 

Figure 1b. The concept of triple 

integral – Maple animation showing 

the concept of triple Riemann sum. 

To study the method for evaluation of triple integrals over a general domain in 

rectangular coordinates, we first use Maple graphic functions to demonstrate that integration 

domains in rectangular coordinates can be classified into x-cap region, y-cap region, z-cap 

region or combination of them (Wu & Wiwatanapataphee, 2008). Then, we use PowerPoint 

slides to describe how to evaluate triple integrals over each type of the regions. As an 

example, Figure 2 gives the PowerPoint slide and the Maple graph used for demonstrating 

how to evaluate a triple integral over a z-cap region. In the classroom lecture presentation, 

firstly, the instructor clicks on Figure 2a to start up the animation of the object in Figure 2b 

demonstrating graphically that a z-cap region is a region bounded by an upper surface 

2 ( , )z z x y=  and a lower surface 1( , )z z x y=  with a projection D on the xy-plane. Then, 

through the PowerPoint slide, the instructor shows that a z-cap region E can be visualized 

graphically as a set of points (x, y, z) for which (x, y) takes values in D and for each point (x, 

y) in D, z changes from 1( , )z z x y=  to 2 ( , )z z x y=  and consequently the evaluation of a triple 
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integral over a z-cap region E becomes first evaluating a single integral with respect to z from 

1( , )z x y  to 2 ( , )z x y  and then evaluating a double integral with respect to x and y over D. The 

graphic visualization helps to understand the integration procedure. 

  

Figure 2a. Evaluation of triple integrals over a z-

cap region – A PowerPoint slide showing the 

method of evaluation. 

Figure 2b. Evaluation of triple integrals 

over a z-cap region – Maple animation 

showing the concept of a z-cap region. 

For evaluating triple integrals in cylindrical coordinates, first, we use the Maple graphic 

function to demonstrate graphically that a point in space can be identified by the cylindrical 

polar coordinates ( , , )r zθ  representing the intersection of the cylindrical surface of radius r, 

the vertical plane with angle θ  from the xz-plane and the horizontal plane with distance z 

from the xy-plane, as shown in Figure 3a. Then, from the figure, we show on the PowerPoint 

slide how to relate the ( , , )r zθ  coordinates with the x, y, and z coordinates, and then, we use 

the Maple graphic function to demonstrate that a differential element (as shown in Figure 3b) 

can be obtained by cutting the object with two cylindrical surfaces (r = r, r = r +∆r) and two 

z-planes (z = z, z = z +∆z) as well as two θ-planes ( , )θ θ θ θ θ= = + ∆ . Consequently, the 

volume of the differential element can be calculated from its geometry as follows 

2 2  ( ) / 2 / 2xydV A dz r dr d r d dzθ θ = × = + − × 
1

2
r dr drd dzθ
 

= + 
 

, 

where Axy is the area of the projection of the differential element on the xy-plane. As dr is 

infinitesimal,  
2

dr
r r+ →   and thus dV rdrd dzθ= .  
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Figure 3a. Cylindrical coordinates – A point in 

space can be identified by ( , , )P r zθ  where 

cosx r θ= , siny r θ= . 

Figure 3b. Differential element – The 

volume of the differential element is 

dV rdzdrdθ= . 

 

Figure 4. PowerPoint slide demonstrating how to evaluate a triple integral in cylindrical 

coordinates. 

Finally, we demonstrate that a domain as shown in Figure 4, defined in cylindrical polar 

coordinates, can be visualized as a z-cap region and thus the integration over the region 

becomes evaluating a single integral with respect to z firstly from 1( , )z u r θ=  to 2 ( , )z u r θ=  

and then evaluating a double integral with respect to r and θ over the region D in polar 

coordinates. 

Similarly, for evaluating triple integrals in spherical polar coordinates, we first use the 

Maple graphic function to demonstrate that a point in space can be identified by a spherical 

polar coordinates ( , , )ρ θ φ  representing the intersection of the spherical surface with radius 

ρ  and centre at the origin, the vertical plane with angle θ  from the xz-plane, and a cone 

surface with angle φ  with the z-axis, as shown in Figure 5a. Then from the graph, we derive 

the relation between the x, y, and z coordinates and the ρ , θ , and φ  coordinates, and then, 
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we use the Maple graphic function to demonstrate that a differential element (as shown in 

Figure 5b) can be obtained by cutting the object with two spherical surfaces ( ρ ρ= , 

dρ ρ ρ= + ) and two cone surfaces (φ φ= , dφ φ φ= + ) as well as two θ -planes (θ θ= , 

dθ θ θ= + ). We then proceed to calculate the volume of the differential element by utilizing 

the formula for the volume of spherical cone 

32
( , ) (1 cos )

3
V ρ φ πρ φ= − , 

where ρ  is the radius of the sphere and φ  is half of the cone angle as shown in Figure 7. 

Let 1V  be the volume of the solid cut by the two spherical surfaces ( ρ ρ=  and 

dρ ρ ρ= + ) within the cone dφ φ φ= + , then 

1 ( , ) ( , )V V d d V dρ ρ φ φ ρ φ φ= + + − + . 

Similarly, the volume of the solid cut by the two spherical surfaces within the cone φ φ=   is  

2 ( , ) ( , )V V d Vρ ρ φ ρ φ= + − . 

Hence, the volume of the solid cut by the two spherical surfaces and the two cone surfaces is 

1 2V V−  and the volume of the differential element is 

1 2( )
2

d
dV V V

θ

π
= −  

  [ ] [ ]{ }( , ) ( , ) ( , ) ( , )
2

d
V d d V d V d V

θ
ρ ρ φ φ ρ φ φ ρ ρ φ ρ φ

π
= + + − + − + − . 

Using the Taylor series approximation to the first order, we have 

                ( , ) ( , )
2

d V V
dV d d d

θ
ρ φ φ ρ ρ φ ρ

π ρ ρ

 ∂ ∂
= + − 

∂ ∂ 
 

         
2 ( , )

 
2

d V
d d

θ ρ φ
ρ φ

π ρ φ

 ∂
=  

∂ ∂ 
 

  22 sin   
2

d
d d

θ
πρ φ ρ φ

π
=  

  2 sin    d d dρ φ ρ θ φ=  

We should also address here that the lengths in the r , φ  and θ  directions of the element are 

respectively dρ , dρ φ  and sin dρ φ θ  (as shown in Figure 5b) and the volume of the element 

is the same as that of a rectangular box with dimension sind d dρ ρ φ ρ φ θ× × . Finally, in the 

PowerPoint slide (Figure 6), the formula for evaluation of a triple integral in spherical 

coordinates is given. 
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Figure 5a. Spherical coordinates – A point 

in space can be identified by ( , , )P ρ θ φ  

where sin cosx ρ φ θ= , sin siny ρ φ θ= , 

cosz ρ φ= . 

