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Units coordination refers to students’ abilities to create units and maintain their 
relationships with other units that they contain or constitute. In recent research, units 
coordination has arisen as a key construct that mediates opportunities for student 
learning across several domains of mathematics, including fractions knowledge and 
algebraic reasoning. To date, assessments of students’ stages of units coordinating 
ability have relied upon clinical interviews or teaching experiments whose time-
intensive nature precludes opportunities for conducting large-scale studies. We 
introduce a written instrument that teachers and researchers can use with large 
populations of students. We report on the reliability and validity of assessments based 
on the instrument.   
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INTRODUCTION 

Throughout their schooling experiences, students’ abilities to build and 
coordinate units mediate ways in which they can engage in mathematics. In the 
earliest years, children’s number sequences determine ways they can count. Steffe 
(1992) defined a number sequence as “a sequence of abstract unit items that contain 
records of counting” (p. 263), and he identified the following progression in 
children’s number sequences. With an Initial Number Sequence (INS), 1 is a unit that 
can be counted, but the record of counting (e.g., “one, two, three, four”) is not itself a 
unit. Rather, it symbolizes the activity of counting 1s from which the child might 
count on (“five, six, seven”). Once students unitize their records of counting, they can 
begin coordinating two levels of units—the 1s being counted and the composite unit 
containing those 1s. With a Tacitly Nested Number Sequence (TNS), students can 
make this coordination in the activity of counting, enabling them to double count 
(e.g., three 4s as “one, two, three, four; that’s 1. Five, six, seven, eight; that’s 2. Nine, 
ten, eleven, twelve; that’s 3”). Within the Explicitly Nested Number Sequence (ENS), 
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students can iterate the composite unit to produce a unit of units of units in activity 
(e.g., building up 12 as three units of four 1s by physically or imaginatively iterating 
a composite unit of four 1s). Once a student can assimilate such three-level unit 
structures, without the need to build them through activity, the student has 
constructed the operations that undergird a Generalized Number Sequence (GNS). 

In later years, the levels of units students coordinate afford and constrain their 
abilities to reason multiplicatively (Steffe, 1994; Hackenberg, 2010; Tillema, 2013), 
conceptualize fractions (Hackenberg & Tillema, 2009; Hunting, 1983; Norton & 
Boyce, 2013; Steffe & Olive, 2010), add integers (Ulrich, 2012), determine geometric 
area (Clements, Battista, Sarama, & Swaminathan, 1997; Reynolds & Wheatley, 
1996), and reason algebraically (Ellis, 2007; Olive & Çağlayan, 2007). Steffe (2002) 
articulated the link to fractions in his reorganization hypothesis, which stipulates 
that students can reorganize their ways of operating with whole number units in 
order to work with fractional units and construct knowledge of fractions. For 
example, just as a student with an ENS can partition a unit of 12 into three 4s, 
disembed a unit of 4 from 12, and iterate the unit of 4 to produce 8, she can learn to 
partition a whole into three thirds, disembed one of those thirds from the whole, 
and iterate it to produce 2/3. Such students might even produce an improper 
fraction, say 5/3, through iteration of a unit fraction, but conceptualizing 5/3 as a 
unit of five units of 1/3 would require the student to assimilate three levels of 
fractional units (1/3, the whole, and 5/3), just as the GNS involves assimilating three 
levels of whole number units (Hackenberg, 2007).  

Because students’ units coordinating ability has such strong implications for their 
learning of whole numbers, fractions, integers, and algebra, it is important that 
teachers and researchers have instruments for assessing this ability. To date, 
researchers have relied on teaching experiments and clinical interviews to assess 
students’ abilities to coordinate various levels of units—a time-intensive process 
that precludes large-scale study. The purpose of this paper is to present a written 
instrument for assessing the psychological structures students have available for 
coordinating units. The instrument utilizes tasks similar to those used in teaching 
experiments and clinical interviews, along with a rubric developed through the 
present study. We report on instrument design, as well as initial measures for 
validity and reliability of assessments using the instrument. Note that we do not 
report on a large-scale study here, but rather a validation study of a written 
instrument that would allow for large-scale studies. With the reliability and validity 
of the instrument established, other researchers can use the instrument in large-
scale studies related to units coordination. 

We begin with a review of literature related to assessing units coordination and 
the theoretical basis for our task design. Then we describe the methods we used to 
design the rubric and to test the instrument as a tool for assessing students’ units 
coordination structures. We present the instrument along with results regarding 
validity and reliability. Finally, we discuss the implications of our design in terms of 
the instrument’s utility for teaching and research. 

THEORETICAL FRAMEWORK 

Units coordination refers to the ways students can build and work with various 
levels of units (Steffe, 1992). We can characterize a progression in students’ abilities 
to coordinate units in terms of stages, as determined by the number of levels of units 
they can assimilate (cf., Hackenberg, 2010). Consider Figure 1 and potential 
responses to the following related task: “If the small red bar fit into the medium 
yellow bar three times, and the medium yellow bar fit into the long blue bar four 
times, how many times would the small red bar fit into the long blue bar?” 
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At Stage 1, students can assimilate units of 1 and may even assimilate composite 
units as a collection of 1s, but the relationship between these two levels of units is 
not multiplicative; in other words, they do not assimilate the composite unit as a 
unit that is n times as big as 1. In the bars task, these students are unlikely to use the 
given relations. Instead, they might take the small red bar as a unit of 1 and iterate 
its length across the length of the long blue bar to determine the unknown relation 
figuratively. At Stage 2, students can take two-level multiplicative relations as given. 
Thus, they can meaningfully assimilate the given relations; however, they have to 
build up the third level of units through activity. For example, they might treat the 
medium yellow bar as a unit of three 1s (small blue bars) and mentally iterate that 
composite unit four times, as specified by the given relation between the medium 
yellow bar and the long blue bar. At Stage 3, students can assimilate the given 
relations into a unit of units of units: the long bar as four medium bars, each of 
which is three small bars. As such, these students can immediately apprehend the 
unknown relationship as a multiplicative coordination of the given two relationships 
without the need to perform iterating actions, physically or mentally. Table 1 
summarizes the three stages of coordinating units. 