Figure 5b. Differential element and its 

volume – The volume of the differential 

element is 2 sin  dV d d dρ φ ρ θ φ= . 

 

Figure 6. PowerPoint slide showing how to evaluate triple integrals in spherical coordinates.  

 

 

Figure 7. A spherical cone with radius ρ  and cone angle 2φ . 
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Maple Based Step-by-Step Symbolic Learning Tool 

For most students, the main difficulty in the study of triple integral calculus is the 

sketching of integration domain and the subsequent determination of integration bounds 

(Cook 2006, Wu & Wiwatanapataphee, 2008). To enhance students’ self-learning capability, 

an interactive symbolic learning tool based on Maple is developed for the triple integral 

calculus. The tool, a Maplet, allows students to interact with computer and solve problems 

step by step. Basically, the Maplet has three basic functions: (a) display the graphs of 

functions; (b) define the integral; (c) evaluate the integral and show the symbolic result in an 

output window. Obviously, the graphic display is important as it helps students to graphically 

visualize the integration domain bounded by general surfaces defined by functions, so as to 

determine whether the domain is a z-cap region, y-cap region, or x-cap region and 

consequently determine the integration order and integration bounds for the definition of the 

problem. The following gives an example. 

Example  

Find the mass of the solid with constant mass density ( , , ) 1x y zρ =  bounded by a 

cylindrical surface 2 2 16x y+ =  and three planes: 3y = , 3z y− = , 2 3z y+ = − . 

Solution 

Firstly, in the input window, enter the equations for the cylindrical surface and the three 

planes, and also enter the display range in the x, y and z directions.  Then, click on the plot 

button to view the surface and planes and their interfaces as shown in Figure 8. Obviously, 

this is a z-cap region bounded by a lower z-surface 3 2z y= − −  and an upper z-surface 

3z y= +  with a projection D on the xy-plane. To determine the bounds of integration in the x 

and y directions, project the integration domain onto the xy-plane as shown in Figure 9. 

Obviously, 

{ }2 2( , ) 16 16 , 2 3D x y y x y y= − − ≤ ≤ − − ≤ ≤ . 

Hence, 
2

2

3 3 16 3

3 2 2 16 3 2

y y y

y y y
D

m dz dA dzdxdyρ
+ − +

− − − − − − −

 = =
  ∫∫ ∫ ∫ ∫ ∫ . 

To evaluate the above integral using Maplet, firstly choose the order of integration to be 

“dzdxdy”, then input the bounds of integration, then double click on the “Show integration 

region” button to display the region of integration and then click on the “Evaluate the 

integral” button to evaluate the integral for the mass m step-by-step on the result window, 

yielding 
3

72 3 16 4 7 96arcsin
4

m π= + + +  as shown in Figure 10. 
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Figure 8. Maplet window showing the boundary surface: 2 2 16x y+ = , 3y = , 3z y− = , and 

2 3z y+ = − , and their intersections. 

 

 

Figure 9. Maplet window showing the projection of the cylinder and 3 planes as defined in 

Step 1 on the xy-plane. 
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Figure 10. Maplet window showing the 3 steps for evaluating the integral and the result. 

Investigating the Effectiveness of the IPM Based Teaching-Learning Model 

In general, mathematics is considered, within the community of students and social in 

general, as a hard subject, and triple integral calculus is particularly the case. With the aim of 

making the integral calculus simple, interesting and attractive, a teaching-learning model 

supported by symbolic calculation and graphic visualization has been developed and 

presented in the previous two sections.  

To evaluate the effectiveness of the developed teaching-learning model in improving 

students’ learning outcomes, an investigation was undertaken at Kasetsart University 

Chalermphrakiat Sakonnakhon Province Campus involving two teachers, one observer and 

73 engineering students. The students were divided into two groups: a computer-aided group 

(IPM) consisting of 32 students, and a traditional teaching-learning (TTL) group with 41 

students. Firstly, students in both groups were asked to sit in a pre-test. The pre-test consists 

of 35 multiple-choice questions, tapping into conceptual and procedural aspects of the 3D 

integration. For each question, four answers are given including one correct answer and three 

incorrect answers. If the correct answer is chosen for a question, the student receives a score 

of one for the 

question or otherwise zero. Thus, the maximum score available for the pre-test is 35. After 

the test, students in the IPM group were taught the triple integral by using the IPM teaching-

learning model, while the other group was taught by using the traditional teaching learning 

model. Then, we conducted a post-test. The post-test also consists of 35 multiple-choice 

questions with a total core of 35. The following is an example question 



15  B. Wiwatanapataphee, S. Noinang, Y.H. Wu, B. Nuntadilok 

Question 1. 
1 1 1

0 0 0
( , , )

x x y

f x y z dzdydx
− − −

=∫ ∫ ∫  

  (a) 
1 1 1

0 0 0
( , , )

x y x

f x y z dydzdx
− − −

∫ ∫ ∫  

  (b) 
1 1 1

0 0 0
( , , )

z y z

f x y z dxdydz
− − −

∫ ∫ ∫  

  (c) 
1 1 1

0 0 0
( , , )

x y z

f x y z dxdydz
− − −

∫ ∫ ∫  

  (d) 
1 1 1

0 0 0
( , , )

x y z

f x y z dxdzdy
− − −

∫ ∫ ∫  

The results obtained by both groups in the pre-test and post-test are summarized in Table 1. 

Table 1  

Scores obtained by the two experiment groups in the pre-test and the post-test  

 IPM group TTL group 

Mean SD Mean SD 

Pre-test  8.50 2.29  9.39 2.06 

Post-test 21.47 4.45 18.85 4.07 

 

It is clear from the results that students in the integrated PowerPoint Maple (IPM) group 

achieved higher mean score than those in the TTL group.     

Table 2  

One-way ANOVA for pre-test scores 

 Sum of 

Squares 

df Mean 

square 

F sig. 

Between groups 14.244 1 14.244 3.048 .085 

Within groups 331.756 71 4.673   

Total 346.000 72    

Table 3  

One-way ANOVA for post-test scores 

 Sum of  

squares 

df Mean 

square 

F sig. 

Between groups 122.909 1 122.909 6.844 .011 

Within groups 1275.091 71 17.959   

Total 1398.000 72    

To determine whether the difference of the mean scores between the two groups is due to 

group membership (effect of teaching-learning model) or others, the one-way ANOVA 

variance analysis (Peck, 2008) is carried out. Table 2 and Table 3 shows the ANOVA for pre-

test scores and post-test scores, respectively. For 0.05α = , critical (0.05,1,71) 3.9863F = . Hence 

from the data in the Tables, it is clear that the mean scores between the groups for the pre-test 
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are not significantly different, while the mean scores of the IPM group for the post-test is 

significantly higher than that of the other group. 

We also undertook an open-ended student survey to get students’ opinions on the IPM 

teaching-learning model. In the survey, students were asked whether the proposed teaching-

learning model helped them to have a better understanding of the mathematical concepts and 

facilitated their learning of the methods for the evaluation of multivariate integral calculus. 

From the analysis of the student responses we concluded that the IPM teaching-learning 

model had advantages over the traditional mode of teaching and learning in two principal 

aspects. First, the integrating of the Maple animation with the PowerPoint presentation makes 

it much easier for instructors to explain certain concepts and methods and for students to 

understand the explanations in the classroom lectures. On the other hand, in traditional mode 

of lecture presentation, the instructor has to be an expert with artistic skills in graph sketching 

and had to spend a lot of time in drawing proper graphs to explain concepts and methods. 

With the Maple graphic function, the instructor can show students the figures from different 

angles and thus have more time to focus on concepts and methods with the graphic 

visualization aids. The second major advantage of the developed model is that it enhances 

students’ self-learning capability for the subject. In the traditional mode of self-learning, 

those students lacking artistic skills found it extremely difficult to sketch the integration 

domain and subsequently determine the integration bounds even though they understand the 

concepts and methodology, while with the learning package, students can use the graphic 

function of Maple to draw the integration region easily and systematically even without any 

artistic skills. Also, through the exercises, students can gradually develop the skills of graph 

sketching. In addition, the learning package can provide solution in symbolic form which can 

then be used to check the solution obtained manually. 

Conclusion 

An efficient computer aided mathematics teaching-learning model and tool for triple 

integral calculus has been developed to enhance students’ interest in mathematics. It provides 

students with an opportunity to have self-motivation, self-planned learning and self-

assessment. Teacher and students have more time to focus on more practical examples to 

cover a wider variety of problems in class. Interactive Maplets of triple integrals enable 

students to analyze mathematics concepts step by step and also to self assess their homework. 

Maplets provide fast solutions and good visualizations of applied mathematics problems 

which can help students to identify patterns and see connections. Students can change 

functions and the values of parameters during the process of learning to understand the 

influence of different parameters to the output critically. These allow students to deepen their 

knowledge of multivariable calculus.  

The paper has also demonstrated step by step how to use the IPM teaching-learning 

model for teaching triple integral calculus. Many useful graphs and Maple animation objects 

are also given in the paper which can be used to assist in explanation of concepts and 

methods for the triple integral calculus. The paper has thus provided a useful guideline and 

resources for the teaching of multivariate integral calculus using modern computation 

technology and graphic visualization.  
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Our study has also shown that the proper use of symbolic computation systems in 

mathematics teaching can improve students’ learning outcomes. Buchberger (1989) 

introduced the “white-box/black box principle” in which the author advocates that the 

pertinent part of the symbolic computation systems should not be used in the “white-box” 

phase of teaching a particular mathematical topic (i.e, the phase in which the topic is new to 

the students), while it is essential to use these systems in the “black-box” phase (in which the 

students completely master the topics). Although the “white-box/black box principle” 

provides a good general guidance for the use of symbolic computation systems in 

mathematics teaching, our investigation shows that for multivariate integral calculus, it is also 

very useful to use symbolic computation systems, in particular the graphic visualization 

functions, in the white-box phase of teaching.  

References 

Beltzer, A. I., & Shenkman, A. W. (1995). Use of symbolic computation in engineering 

education. IEEE Transactions on Education, 38(2), 177–184. doi:10.1109/13.387221 

Buchberger, B. (1989). Should students learn integration rules? ACM SIGSAM Bulletin, 24, 

10-17. doi:10.1145/382276.1095228 

Cecil, D. R. (2002). Graphs and enhancing maple multiplication. Mathematics and Computer 

Education, 36(1), 62–69. 

Cheung, Y. L. (1996). Learning number theory with a computer algebra system. International 

Journal of Mathematical Education in Science and Technology, 27(3), 379–385. 

Cook, D. (2006). Maple graphing tools for calculus III. Mathematics and Computer 

Education, 40(1), 36–41. 

Drijvers, P. (2000). Students encountering obstacles using CAS. International Journal of 

Computers for Mathematical Learning, 5, 189-209. 

Drijvers, P. (2002). Learning mathematics in a computer algebra environment: obstacles are 

opportunities. ZDM - The International Journal on Mathematics Education, 34(5), 221–

228. 

Fuchs, K. J. (2001). Computer algebra systems in mathematics education. ZDM - The 

International Journal on Mathematics Education, 35(1), 20–23. 

Hayden, M. B. and Lamagna, E. A. (1998). Newton: An interactive environment for 

exploring mathematics. Journal of Symbolic Computation, 25, 195–212. 

doi:10.1006/jsco.1997.0172 

Heid, M. (1988). Resequencing skills and concepts in applied calculus using the computer as 

a tool. Journal for Research in Mathematics Education, 19(1), 3–25. doi:10.2307/749108 

Johnson, D., & Buege, J. (1995). Rethinking the way we teach undergraduate physics and 

engineering with Mathematica. In V. Keranen, P. Mitic (Eds.), Mathematics with Vision – 

Proceedings of the First International Mathematica Symposium (pp.233-242). 

Southampton, England. 



POWERPOINT-MAPLE BASED TEACHING-LEARNING MODEL  18 

 

 Kendal, M., & Stacey, K. (2002). Teacher in transition: Moving towards CAS-supported 

classroom. ZDM - The International Journal on Mathematics Education, 34(5), 196–201. 