The bars task and stage descriptions suggest a method for assessing students’ 
ways of coordinating units. Indeed, we adopted a similar approach in designing our 
tasks, but in order to establish the face validity of our tasks, we need to review 
literature on how other researchers have characterized and assessed units 
coordination. 

Assessing units coordination 

Steffe’s (1992) number sequences correspond to the three stages in Table 1 as 
follows: Students with an INS and many with a TNS are operating at Stage 1; 
students with an ENS are operating at Stage 2, and students with a GNS are 
operating at Stage 3. Within Stage 1, the distinguishing characteristic of TNS 
students is that they can work with composite units, indicating progress toward 
Stage 2. With these correspondences established, we can consider the work of Steffe 
and colleagues, in assessing students’ number sequences, as assessments of their 
stages of units coordination. 

Figure 1. Bars task 

Table 1. Stages of units coordination 

Students’ Unit Structures Students’ Reasoning on the Bars Task 

Stage 1 Students can take one level of units as  

given, and may coordinate two levels of 

units in activity. 

Students mentally iterate the short bar, imagining how many times it 
would fit into the longer bar. This activity might be indicated by head 
nods or sub-vocal counting. 

Stage 2 Students can take two levels of units as 

 given, and may coordinate three levels of 
units in activity. 

Students mentally iterate the medium bar four times, with each 
iteration representing a 3. This activity might be indicated by the 
student uttering “3, 3, 3, and 3; 12.”  

Stage 3 Students can take three levels of units as 
given, and can thus flexibly switch between 
three-level structures. 

Students immediately understand that there are four threes in the long 
bar. This assimilation of the task might be indicated by an immediate 
response of “12,” buttressed by an argument that 12 is four 3s. 
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Whole number contexts 

Steffe’s assessments of number sequences occur in the context of teaching 
experiments (Steffe & Thompson, 2000; Steffe & Ulrich, 2014) where he designs 
tasks to test hypotheses about how students operate and to provoke new ways of 
operating. For example, consider the following interaction with a third grade 
student named “Maya” (Steffe, 1992). Steffe presented Maya with a red bar and 
several blue bars, produced such that the blue bar would fit into the red bar six 
times, much like the bars task illustrated in Figure 1. After Maya determined that six 
blue bars fit into the red bar (by aligning blue bars with the red bar), Steffe placed 
two orange bars on a single blue bar (fitting exactly) and removed the extra blue 
bars. Steffe asked Maya how many orange bars would fit into the red bar, instructing 
her to “figure it out with the blue ones” (p. 279). Maya appeared to respond by sub-
vocally uttering the following sequence: “1, 2; 3, 4; 5, 6; 7, 8; 9, 10; 11, 12.”  

Based on Maya’s response, Steffe inferred that Maya could “distribute her unit of 
2 across the six units of 1 prior to counting” (p. 280). However, the result was still a 
single number sequence, based on units of 1. As such, Steffe assessed Maya as 
operating with a TNS, which he affirmed after posing the following task. Maya had 
used blocks to make six rows of 3, which Steffe hid with a cover. Steffe then asked 
Maya to determine how many more rows of 3 she would need to have a total of ten 
rows of 3. Initially, Maya responded by asking, “You mean you add three blocks to 
them under there?” (p. 281). When Steffe repeated the question, emphasizing that 
she was to add rows of 3, Maya responded as follows: “One more row and one more. 
Four more rows—you have six, and you count up to six and then take another three, 
and that’s nine, and then one more and that’s ten!” (p. 282).  This response indicates 
that Maya’s goal had been to make 10 from 6 without distinguishing levels of units: 
A row simply meant 3; a block simply meant 1. Although Maya could construct 
composite units through activity (e.g., six 2s), she did not reliably assimilate units at 
two levels (e.g., blocks and rows).  

Contrast Maya’s response to the bars task with that of Johanna—a student 
operating with an ENS. After about 15 seconds in thought, Johanna responded “12” 
and explained, “Well, six plus six is twelve, and each two bars fits on one big bar, and 
that makes 12!” (p. 292). From this and subsequent activity in the teaching 
experiment, Steffe determined that Johanna could iterate composite units, 
understanding a composite unit as, say, a unit of 3 and a unit of three 1s, at the same 
time. This enabled Johanna to produce three levels of units in activity. “By operating, 
Johanna could establish a unit containing seven units each of which contained three 
units as the meaning of ‘seven rows with three blocks in each row.’” (p. 296).  

“In general, I think of units coordinating as the mental operation of distributing a 
composite unit across the elements of another composite unit” (Steffe, 1992, p. 279). 
In the case of TNS, this distribution occurs within a single level number sequence; 
whereas, with the ENS, students produce a correspondence between units across 
two levels of their number sequence (e.g., “5 is 1; 10 is 2; …”). With the GNS, students 
can immediately assimilate the results of such distributions as a third level and work 
flexibly across all three levels—what Steffe refers to as a “recursive units 
coordinating scheme” (p. 305). The reorganization hypothesis posits a direct 
connection between these ways of operating with units across whole numbers and 
fractions: “Children’s fractions schemes can occur as accommodations in their 
numerical counting schemes” (p. 267). 

Fractions Contexts 

In line with the reorganization hypothesis, researchers have found strong 
connections between students’ ways of operating with whole number units and 
their ways of operating with fractional units (Boyce & Norton, in review; 
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Hackenberg, 2007; Hackenberg, 2010; Hackenberg & Tillema, 2009; Olive & Steffe, 
2002; Steffe, 2002). As such, students’ ways of operating in fractional contexts 
provide further indication of their stages of units coordination. For instance, in 
partitioning a whole into n equal parts, students are producing a composite unit—
the whole as a unit of n nths. Although students operating at Stage 1 might carry out 
this activity, only students operating at Stages 2 and 3 can disembed one of those 
parts without destroying the whole because they have to simultaneously treat that 
part as a unit of 1 and 1 of n parts in the composite whole (Steffe, 2002).  

Relying on the cross-contextual connection, Hackenberg (2007) assessed 
students’ abilities to coordinate units using a fractions task. She asked students to 
mark off a fair share of a candy bar (represented with a rectangular piece of 
cardboard) split among six friends. Some of the students were able to mark off a 
share without partitioning the entire candy bar, and furthermore, were able to 
justify the appropriateness of the size of the share by iterating it six times within the 
whole. These actions indicate that the students were operating at Stage 2 or 3 
because they could treat the disembedded unit as a unit of 1 without losing its 1-to-6 
relation with the whole.  

Multiplicative concepts 

Building from Steffe’s (1994) multiplication schemes, Hackenberg (2010) 
characterized students’ units coordinations in terms of multiplicative concepts. She 
distinguished three multiplicative concepts, corresponding to the three stages in 
Table 1: multiplicative concept 1 (MC1) in which students can coordinate two levels 
of units in activity (Stage 1); multiplicative concept 2 (MC2) in which students can 
take two levels of units as given and coordinate three levels of units in activity 
(Stage 2); and multiplicative concept 3 (MC3) in which students can take three levels 
of units as given (Stage 3). To understand the relation to multiplicative reasoning, 
consider how students might assimilate the following situation: “At a bakery, a 
muffin tin has four rows with six muffins in each row” (p. 391). MC1 students form 
the goal of determining the total number of muffins but have to build the four units 
of six in the activity of counting (e.g., “6; 7, 8, 9, 10, 11, 12; 13, …, 18; 19, …, 24”). MC2 
students can anticipate the four rows of six as a totality—four iterations of a unit of 
6—though they may have to carry out units coordination activity to determine the 
result (e.g., “6 and 6 is 12, and another 12 is 24”). MC3 students retain this three-
level structure (24 as four units of 6) in further operating (e.g., “24 is four 6s, so 48 is 
twelve 4s”).  

MC3 students and many MC2 students can reverse their multiplicative reasoning 
in both whole number and fractions contexts (Hackenberg, 2010). A “reversible 
multiplicative reasoning” (RMR) task in a whole-number context might look like the 
following: “Sara’s stack of CDs is 65 cm tall. That’s 5 times the height of Roberto’s 
stack of CDs. Can you draw a picture of this situation? How tall is Roberto’s stack?” 
(p. 402). What makes the task reversible is that the task is iterative in nature (“5 
times”) and yet students have to partition (or divide) the result in order to find the 
unknown quantity that is iterated. 

An RMR task in a fractions context might look like this: “A 2-foot bar is three 
times the length of your candy bar. Make your candy bar and tell me how long it is 
(no erasing the foot-mark)” (p. 410). Carlos—a sixth-grade MC2 student from 
Hackenberg’s (2010) teaching experiment—eventually solved the task by splitting 
the two feet within the two-foot bar “into little pieces so I can add them all up into 
three pieces” (p. 411). This response indicates that Carlos knew he needed to 
reverse the iteration by partitioning the given 2-foot bar, but that he did not know 
what units to use within each foot—a limitation of MC2 reasoning.  

In the present study, we used ideas from Steffe (1992, 2002) and Hackenberg’s 
(2007, 2010) teaching experiments to design our tasks, and our assessments of units 
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coordination align with their assessments of number sequences and multiplicative 
concepts. However, we frame students’ ways of operating with units in terms of 
units coordination structures. For that reason, we turn to Piaget’s structuralism. 

Units coordinating structures 

In Piaget’s (1970a) epistemology, mathematical operations are mental actions 
that have been organized within a system for composing and reversing them, where 
“reversibility is defined as the permanent possibility of returning to the starting 
point of the operation in question” (Inhelder & Piaget, 1958, p. 272). Mathematical 
structures are the systems of transformation that organize operations (Piaget, 
1970b). For example, in early childhood, we develop a structure that organizes 
translations of objects in space. Translations arise as mental actions when we 
internalize physical actions of moving objects or tracing the movements of objects 
with our eyes. Translations become mathematical operations once they are 
organized in such a way that (1) they can be composed to form other translations 
and (2) each translation can be negated by a corresponding translation 
(reversibility). The result is a structure for displacements, which can be modeled by 
an algebraic group, isomorphic to vector addition in three-dimensional Euclidean 
space (Piaget & Inhelder, 1967/1948).  

Like algebraic groups, structures comprise the following three ideas: “the idea of 
wholeness, the idea of transformation, and the idea of self-regulation” (Piaget, 
1970b, p. 5). Wholeness refers to the idea that, although structures have individual 
elements, the relationships between elements are defined by rules that apply to a 
consolidated totality, rather than particular elements. Transformation refers to the 
idea that structures are not static forms; structures frame “intelligible change that 
always preserves invariance in certain respects” (p. 20). Self-regulation refers to the 
idea that the “transformations inherent in a structure never lead beyond the system, 
but always engender elements that belong to it and preserve its laws” (p. 14). 
Collectively, these three ideas correspond to the closure of a group under 
composition of its elements. In the case of mathematical structures, there is also 
reversibility, corresponding to the idea that every element of a group has an inverse 
element so that composition of the two elements yields the identity (p. 15).  

The elements of mathematical structures are operations (e.g., the mental actions 
of translating objects in space, organized in the displacement group). Whereas Steffe 
(1992) characterized units coordinating as distributing one composite unit across 
another, we can describe the operations of a units coordinating structure in greater 
detail. They include unitizing, iterating, partitioning, and disembedding (Steffe & 
Olive, 2010). Figure 2 represents the form of a units coordinating structure, which 
might be produced by iterating a composite unit. Units coordinating structures are 
ways of operating within such forms, especially regarding levels of units. For 
example, with regard to Figure 2, a student operating at Stage 3 might disembed one 
of the smallest units from the unit of 24, iterate that unit 3 times, unitize the result 
as a unit of three 1s, and then iterate that composite unit eight times to reproduce 
24 as a unit of eight units of three 1s (three levels of units). The structural aspect of 
units coordination refers to the idea that such organizations of operations 
completely define and regulate possible and necessary relationships between units. 

Figure 2. Representation of a structure for coordinating units 
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Here, we describe the units coordinating structures available to students at each 
stage. 