Kong, S. C., & Kwok, L. F. (1999). An interactive teaching and learning environment for 

graph sketching. Computers & Education, 32(1), 1–17. doi:10.1016/S0360-

1315(98)00032-3 

Kramarski, B., & Hirsch, C. (2003). Using computer algebra systems in mathematical 

classrooms. Journal of Computer Assisted Learning, 19, 35–45. doi:10.1046/j.0266-

4909.2003.00004.x 

Lagrange, J. B. (1999). Complex calculators in the classroom: Theoretical and practical 

reflections on teaching pre-calculus. International Journal of Computers for 

Mathematical Learning, 4, 51–81. 

 Man, Y. K. (2007). Introducing computer algebra to school teachers of mathematics. 

Teaching Mathematics and Its Applications, 20(1), 23–26. 

Mathews, J. H. (1990). Using a computer algebra system to teach double integration. 

International Journal of Mathematical Education in Science and Technology, 21(5), 723–

732. doi: 10.1080/0020739900210506 

Noinang, S., Wiwatanapataphee, B., & Wu, Y.H. (2008). Teaching-learning-tool for integral 

calculus. Proceedings of the 13
th

 Asian Technology Conference in Mathematics (pp.525-

533). Suan Sunandha Rajabhat University, Bangkok, Thailand. 

Peck, R. (2008). Introduction to statistics and data analysis (3rd ed.). Belmont, CA: 

Thomson Brooks/Cole. 

Perjési, I. H. (2003). Application of CAS for teaching of integral-transforming theorems.      

ZDM - The International Journal on Mathematics Education, 35(2). 43–47. 

doi:10.1007/BF02652771 

Peschek, W., & Schneider, E. (2002). CAS in general mathematics education. ZDM - The 

International Journal on Mathematics Education, 34(5), 189–195. 

Røyrvik, O. (2002). Teaching electrical engineering using maple. International Journal of 

Electrical Engineering, 39(4), 297–300. 

Stewart, J. (2003). “Triple integrals-Calculus (5
th

 ed.). Belmont, California: Thomson/ 

Brooks/ Cole. 

Tall, D. (1991). Recent developments in the use of the computer to visualize and symbolize 

calculus concepts. MAA Notes, 20, 15–25. 

Tonkes, E. J., Loch, B. I., & Stace, A. W. (2005). An innovation learning model for 

computation in first year mathematics. International Journal of Mathematical Education 

in Science and Technology, 36(7), 751–758. 

Ward, J. P. (2003). Modern mathematics for engineers and scientists. Teaching Mathematics 

and Its Applications, 22(1), 37–44. 



19  B. Wiwatanapataphee, S. Noinang, Y.H. Wu, B. Nuntadilok 

Wu, Y. H., & Wiwatanapataphee, B. (2008). Lecture note: Advanced calculus. Australia: 

Curtin University of Technology. 

 

Authors 

Benchawan Wiwatanapataphee, Department of Mathematics, Faculty of Science, 

Mahidol University,  Bangkok 10400, Thailand; scbww@mahidol.ac.th 

Sakda Noinang, Department of Mathematics, Statistics and Computer, Faculty of 

Science,  Ubon Rachathani University, Ubon Rachathani 34190, Thailand; 

s.noinang@gmail.com 

Yong Hong Wu, Department of Mathematics and Statistics, Curtin University of 

Technology  Perth, Western Australia 6845, Australia; 

yhwu@maths.curtin.edu.au  

Buraskorn Nuntadilok, Department of Mathematics, Faculty of Science, Mahidol 

University,  Bangkok 10400, Thailand; jopal_ex@hotmail.com 



POWERPOINT-MAPLE BASED TEACHING-LEARNING MODEL  20 

 

Appendix 

The following Maple procedures were used in this paper. 

I. Maple commands for Figure 1b 

> # 1. Procedure for generating sub-boxes. 

> with(plots): with(plottools): 

> CreateBoxes := proc(x,y,z) 

     local i,j,k; 

    global boxes; 

     for i from 1 to x do 

      for j from 1 to y do 

        for k from 1 to z do 

            boxes[i,j,k]:= display(cuboid([i-1,j-1,k-1],[i,j,k], 

                                   color=blue))  

        od: 

      od: 

    od: 

 end proc: 

 

> # 2. Procedure for accumulating all sub-boxes. 

> TripleRiemann := proc(x,y,z) 

  local i,j,k; 

  global SumBoxes; 

    SumBoxes[0,1,1]:=boxes[1,1,1]: 

    for k from 1 to z do 

       for j from 1 to y do 

          for i from 1 to x do 

             SumBoxes[i,j,k]:=display(SumBoxes[i-1,j,k], 

                              boxes[i,j,k],color=blue); 

             SumBoxes[0,j+1,k]:=SumBoxes[i,j,k];   

             SumBoxes[0,1,k+1]:=SumBoxes[i,j,k];     

          od: 

       od: 

    od: 

end proc: 

> x:=4: y:=6: z:=4: 

> CreateBoxes(x,y,z): 

> TripleRiemann(x,y,z): 

 

> # 3. Command to display animation a list of figures. 

>display([seq(seq(seq(SumBoxes[i,j,k],i=1..x),j=1..y),k=1..z)], 

     axes=normal,insequence=true,scaling=constrained, 
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     view=[0..x,0..y,0..z],tickmarks=[[x="l"],[y="m"],[z="n"]]); 

   

(a) (b) (c) 

Figure 1b 

II. Maple commands for Figure 2b 

> with(plots): 

> PiValue:=evalf(Pi): 

> ymin := 5: 

> ymax := ymin+3*PiValue: 

> ymid := ymin+3*PiValue/2: 

> # 1. Functions to determine boundary shape on xy-plane 

 > f := y-> cos((y-5)-PiValue/2)+5: 

 > g := y-> -sqrt((3*PiValue/2)^2 - ((y-5)-3*PiValue/2)^2)+5: 

 

 
Figure 2b(a)  

 

> # 2. Functions to determine 3D surfaces of upper and lower boundaries. 

> zUpper:= (x,y)-> 18-(((x)-PiValue)/3)^2-((y-10)/3)^2: 

> zLower:= (x,y)-> (((x)-PiValue)/3)^2+((y-10)/3)^2: 

> PlotzUpper := plot3d(zUpper(x,y),x=0..2*PiValue,y=ymin-  

       .5..ymax+.58): 

> PlotzLower := plot3d(zLower(x,y),x=0..2*PiValue,y=ymin- 

       .5..ymax+.58): 
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> # 3. Procedure for generating a list of points ( , )x y  on the boundary. 