Although a student operating at Stage 1 might produce composite units, as Maya 
did (Steffe, 1992), the resulting structure would not be 24 as a unit of eight units of 
three 1s but rather a chain of 1s segmented into 3s, and she would not be able to 
work with units of 3 and units of 1 simultaneously. She could iterate 1 three times or 
24 times, and she could partition the chain of 1s into sets of 3. She could even carry 
out the activity of iterating a partitioned set of 3 eight times, but she could not 
unitize three 1s as one 3 and iterate it to simultaneously produce 24 as 24 1s and 
eight 3s. In sum, the Stage 1 student can carry out iterating and partitioning activity, 
always working from a unit of 1. The ideas of wholeness, transformation, and self-
regulation inherent in the structure are captured by the inverse relationship 
between the activities of iterating a unit of 1 and partitioning a collection into units 
of 1.   

Students operating at Stage 2 can unitize three 1s as one 3 and establish a 
multiplicative 3-to-1 relationship between those two units. As a result, these 
students can produce the form illustrated in Figure 2 by iterating the composite unit 
of 3. Students at Stage 2 can also disembed a unit of 1 from a unit of 3, maintaining 
its constituency as part of the 3, even while treating it as its own unit. In this sense, 
unitizing and disembedding behave like inverse operations (similar to partitioning 
and iterating). These students can also disembed a 3 from the eight 3s that comprise 
24. However, when iterating these disembedded units, students do not maintain the
new units they produce. For example, a student might disembed a unit of 3 and
iterate it two times to produce 6 as two 3s, but when asked how many 3s are in four
6s, the student will not be able to take for granted 6 as a unit of two 3s (e.g., “four 6s
is four sets of two 3s, so the answer is 8”); he will have to build up from 3 again (e.g.,
“one, two 3s is 6, then two more, and two more, and two more, so eight 3s is four
6s”).

Students at Stage 3 do maintain the third level of units. In fact, they can assimilate 
situations involving three levels of units into their units coordinating structures, 
accounting for and distinguishing all three levels at once, without having to carry out 
any activity. For example, consider the following task: “A teacher has a classroom 
with six rows of four desks but needs to add 12 more desks to the classroom. How 
many total rows will there be if he decides to keep the desks in rows of four?”1 
Students at Stage 3 can immediately assimilate the six rows of 4 as a unit of units of 
units. Even if they do not know the total number of desks, they know there are six 
units at the second level and that each of these units contains four units at the first 
level (units of 1). Thus, they can focus on the problem of determining how many 
units of 4 are created from the 12 extra desks. In contrast, students at Stage 2 
generally become consumed with the (unnecessary) task of computing 6 times 4 
and, in the process, lose track of the stated goal (Boyce & Norton, in review). 

Units coordination structures can take different forms for different contexts, but 
the constituent operations are the same. Indeed, this is the basis for Steffe’s (2002) 
reorganization hypothesis. In particular, consider Figure 3, which represents the 
form of a structure for coordinating three levels of units within an improper 
fraction. Here, 8/3 is a unit of eight units of 1/3, three of which make the whole unit. 
Similar to the way they operate with whole number units, students operating at 
Stage 3 can partition the whole into three parts, disembed one of those parts and 
iterate it eight times to produce 8/3 while maintaining the 3-to-1 relationship 
between the iterated part (1/3) and the whole (Hackenberg & Lee, 2015). 

1 Thanks to Amy Hackenberg for developing the original version of this task. 
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RESEARCH DESIGN 

Instrument design and testing occurred in three phases. In Phase I, the first and 
second authors designed tasks based on our theoretical framework and previous 
studies on students’ units coordinations. Then, this pair of raters (R1 and R2) 
conducted clinical interviews with 20 middle school students to design a rubric for 
assessing student responses to those tasks. In Phase II, a second pair of raters (R3 
and R4; third and fourth authors) used the instrument—tasks and rubric—to score 
the level of units coordination for the 20 students. The validity and reliability of 
these scores were then assessed. In Phase III, the first and second pairs of raters 
worked to improve the rubric, and then we recruited a third and fourth pair of 
raters (R5-R8) to score the level of units coordination for the 20 students. The 
validity and reliability of the scores based on the revised rubric was then evaluated.  

Tasks 

In previous studies, we have used bars tasks to assess students’ units 
coordinating activity during clinical interviews (Boyce & Norton, in review; Norton, 
Boyce, Ulrich, & Phillips, 2015). We designed these tasks such that students could 
readily assimilate them into available units coordination structures. The interviewer 
would give the student three strips of construction paper (“bars”) to manipulate, as 
illustrated in Figure 2. Then, the interviewer would ask the student to determine 
how many times the small bar fits into the medium bar and how many times the 
medium bar fits into the long bar; students would generally respond by sliding the 
small (medium) bar along the length of the medium (long) bar. Finally, the 
interviewer would ask the student to use those relationships to determine how 
many times the small bar would have to fit into the long bar.  

Subsequent bars tasks used a different set of bars, and rather than asking the 
student to determine the first two relationships, the interviewer would ask the 
student to pretend that they have particular relationships, disproportionate to the 
actual lengths of the bars. Then, the interviewer would ask the student to determine 
the third relationship based on the given ones. The interviewer would use the new 
set of bars to ask this kind of question in three different ways, using all three 
combinations of relationships: (1) where the relationship between the small bar and 
the long bar is unknown; (2) where the relationship between the small bar and the 
medium bar is unknown; and (3) and where the relationship between the medium 
bar and the long bar is unknown.  

We designed tasks for the written instrument based on the bars tasks we had 
used during clinical interviews. In fact, Tasks 1-6 in the written instrument (see 
Appendix A) also provide illustrations for the clinical interview tasks described 
above. We included Task 7 to assess how a student might operate when the 
unknown relationship cannot be represented by a whole number. Collectively, these 

Figure 3. 8/3 as a unit of eight units of 1/3, 3 of which make the whole 
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seven tasks are intended to elicit written responses from students that would 
provide indication of their available structures for coordinating units.  

Data collection 

To design the rubric, we conducted clinical interviews with 20 sixth-grade 
students. Steffe (2007) has estimated that, by the end of fifth grade, 30-50% of 
students in the United States operate at Stage 1, with the remainder of the 
population operating at Stages 2 or 3. Thus, sixth-grade students constitute an ideal 
population for our study because we might expect roughly one third of them at each 
stage. The 20 students in our study came from a high-needs rural school in the 
Southern United States; 63% of the students at the school receive free or reduced 
price lunch. The students were enrolled in one of five sections of a sixth-grade 
mathematics class taught by the same teacher. 

Clinical interviews occurred over a three-day period in August of 2013. R1 and 
R2 independently conducted interviews with individual students using the written 
instrument tasks (Appendix A). Each interview lasted about 15 minutes. We handed 
students tasks on a sheet of paper, one at a time (with the exception of the first three 
tasks, which are clustered together), and asked the students to respond in writing. 
After the students had recorded their responses on the paper, we asked the students 
to explain what they had written and why they had written it, without them writing 
anything more on their papers. Then, we moved on to the next task, on a new sheet 
of paper, and proceeded in the same manner through all seven Tasks (five sheets of 
paper; Appendix A). We video-recorded the clinical interviews so that we could use 
them for retrospective assessment of students’ units coordination structures. 
However, R1 and R2 conducted their first assessments relying on written responses 
alone. Each rater independently rated all written responses. 

Data analysis 

R1 and R2 used the 20 clinical interviews, along with students’ written 
responses, to design and test the instrument. First, we assessed students’ units 
coordination structures in two ways: based on written responses alone, and based 
on video-recorded actions (including verbalizations) in conjunction with written 
responses. We then used these assessments to design a rubric that other raters 
could use. Finally, we measured criterion-related validity and inter-rater reliability 
for assessments conducted by additional raters using this rubric and a revised 
version of it. 

Phase I: Rubric design 

R1 and R2 had no rubric for conducting their assessments of students’ written 
responses. Rather, each rater used his knowledge of units coordination and 
considered student responses holistically in order to identify the stage of operating 
that best explained the students’ responses. With their written assessments 
complete, these two raters independently reviewed video-recordings for the 20 
clinical interviews and conducted a second assessment based on student actions in 
the video, in conjunction with the corresponding written responses.  

While conducting their assessments based on video-recorded responses in 
conjunction with written responses, the raters looked for student actions that might 
provide further indication of how students had operated and how this was indicated 
in their written responses. They paid particular attention to cases where making a 
final inference had been particularly challenging based on written responses alone. 
R1 and R2 gathered indicators for each stage of units coordination in order to build 
the rubric described in the next section. These indicators could be present in 
students’ written responses but were correlated with actions (including 
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verbalizations) observed in the video that provided stronger indication of each stage 
of operating. 

Phase II: Measuring validity and reliability 

With their video-based assessments complete, R1 and R2 reconciled their scores 
to achieve a final assessment of students’ stages of units coordination, which might 
differ from assessments based on written responses alone. This final assessment 
was taken as the “true score” for all subsequent rater comparisons. To test reliability 
and validity of the instrument, we recruited a second pair of raters (R3 and R4). The 
new raters independently assessed students’ stages of units coordination based on 
written responses and using the rubric. They used the rubric (similar to the one in 
Appendix B) to score the 20 written assessments following the instructions below.  

1. For each student, set of tasks (Tasks 1-3, Tasks 4-5, Task 6, and Task 7),
and stage, each rater noted which indicators seemed present in the
student’s response; as such, each indicator was treated as a dichotomous
item, scored as either 0 or 1.

2. For each student and set of tasks, each rater determined which stage (or
Stages in the case of Tasks 1-3) seemed to fit best with the indicators
noted.

3. After completing these within-task assessments, each rater looked across
all seven tasks (four sets of tasks) to determine an overall assessment for
each student (Stage 1, 2, or 3).

4. Each rater also noted any difficulty (s)he had in using the rubric for a
particular student/task/stage; difficulties might occur at the indicator
level, the task level, or in the overall assessment.

When R3 and R4 finished scoring, we computed Cohen’s kappa, as a measure of 
inter-rater reliability (Cohen, 1960). We also computed Kendall’s tau and 
Spearman’s rho between each of the two new raters’ scores and the final assessment 
from the first two raters’ reconciliation. This correlation provided a measure of 
criterion-related validity for the scores from the instrument. 

In order to test the reliability of the instrument with a different population, the 
first pair of raters (R1 and R2) used the rubric to score a second set of data. This 
data came from another project that used the same items. Students in the population 
were enrolled in seventh grade at another high-needs school about 100 miles from 
the first school. We randomly selected 20 students from that population and scored 
their responses based on the rubric. Once again, we used Cohen’s kappa (weighted) 
as a measure of inter-rater reliability. 

Phase III: Measuring validity and reliability of the revised instrument 

As reported in the results section, Kendall’s tau and Spearman’s rho for R3 and 
R4 were high as were kappa scores for R1 and R2 with the second set of data. 
However, rater agreement, based on kappa scores for R3 and R4, was only 
moderate. Based on our conversations, we felt that this low reliability was due to 
ambiguities in the second pair of raters’ readings of the rubric. All four raters had 
kept notes on their use of the rubric with their respective sets of data. Notes 
included which indicators were used and any difficulties raters had in identifying 
indicators or stages of units coordination. We used these notes to revise the 
indicators in the rubric. Then we recruited a third and fourth pair of raters (R5-R8) 
to use the revised rubric with the original set of data. We purposefully selected one 
pair of researchers who had familiarity with the construct of units coordination (R5 
and R6) and one pair of prospective teachers who did not (R7 and R8). We report 
results of both iterations in the next section. 
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RESULTS 

Results concern the design of the instrument itself, as well as measures of validity 
and reliability. We begin by considering face validity of the tasks alone. Then we 
share results concerning rubric design. Finally, we report results from measuring 
the validity and reliability of the scores associated with the instrument as a whole 
(including the rubric). 

Face validity of the tasks 

Using bars tasks like the one illustrated in Figure 2, the first two authors have 
engaged in multiple teaching experiments and clinical interviews to assess students’ 
ways of coordinating units (Boyce & Norton, in review; Norton, Boyce, Ulrich, & 
Phillips, 2015). Items for the written instrument are based on such tasks and align 
with the theoretical framework we have presented. In particular, the first three 
tasks (see Appendix A) align with the teaching experiment tasks that Steffe (1992) 
used to assess students’ number sequences, which correspond to stages of units 
coordination. The fourth task demands similar ways of operating, except students 
cannot rely on the drawn figures to determine the unknown relationship because 
the bars are not drawn to scale. As such, the task might help raters determine 
whether students are operating at Stage 1 and not using the given relations (see 
Table 1).  