> PxyHsection := proc(f,g) 

    local yval1,yval2,yval3,p1,p2,p3; 

    yval1 := seq(i,i=ymid..ymin+.1,-0.1); 

    yval2 := seq(i,i=ymin..ymax,0.1): 

    yval3 := seq(i,i=ymax..ymid+.1,-0.1): 

    p1 := seq([g(i),i],i in yval1): 

    p2 := seq([f(i),i],i in yval2): 

    p3 := seq([g(i),i],i in yval3): 

    p1,p2,p3; 

 end proc: 

 

> # 4. Procedure for projecting the boundary as shown in Figure 2-b(a) to upper and lower 

3D surfaces obtained from step2. 

> PxyzUpperPart := proc(L,t) 

      local u; 

      [seq([u[1],u[2],t], u=L)],[seq([u[1],u[2],zUpper(u[1],u[2])],        u=L)]; 

 end proc: 

> PxyzLowerPart := proc(L,t) 

      local u; 

      [seq([u[1],u[2],zLower(u[1],u[2])], u=L)],[seq([u[1],u[2],t],       u=L)]; 

 end proc: 

> PxyzSurfaceAll := proc(L) 

      local u; 

      [seq([u[1],u[2],zLower(u[1],u[2])], u=L)],[seq([u[1],u[2], 

    zUpper(u[1],u[2])], u=L)]; 

 end proc: 

 

> # 5. Procedure for generating 3-D points on the boundary as shown in Figure 2-b(a) at 

z t= . 

> PxyzHsection := proc(L,t) 

      local u; 

      [seq([u[1],u[2],t], u=L)]; 

 end proc: 

 

> # 6. Procedure for initializing a list of points to generate any body surface. 

> PxyBody := proc(L1,L2) 

     local i,n; 

     n := nops(L1); 

     seq([L1[i],L2[i],L2[i+1],L1[i+1]],i=1..n-1) 

         ,[L1[n],L2[n],L2[1],L1[1]]; 

 end proc: 
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> # 7. Functions for initializing two lists of points to generate boundary surfaces  

         from z k=  to z zUpper=  and from z zLower=  to z k= , respectively. 

> PxyzUpperSurface := k-> PxyBody(PxyzUpperPart([PxyHsection(f,g)],k)): 

> PxyzLowerSurface := k -> PxyBody(PxyzLowerPart([PxyHsection(f,g)],k)): 

 

> # 8. Procedures and build-in command ‘spacecurve’ for generating 3-D points of projected 

images boundary on upper and lower surfaces.  

> PxyzBLineUpSur := proc(L) 

      local u; 

      [seq([u[1],u[2],zUpper(u[1],u[2])], u=L)]; 

  end proc: 

> PxyzBLineLoSur := proc(L) 

      local u; 

      [seq([u[1],u[2],zLower(u[1],u[2])], u=L)]; 

  end proc: 

> BLineUpSur := PxyzBLineUpSur([PxyHsection(f,g)]): 

> BLineLoSur := PxyzBLineLoSur([PxyHsection(f,g)]): 

> BLineUpper := spacecurve(BLineUpSur,color=black,thickness=2): 

> BLineLower := spacecurve(BLineLoSur,color=black,thickness=2): 

 

> # 9. Three functions to generate surface. 

> UpperSurface := k-> 

PLOT3D(seq(POLYGONS(b),b=PxyzUpperSurface(k)),STYLE(PATCHNOGRID),COLOR(X

YSHADING)): 

> LowerSurface := k-> 

PLOT3D(seq(POLYGONS(b),b=PxyzLowerSurface(k)),STYLE(PATCHNOGRID),COLOR(X

YSHADING)): 

> Hsection := t -> PLOT3D(POLYGONS(seq(PxyzHsection(p,t), 

p=[[PxyHsection(f,g)]])),SCALING(CONSTRAINED),STYLE(PATCHNOGRID)): 

 

> # 10. Using build-in command ‘PLOT3D’ and three functions as defined in Step 9 to 

generate surface. 

> SurfaceAll := 

PLOT3D(seq(POLYGONS(b),b=PxyBody(PxyzSurfaceAll([PxyHsection(f,g)]))),STYLE(PAT

CHNOGRID),COLOR(XYSHADING)): 

> Fig0 := display(PlotzUpper,PlotzLower,BLineUpper,BLineLower,Hsection(-2)): 

> for i from 1 to 5 do 

    Fig[i] := display(Fig0,UpperSurface(15-i),LowerSurface(3+i),Hsection(15-

i),Hsection(3+i)) 

end do: 

> Fig6 := display(Fig0,SurfaceAll): 
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> # 14. Using build-in function ‘display’ to animate a list of figures. 

>display([Fig0,seq(Fig[i],i=1..5),Fig6],insequence=true,axes=normal,orientation=[46,57],l

abels=['X','Y','Z'],view=[-3..20,-8..15,-3..20],scaling=constrained,lightmodel=light1); 

 

 

 
 

 

(b) (c) (d) 

 

Figure 2b 

III. Maple commands for Figure 3a 

> # 1. Using the following build-in commands to generate 5 figures: Fig1 – Fig5.  

> with(plottools): with(plots): 

> Line1:=line([0,0,0],[1,1,1],linestyle=1,thickness=3,color=red): 

> Line2 := line([0,0,0],[1,1,0],thickness=3,color=green): 

> Line3 := line([1,1,0],[1,1,1],thickness=3,color=yellow): 

> LineX := line([1,0,0],[1,1,0],linestyle=7,color=black): 

> LineY := line([0,1,0],[1,1,0],linestyle=7,color=black): 

> LineZ := line([0,0,1],[1,1,1],linestyle=7,color=black): 

> Point1 := point([1,1,1], color=green, symbol=CIRCLE): 

> Text1 := textplot3d([1.1,1.1,1.1,'p(r,theta,z)'],color=blue, 

           font=[TIMES,ROMAN,14]): 

> Text2 := textplot3d([.5,.5,0.05,'r'],color=red, 

           font=[TIMES,ROMAN,14]): 

> Text3 := textplot3d([1.1,1.1,.5,'z'],color=red, 

           font=[TIMES,ROMAN,14]): 

> TextX := textplot3d([1,-0.1,0,'x'],color=brown, 

           font=[TIMES,ROMAN,14]): 