Task 4 also aligns with Hackenberg’s (2007, 2010) construct of students’ 
multiplicative concepts: “the units coordinations that they can take as given prior to 
activity” (2007, p. 27). Students at Stages 2 and 3 should be able to take the two 
stated relationships as given and use them to determine the third relationship 
multiplicatively, though Stage 2 students would need to do this through activity (e.g., 
mentally iterating and counting six 2s). Furthermore, Tasks 5 and 6 require students 
to reverse their multiplicative reasoning to determine the unknown relationship 
(Hackenberg, 2010). Finally, Task 7 incorporates reversible multiplicative reasoning 
in a setting where the unknown relationship is not a whole number. Based on 
Steffe’s (2002) reorganization hypothesis, students’ ways of operating with whole 
number units should be available for operating with fractional units. Student 
responses to Task 7 could distinguish students operating at Stages 2 and 3 by 
indicating how they account for the extra unit—the leftover unit fraction.  

Descriptive statistics also support face validity of the tasks (see Table 2). Without 
a rubric, R1 and R2 were able to use students’ written responses to the tasks to 
assess the students’ units coordination structures. They achieved 80% agreement in 
their scores (16 out of 20) indicating that, based on their knowledge of units 
coordination, the raters were able to use student responses to the tasks to assess 
units coordination structures, even without a rubric. Moreover, there is general 
agreement across these assessments, the raters’ assessments using the video-
recorded clinical interviews, and the reconciled assessments using the clinical 
interviews. As described in the next section, we used discrepancies between these 
scores to inform the design of a rubric that might support greater validity and 
reliability of rater scores. 

Rubric 

In 13 of the 20 cases presented in Table 2, we find perfect agreement across all 
four independent scores. The first two authors used these cases to explicitly identify 
indicators for the rubric. For example, some students’ written responses indicated 
that they were not using the given relations to determine the unknown relation but 
were simply relying on the appearance of the given bars; this was a strong indicator 
that these students were operating at Stage 1. We captured such indicators in the  
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rubric. The remaining seven cases drew our attention to indicators that we either 
had not attended to while scoring, or that led to ambiguous scores.  

In the cases of Students 1, 11, 17, and 20, there was some question as to whether 
students had drawn pictures fitting the given relations in order to demonstrate their 
reasoning (indicating Stage 3), or whether they had drawn the pictures in order to 
find a solution (indicating Stage 2). For example, in response to Task 6, Student #1 
had drawn the picture shown in Figure 4. 

On the basis of this response and similar responses to other tasks, R1 had 
assessed Student 1 as operating at Stage 3. However, analysis of the video-recorded 
clinical interview made it clear that the student had worked out his solution with the 
drawn bars: First, he drew the long bar with the 12 small bars lined up beneath; 
then he drew the medium bar, with the three small bars lined up beneath; then he 
determined how many sets of 3 there were among the 12 small bars. Although the 
student apparently reversed his multiplicative reasoning to produce the correct 
relationship, he seemed to rely on the drawn bars. Rather than assimilating the two 
given relationships into a three-level structure, the student seemed to assimilate the 
two given relationships into a two-level structure, then represented these two two-
level structures in the drawing and used the drawing to coordinate those two 
structures. This way of operating fits Stage 2. 

Table 2. First pair of raters’ assessments of units coordination 

Student# Written R1 Written R2 Video R1 Video R2 Video Final 
1 3 2 2 2 2 

2 1 1 1 1 1 

3 1 1 1 1 1 

4 1 1 1 1 1 

5 1 1 1 1 1 

6 2 2 2 2 2 

7 1 1 1 1 1 

8 2 2 2 2 2 

9 2 2 1 2 2 

10 2 2 2 2 2 

11 2 3 2 3 2 

12 2 1 1 1 1 

13 1 1 1 1 1 

14 3 3 3 3 3 

15 1 1 1 1 1 

16 1 1 1 1 1 

17 2 3 2 2 2 

18 1 1 2 1 1 

19 2 2 2 2 2 

20 2 2 3 2 3 

Figure 4. Student #1 response to Task 6 



 Written instrument for units coordination 

© 2015 IEJME, International Electronic Journal of Mathematics Education, 10(2), 111-136  123 

Looking back at the written responses, we see indicators that the student had 
operated in this way. First, note that the students’ final, numerical response appears 
to the lower right of the drawings, indicating that he had produced it after the 
drawings. Second, note the pencil dots along the 12 small bars, indicating that the 
student counted them out, perhaps in groups of 3, after they were drawn. We can 
contrast these indicators with Student #20 who drew the picture shown in Figure 5. 

Here, we note that the student had set up the drawing as a division problem from 
the start, but this was not a simple representation of a rote computation: The green 
(“g”) and purple (“p”) bars were drawn to scale. Moreover, the student had 
immediately translated the given relations into the essential relations between the 
number of green bars within each of the other bars, and he represented the result of 
their division with four purple bars, indicating that he had assimilated all three 
levels of units from the start. Finally, above the drawing he had written the 
following: “If the green bar fits into the orange bar 12 times and the green bar fits 
into the purple bar three times, you need to do 12 ÷ 3.” This writing indicates that 
(1) the student determined the solution method before making the drawing and (2)
the student saw the division as a necessary relationship (“you need to do”) rather
than a trick that might work.

Until R1 and R2 reviewed the video-recorded clinical interview with Student #20, 
they had missed these cues and had assumed the student was doing rote division. 
Distinctions in the written responses of Student #11 and Student #20 informed the 
indicators that we created for the rubric with respect to Tasks 5 and 6. Similar 
distinctions, as revealed by the clinical interviews, informed indicators across all 
seven tasks. R3 and R4 used the completed rubric to assess the 20 students’ written 
responses to the seven tasks. These raters had no foreknowledge of our ratings or 
discussions in forming the rubric. We report on quantitative results regarding those 
assessments in the next section. 

Validity and reliability of the instrument: Round 1 

We tested the validity of the rater scores using the instrument by comparing the 
scores from R3 and R4 to the reconciled scores from R1 and R2, based on their 
assessments of students’ actions in the videos. All three scores are reported in Table 
3. Kendall’s tau and Spearman’s rho provide measures of association between the
scores. For R3 and R4, respectively, tau was 0.89 (p < .001) and 0.81 (p < .001), and
rho was 0.91 (p < .001) and 0.87 (p < .001). Inter-rater reliability for R3 and R4 was
measured using Cohen’s kappa: 0.32 (unweighted); 0.49 (weighted). Landis and
Koch (1977) characterize these scores as indicating “fair” to “moderate” agreement.

On the second set of data, the first pair of raters (R1 and R2) achieved perfect 
agreement, with matching ratings for all 20 students. However, this data included 
only four students rated as Stage 2 and no students rated as Stage 3. As we began 
looking at the scores for the second pair of raters (R3 and R4), we realized that most 
of the disagreements were between Stages 2 and 3. So, when we met to further 

Figure 5. Student #20 response to Task 6 



A. Norton et. al

124 © 2015 IEJME, International Electronic Journal of Mathematics Education, 10(2), 111-136 

refine the rubric, we focused on creating indicators that would more clearly demark 
that distinction. 

Rubric refinement 

Following the first round of validity and reliability tests, R1 met with R3 and R4 
to discuss discrepancies and review each indicator in the rubric for ambiguities. This 
resulted in a revised rubric (Appendix B) that would be used in the second round of 
testing with the third and fourth pairs of raters (R5-R8). In this section, we share our 
rationale for some of the revisions, especially regarding distinctions between Stages 
2 and 3. 

By definition, students operating at Stage 3 can assimilate three levels of units, 
whereas students operating at Stage 2 have to coordinate the third level of units 
through activity. Thus, a key indicator in distinguishing the two levels is to 
determine whether students used their drawings to coordinate the third level of 
units or whether those drawings were used to represent a structure they had 
already organized. Related indicators in the rubric required raters to infer whether 
students arrived at their solutions before or after they made their drawings. After 
looking back at cases in which either rater in the second pair (R3 and R4) had 
identified the indicator, we realized that we could specify more objective examples 
to guide rater inferences; we revised related indicators accordingly. For instance, 
the first Stage 2 indicator for Task 4 was revised to the following: “Students 
coordinate relations appropriately and with a drawing illustrating size relations, but 
writing indicates the drawing was the solution method (e.g., solution appears below 
the drawing, or erasures/corrections are present in the drawing).” 

Other indicators seemed to be generating false positives for Stage 3. These 
included a second Stage 3 indicator for Task 4 (“students refer to necessary 
relationships”) and the first Stage 3 indicator for Tasks 5 and 6 (“students reverse 
the multiplicative reasoning for both tasks, except possibly if there is indication that 
the student misread a task”). We edited the latter indicator by removing the 
exception, and we removed the former indicator altogether. The former indicator 
was designed as an attempt to account for the idea that, at Stage 3, students could 
immediately understand the third relationship as a logical consequence of the given 
relationships. However, in practice, it was ambiguous with indications possibly 

Table 3. Second pair of raters’ assessments compared to final assessments from the first pair 

Student# Written R3 Written R4 Video Final 
1 2 2 2 

2 1 1 1 

3 1 1 1 

4 1 1 1 

5 1 1 1 

6 1 2 2 

7 1 1 1 

8 2 3 2 

9 2 2 2 

10 2 3 2 

11 2 3 2 

12 1 1 1 

13 1 2 1 

14 3 3 3 

15 1 1 1 

16 1 1 1 

17 2 3 2 

18 1 2 1 

19 2 3 2 

20 2 3 3 
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including restatements of the given relations. The latter indicator was written so 
that raters would not exclude a student as Stage 3 for simply misreading one of the 
reverse tasks. However, we found that other Stage 3 indicators were adequate for 
identifying Stage 3 students.  

Validity and reliability of the instrument: Round 2 

We tested the validity and reliability of assessments based on the refined 
instrument by recruiting raters R5-R8. R5 and R6 (fifth and sixth authors) were 
mathematics education researchers familiar with the construct of units 
coordination. R7 and R8 were students in a teacher education program—one 
preparing to become a secondary school mathematics teacher (R7) and the other 
preparing to become an elementary school teacher (R8). Neither of these students 
had familiarity with the construct of units coordination beyond an article they read 
(Norton, Boyce, & Hatch, in press). The raters’ scores are reported in Table 4, along 
with the reconciled scores (Video Final) from the first pair of raters. 

Note that the preponderance of new raters’ scores agree with the video-based 
“true” score. However, none of the scores from these raters agree with the video-
based score for Student #9; in contrast, scores from R3 and R4 both agreed with this 
score (see Table 3). Student #9 responded to the final three tasks erroneously and 
with little supporting work: For Task 5, the student wrote “8÷2=6”; for Task 6, she 
wrote “12÷6=2”; and for Task 7, she labeled the medium and long bars “4” and “9”, 
respectively, and simply wrote “2” as a final response. Contrasting the indicators 
identified by R3 and R4 using the old rubric and those identified by R5-R8 using the 
new rubric, we attribute the disparity in scores to the following refinements in the 
rubric. 

1. For Tasks 5 and 6, the new rubric includes subtracting the numbers in the
given relations as a Stage 1 indicator (Indicator 2), and although Student
#9 wrote a division symbol, she appeared to subtract the numbers for
Task 5.

2. Also for Tasks 5 and 6, the exception for misreading a task was removed
from Stage 3 Indicator #1, so the new raters could not justify the Stage 3
indicator for Student #9, who did seem to misread Task 6.

Table 4. Third and fourth pairs of raters’ assessments compared to final assessments from the first pair 

Student# Written R5 Written R6 Written R7 Written R8 Video Final 
1 2 2 2 2 2 

2 1 1 1 1 1 

3 1 1 2 1 1 

4 1 1 1 1 1 

5 1 1 1 1 1 

6 2 1 2 1 2 

7 1 1 1 1 1 

8 2 2 2 2 2 

9 1 1 1 1 2 

10 2 3 2 3 2 

11 2 3 3 3 2 

12 1 1 1 1 1 

13 1 1 2 1 1 

14 3 3 3 3 3 

15 1 1 1 1 1 

16 1 1 1 1 1 

17 2 2 2 2 2 

18 1 2 1 1 1 

19 2 2 2 2 2 

20 3 2 3 3 3 
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3. Finally, for Task 7, the new rubric included a Stage 1 indicator for when
the students do not account for the leftover part, which Student #9 did
not do.