> TextY := textplot3d([-0.1,1,0,'y'],color=brown, 

           font=[TIMES,ROMAN,14]): 

> TextZ := textplot3d([-0.1,-0.1,1,'z'],color=brown, 

           font=[TIMES,ROMAN,14]): 

> Ttheta := textplot3d([.2,0.1,0,'theta'],color=brown, 

            font=[TIMES,ROMAN,14]): 
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> cylin := plot3d([sqrt(2)*cos(theta),sqrt(2)*sin(theta),z], 

           theta=0..2*Pi,z=0..1.2,shading=xy,axes=normal, 

           orientation=[-2,50],style=patchnogrid,transparency=.5): 

> CylinCir := plot3d([sqrt(2)*cos(theta),sqrt(2)*sin(theta),z], 

              theta=0..2*Pi,z=0.995..1,color=black): 

> ThetaPlane := plot3d([t,t,z],t=0..sqrt(2),z=0..1.2, 

                style=patchnogrid,color=red): 

> zplane := plot3d([x,y,1],x=-1.5..1.5,y=-1.5..1.5,style=wireframe): 

> angle := plot3d([0.4*r*cos(theta),0.4*r*sin(theta),0], 

           theta=0..Pi/4,r=1..1.0001,color=red): 

> struc := plots[display](Line1,Line2,Line3,LineX,LineY,LineZ,Point1, 

           axes=normal,orientation=[-2,50]): 

> Fig1 := display(cylin,title="Cylinder radius r"): 

> Fig2 := display(cylin,ThetaPlane,title="Vertical plane which make  

                 angle theta with x axis"): 

> Fig3 := display(cylin,ThetaPlane,zplane,title=" plane  

                 Z=z",CylinCir): 

> Fig4 := display(cylin,ThetaPlane,zplane,struc,Text2,Text3,TextX, 

                 TextY,TextZ,Ttheta,angle,title="The Cylindrical  

                 coordinates",CylinCir): 

> Fig5 := display(struc,Text1,Text2,Text3,TextX,TextY,TextZ, 

                 Ttheta,angle,title="The Cylindrical coordinates"): 

 

> # 2. Using build-in function ‘display’ to animate a list of figures. 

> display([Fig1,Fig2,Fig3,Fig4,Fig5],insequence=true); 

 

 

                                    
 

 

                                          (a)                                            (b)  

 

Figure 3a 

IV. Maple commands for Figure 3b 
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> with(plots): with(plottools): 

> # 1. Functions to generate cylinders of radius k without and with wireframe style. 

> CylinRadiusk := k-> 

plot3d([k*cos(theta),k*sin(theta),z],theta=0..2*Pi,z=0..4,scaling=constrained,shading=xy,ax

es=normal,orientation=[77,51],view=[-2..2,-2..2,0..4.5],grid=[24,6]): 

> CylinRadiuskWire := k-> 

plot3d([k*cos(theta),k*sin(theta),z],theta=0..2*Pi,z=0..4,style=wireframe,scaling=constrain

ed,shading=xy,color=blue,axes=normal,orientation=[77,51],view=[-2..2,-

2..2,0..4.5],grid=[24,6]): 

 

> # 2. Functions to display a part of cylinder tube. 

> PartCylinOutside := (zbegin,zend)-> 

plot3d([2*cos(theta),2*sin(theta),z],theta=3*Pi/4..Pi,z=zbegin..zend,scaling=constrained,sh

ading=xy,axes=normal): 

> PartCylinInside := (zbegin,zend)-> 

plot3d([cos(theta),sin(theta),z],theta=3*Pi/4..Pi,z=zbegin..zend,scaling=constrained,shading

=xy,axes=normal): 

 

> # 3. Functions to display a disc and a part of disc cylinder tube. 

> ZPlaneDisk := (z,begin_r)->  

plot3d([r*cos(theta),r*sin(theta),z],r=begin_r..2,theta=0..2*Pi,style=patch,axes=normal,gri

d=[6,24]): 

> PartOfZPlaneDisk := z-> 

plot3d([r*cos(theta),r*sin(theta),z],r=1..2,theta=3*Pi/4..Pi,style=patchnogrid,axes=normal)

: 

> # 4. Using built-in function ‘plot3d’ to display a vertical plane and a part of a vertical 

plane.  

> Plane1 := plot3d([-t,t,z],t=0..2,z=0..4,style=patchnogrid): 

> Plane2 := plot3d([t,0,z],t=-2.5..0,z=0..4,style=patchnogrid): 

> PartOfPlane1 := plot3d([-t,t,z],t=sqrt(2)/2..sqrt(2),z=1..2): 

> PartOfPlane2 := plot3d([t,0,z],t=-2..-1,z=1..2): 

> # 5. Using built-in function ‘line’ and ‘textplot3d’ to generate lines as shown in Figure 3-

b(a) and (c) and texts as shown in Figure 3-b(a). 

> line1 := line([0,0,4],[0,2,4],thickness=50,color=blue): 

> line2 := line([0,0,4],[-sqrt(2)/2,sqrt(2)/2,4],thickness=50,color=red): 

> T1 := textplot3d([0,1.5,4.1,'r=r1'],color=blue,font=[TIMES,ROMAN,14]): 

> T2 := textplot3d([-0.5,0.5,4.1,'r=r2'],color=red,font=[TIMES,ROMAN,14]): 

> l1 := line([0,0,1],[-1,0,1],color=blue): 

> l2 := line([0,0,1],[-sqrt(2)/2,sqrt(2)/2,1],color=blue): 

> l3 := line([0,0,2],[-1,0,2],color=blue): 

> l4 := line([0,0,2],[-sqrt(2)/2,sqrt(2)/2,2],color=blue): 

 

> # 6. Constructing 6 figures for animation.  
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> Fig1 := 

display(CylinRadiusk(2),ZPlaneDisk(0,0),ZPlaneDisk(4,0),line1,T1,title="Cylinder radius 

r1"): 

> Fig2 := 

display(CylinRadiusk(2),CylinRadiusk(1),ZPlaneDisk(0,1),ZPlaneDisk(4,1),line1,T1,line2,T2

,title="Cylinders radius r1 and r2"): 

> Fig3 := 

display(CylinRadiuskWire(2),CylinRadiusk(1),PartCylinOutside(0,4),PartOfZPlaneDisk(0),P

artOfZPlaneDisk(4), Plane1, Plane2): 

> Fig4 := 

display(CylinRadiuskWire(2),CylinRadiusk(1),PartCylinOutside(0,2),ZPlaneDisk(2,1),Plane

1,Plane2): 

> Fig5 := 

display(CylinRadiuskWire(2),CylinRadiusk(1),PartCylinOutside(1,2),ZPlaneDisk(1,1),ZPlan

eDisk(2,1),Plane1,Plane2): 

> Fig6 := 

display(PartCylinInside(1,2),PartCylinOutside(1,2),PartOfZPlaneDisk(1),PartOfZPlaneDisk

(2),PartOfPlane1,PartOfPlane2,l1,l2,l3,l4,orientation=[77,51],view=[-2..2,-2..2,0..4.5]): 

 

> # 7. Using build-in function ‘display’ to animate a list of figures.  

>display([Fig1,Fig2,Fig3,Fig4,Fig5,Fig6],insequence=true,orientation=[77,51],view=[-

2..2,-2..2,0..4.5],tickmarks=[0,0,0]); 

 

  
 

(a) (b) (c) 

 

Figure 3b 

V. Maple commands for Figure 5a 

> with(plots): with(plottools): 

> # 1 Using the following build-in commands to generate 5 figures: Fig1 – Fig5.  

> Line1:=line([0,0,0],[1,1,1],linestyle=1,thickness=50,color=red): 

> Line2 := line([0,0,0],[1,1,0],thickness=50,color=green): 

> Line3 := line([1,1,0],[1,1,1],thickness=50,color=yellow): 

> LineX := line([1,0,0],[1,1,0],linestyle=7,color=black): 
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> LineY := line([0,1,0],[1,1,0],linestyle=7,color=black): 

> LineZ := line([0,0,1],[1,1,1],linestyle=7,color=black): 

> PointRhoThetaPhi := point([1,1,1], color=green, symbol=CIRCLE): 

> TextRhoThetaPhi := 

textplot3d([1.1,1.1,1.1,'p(rho,theta,phi)'],color=blue,font=[TIMES,ROMAN,14]): 

> TextRho := textplot3d([.5,.5,.5,'rho'],color=red,font=[TIMES,ROMAN,14]): 

> TextX := textplot3d([1,-0.1,0,'x'],color=brown,font=[TIMES,ROMAN,14]): 

> TextY := textplot3d([-0.1,1,0,'y'],color=brown,font=[TIMES,ROMAN,14]): 

> TextZ := textplot3d([-0.1,-0.1,1,'z'],color=brown,font=[TIMES,ROMAN,14]): 

> TextTheta := textplot3d([.2,0.1,0,'theta'],color=brown,font=[TIMES,ROMAN,14]): 

TextPhi := textplot3d([.1,0.1,0.2,'phi'],color=brown,font=[TIMES,ROMAN,14]): 

> AngleTheta := 

plot3d([0.4*r*cos(theta),0.4*r*sin(theta),0],theta=0..Pi/4,r=1..1.0001,color=red): 

AngleRho := 

plot3d([0.4*r*sin(theta),0.4*r*sin(theta),0.4*r*cos(theta)],theta=0..Pi/4,r=1..1.0001,color=

red): 

> struc := 

plots[display](Line1,Line2,Line3,LineX,LineY,LineZ,PointRhoThetaPhi,axes=normal,orienta

tion=[9,73]): 

> SphereWireframe:= 

plot3d([sqrt(3)*sin(phi)*cos(theta),sqrt(3)*sin(phi)*sin(theta),sqrt(3)*cos(phi)],phi=0..Pi,th

eta=0..2*Pi,scaling=constrained,shading=xy,axes=normal,style=wireframe): 

> SpherePlaneIntersecLine:= 

plot3d([rho*sin(phi)*cos(Pi/4),rho*sin(phi)*sin(Pi/4),rho*cos(phi)],phi=0..Pi,rho=1.72..sqr

t(3),color=black): 

> ConeInSphere := 

plot3d([rho*sin(Pi/3.25)*cos(theta),rho*sin(Pi/3.25)*sin(theta),rho*cos(Pi/3.25)],rho=0..sq

rt(3),theta=0..2*Pi,scaling=constrained,shading=xy,axes=normal,style=patchnogrid): 

> plane1 := plot3d([t,t,z],t=0..sqrt(2),z=-sqrt(3)..sqrt(3),style=patchnogrid): 

> Fig1 := display(SphereWireframe,orientation=[9,73]): 

> Fig2 := display(plane1,SphereWireframe,orientation=[9,73],SpherePlaneIntersecLine): 

> Fig3 := 

display(ConeInSphere,plane1,SphereWireframe,orientation=[9,73],SpherePlaneIntersecLine

,Line1): 

> Fig4 := 

display(struc,AngleTheta,AngleRho,TextPhi,ConeInSphere,plane1,SphereWireframe,SphereP

laneIntersecLine): 

> Fig5 := 

display(struc,TextRhoThetaPhi,TextRho,TextX,TextY,TextZ,TextTheta,AngleTheta,AngleRho,

TextPhi): 

 

> # 2. Using build-in function ‘display’ to animate a list of figures. 

>display([Fig1,Fig2,Fig3,Fig4,Fig5],insequence=true); 
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(a)                                 (b)  

 

Figure 5a 

 

 

VI. Maple commands for Figure 5b 

> with(plots): with(plottools): 

> # 1. Using build-in command ‘plot3d’ to generate inside and outside sphere with and 

without wireframe style.  

> InsideSphere:= 

plot3d([sin(phi)*cos(theta),sin(phi)*sin(theta),cos(phi)],phi=0..Pi,theta=0..2*Pi,scaling=co

nstrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

> OutsideSphere:= 

plot3d([1.5*sin(phi)*cos(theta),1.5*sin(phi)*sin(theta),1.5*cos(phi)],phi=0..Pi,theta=0..2*P

i,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

> InsideSphereWire:= 

plot3d([sin(phi)*cos(theta),sin(phi)*sin(theta),cos(phi)],phi=0..Pi,theta=0..2*Pi,scaling=co

nstrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2],style=wireframe,color=blue): 

> OutsideSphereWire:= 

plot3d([1.5*sin(phi)*cos(theta),1.5*sin(phi)*sin(theta),1.5*cos(phi)],phi=0..Pi,theta=0..2*P

i,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2],style=wireframe): 

 

> # 2. Functions to display a part of inside and outside sphere. 

> PartOfInsideSphere:= (phibegin,phiend)-> 

plot3d([sin(phi)*cos(theta),sin(phi)*sin(theta),cos(phi)],phi=phibegin..phiend,theta=Pi/6..Pi

/3,scaling=constrained,color=blue,lightmodel=light2,axes=normal,view=[-2..2,-2..2,-

2..2],style=patchnogrid): 

> PartOfOutsideSphere:= (phibegin,phiend)-> 

plot3d([1.5*sin(phi)*cos(theta),1.5*sin(phi)*sin(theta),1.5*cos(phi)],phi=phibegin..phiend,t

heta=Pi/6..Pi/3,scaling=constrained,color=red,lightmodel=light2,axes=normal,view=[-

2..2,-2..2,-2..2],style=patchnogrid): 
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> # 3. Using build-in command ‘plot3d’ to display two vertical planes and a part of planes. 

> plane1 := plot3d([t,1/sqrt(3)*t,z],t=0..2,z=-2..2,style=patchnogrid): 

> plane2 := plot3d([t,sqrt(3)*t,z],t=0..2,z=-2..2,style=patchnogrid): 

> PartOfPlane1 := 

plot3d([rho*sin(phi)*cos(Pi/6),rho*sin(phi)*sin(Pi/6),rho*cos(phi)],rho=1..1.5,phi=Pi/6..Pi/

3,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

> PartOfPlane2 := 

plot3d([rho*sin(phi)*cos(Pi/3),rho*sin(phi)*sin(Pi/3),rho*cos(phi)],rho=1..1.5,phi=Pi/6..Pi/

3,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

> PartOfPlane3 := 

plot3d([rho*sin(Pi/6)*cos(theta),rho*sin(Pi/6)*sin(theta),rho*cos(Pi/6)],rho=1..1.5,theta=P

i/6..Pi/3,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

> PartOfPlane4 := 

plot3d([rho*sin(Pi/3)*cos(theta),rho*sin(Pi/3)*sin(theta),rho*cos(Pi/3)],rho=1..1.5,theta=P

i/6..Pi/3,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-2..2]): 

 

> # 4. Function to generate cross-section between a sphere and a plane. 

> SphereThetaPlaneIntersecLine:= theta-> 

plot3d([rho*sin(phi)*cos(theta),rho*sin(phi)*sin(theta),rho*cos(phi)],phi=0..Pi,rho=1.49..1.

5,scaling=constrained,color=black,axes=normal,view=[-2..2,-2..2,-2..2]): 

 

> # 5. Using build-in command ‘plot3d’ to display two cones. 

> cone1:= 

plot3d([rho*sin(Pi/6)*cos(theta),rho*sin(Pi/6)*sin(theta),rho*cos(Pi/6)],rho=0..2,theta=0..2

*Pi,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-

2..2],style=patchnogrid): 

> cone2:= 

plot3d([rho*sin(Pi/3)*cos(theta),rho*sin(Pi/3)*sin(theta),rho*cos(Pi/3)],rho=0..2,theta=0..2

*Pi,scaling=constrained,shading=xy,axes=normal,view=[-2..2,-2..2,-

2..2],style=patchnogrid): 

 

> # 6. Using built-in function ‘line’ to generate lines as shown in Figure 5-b(c). 

> Line1 := line([0,0,0],[sin(Pi/3)*cos(Pi/3),sin(Pi/3)*sin(Pi/3),cos(Pi/3)],color=blue): 

> Line2 := line([0,0,0],[sin(Pi/3)*cos(Pi/6),sin(Pi/3)*sin(Pi/6),cos(Pi/3)],color=blue): 

> Line3 := line([0,0,0],[sin(Pi/6)*cos(Pi/3),sin(Pi/6)*sin(Pi/3),cos(Pi/6)],color=blue): 

> Line4 := line([0,0,0],[sin(Pi/6)*cos(Pi/6),sin(Pi/6)*sin(Pi/6),cos(Pi/6)],color=blue): 

 

> # 7. Constructing 8 figures for animation.  

> Fig1 := display(OutsideSphereWire,title="Sphere radius rho1"): 

> Fig2 := display(OutsideSphereWire,InsideSphere,title="Spheres radius rho1 and rho2"): 

> Fig3 := 

display(OutsideSphereWire,InsideSphere,plane2,SphereThetaPlaneIntersecLine(Pi/3),title="

Spheres are cut with plane1"): 



31  B. Wiwatanapataphee, S. Noinang, Y.H. Wu, B. Nuntadilok 

> Fig4 := 

display(OutsideSphereWire,InsideSphereWire,plane1,plane2,PartOfInsideSphere(0,Pi),Part

OfOutsideSphere(0,Pi),SphereThetaPlaneIntersecLine(Pi/6),SphereThetaPlaneIntersecLine(

Pi/3),title="Spheres are cut with plane1 and plane2"): 

> Fig5 := 

display(OutsideSphereWire,InsideSphereWire,plane1,plane2,cone1,PartOfInsideSphere(Pi/6,

Pi),PartOfOutsideSphere(Pi/6,Pi),SphereThetaPlaneIntersecLine(Pi/6),SphereThetaPlaneInt

ersecLine(Pi/3),title="Spheres are cut with cone1"): 

> Fig6 := 

display(OutsideSphereWire,InsideSphereWire,plane1,plane2,cone1,cone2,PartOfInsideSpher

e(Pi/6,Pi/3),PartOfOutsideSphere(Pi/6,Pi/3),SphereThetaPlaneIntersecLine(Pi/6),SphereThe

taPlaneIntersecLine(Pi/3),title="Spheres are cut with cone1 and cone2"): 

> Fig7 := 

display(InsideSphereWire,OutsideSphereWire,PartOfInsideSphere(Pi/6,Pi/3),PartOfOutsideS

phere(Pi/6,Pi/3),PartOfPlane1,PartOfPlane2,PartOfPlane3,PartOfPlane4): 

> Fig8 := 

display(PartOfInsideSphere(Pi/6,Pi/3),PartOfOutsideSphere(Pi/6,Pi/3),PartOfPlane1,PartOf

Plane2,PartOfPlane3,PartOfPlane4,Line1,Line2,Line3,Line4): 

 

> # 8. Using build-in function ‘display’ to animate a list of figures. 

>display([Fig1,Fig2,Fig3,Fig4,Fig5,Fig6,Fig7,Fig8],insequence=true,orientation=[38,77],ti

ckmarks=[0,0,0]); 
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