Despite the refined indicators, video analysis indicates that Student #9 had 
interiorized two levels of units, as evidenced by the students’ oral explanations of 
reverse multiplicative reasoning in Tasks 5 and 6 and attempts to account for the 
leftover part in Task 7. Thus, we view the raters’ scores of written responses using 
the new rubric as false negatives for Stage 2 operating, as a consequence of this 
student’s particular responses and the lack of supporting drawings or written 
explanations. Although we could continue to refine the rubric, our overall statistical 
measures demonstrate reliability and validity of the rubric in its current form 
(Appendix B). 

As before, we measured inter-rater reliability by comparing each pair of raters’ 
scores to each other using Cohen’s kappa, and we measured validity by comparing 
each rater’s scores to the reconciled scores from R1 and R2 (based on their 
assessments of students’ actions in the videos) using Kendall’s tau and Spearman’s 
rho. For R5 and R6, kappa was 0.57 (unweighted) and 0.65 (weighted). For R7 and 
R8, kappa was 0.68 (unweighted) and 0.75 (weighted), indicating “substantial” 
agreement within each pair (Landis & Koch, 1977). Tau for the four raters (R5, R6, 
R7, R8) were 0.93, 0.68, 0.75, and 0.81, respectively; and Spearman rank-order 
correlations for the four raters were .93, .73, .78, and .84, respectively. These 
measures of association (see Table 5) represent strong relationships between the 
rater scores and the “true” scores (Cohen, 1992), providing strong evidence of the 
criterion-related validity for the rater scores based on the revised rubric. 

DISCUSSION 

The goal of this study was to develop an instrument for identifying stages of units 
coordination and to test the validity and reliability of assessments based on that 
instrument. Evidence presented here provides indication for the usefulness of the 
instrument—tasks and rubric—for assessing the levels of units with which middle 
school students’ can operate. In particular, measures of validity and reliability 
among the third and fourth pairs of raters (R5-R8) indicate that teachers can use the 
instrument as well as researchers, with little training on theoretical underpinnings. 
Recent research suggests that teachers may need such an instrument for effective 
instruction. For example, with regard to algebraic reasoning, Hackenberg (2013b) 
demonstrated how productive engagement for students operating at Stage 1 might 
differ from productive engagement for students operating at Stages 2 and 3. As 
elaborated in our Theoretical Framework, additional studies implicate the role of 
units coordination across multiple domains of mathematics (e.g., Steffe & Olive, 
2010; Tillema, 2013; Ulrich, 2012).  

Researchers can use the instrument to measure growth in students’ units 
coordination. To date, researchers have assessed students’ stages of units 
coordinating using clinical interviews or small group teaching experiments (e.g., 
Hackenberg & Tillema, 2009; Norton & Boyce, in review), which are too time 
intensive to accommodate large populations. In contrast, written responses to the 

Table 5. Measures of validity and reliability 

Measure R5 R6 R7 R8 
Tau 0.93** 0.68* 0.75** 0.81** 

Rho 0.93** 0.73** 0.78** 0.84** 

Kappa (unweighted) 0.57** 0.68** 

Kappa (weighted) 0.65** 0.75** 

Note: *p < .01; **p < .001. 
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instrument’s tasks can be gathered at once and scored relatively quickly using the 
rubric, making it possible to perform large-scale quantitative studies of students’ 
stages. Such studies might establish the statistical significance of growth due to 
instructional intervention. They might also address hypotheses regarding units 
coordination and its relation to other aspects of mathematical development through 
measures of correlation. 

Izsák and colleagues developed an instrument for assessing teachers’ fractions 
knowledge before and after a professional development intervention (Izsák, 
Jacobsen, de Araujo, & Orrill, 2012). Using mixture Rasch modeling, they identified 
two subgroups of teachers based on their differentiated performance. The 
researchers surmised that the distinguishing feature of the higher-performing group 
was their ability to coordinate three levels of units. Likewise, Ellis (2007) found that 
a distinguishing feature for students’ success in high school algebra was their ability 
to treat ratios as quantities—an ability that may depend upon coordinating three 
levels of units (Hackenberg, 2013a). Both hypotheses can be tested measuring 
correlation between student performance in these domains and their stages of 
operating with units. 

Future research should include tests of convergent and divergent validity relative 
to other measures. For example, we might want to know whether stages of units 
coordination correlate strongly with Piaget’s (1970a) operational stages. Middle 
school students are in a developmental range (around 11 years old) during which 
they should be transitioning from the concrete operational to formal operational 
stage. To what degree does this transition correlate with higher stages of units 
coordination? Measures of convergent and divergent validity could also differentiate 
the effects of general ability, whether framed as intelligence or general test-taking 
ability.  

We have framed units coordination as a general structure for operating that 
crosses multiple mathematical domains. This framework fits Steffe’s (2002) 
reorganization hypothesis concerning the ways students operate with whole 
numbers and fractions. More generally, it fits a Piagetian perspective on the nature 
of mathematics itself: “The whole of mathematics may be thought of in terms of the 
construction of structures” (Piaget, 1972, p. 70). Attending to students’ structures 
for operating provides a sense of their mathematical power, including the kinds of 
concepts they might construct with the support of instruction. We intend the units 
coordination assessment instrument shared here as way for teachers and 
researchers to better understand students’ mathematical development.  

In closing, we note that the future studies suggested here might also address 
limitations in our own study. For example, we tested our instrument with a 
relatively small population in one geographic region. Using the instrument with new 
populations offers opportunity for further tests of reliability and validity—including 
tests of convergent and divergent validity in studies that use multiple instruments. 
We see our contribution as a first step by providing the research community with a 
means of assessing stages of units coordination among large populations of 
students. 
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Appendix B: Revised Rubric for Assessing Units Coordination Structures 

Tasks 1-3 

Students’ Unit Structures 
Student Reasoning on 
Tasks 1-3 

Written Indicators of Reasoning 

Stage 1 Students can take one level 
of units as given, and may 
coordinate two levels of 
units in activity. 

Students physically or 
mentally iterate the small bar 
in the long bar (or segment 
the long bar with the short 
bar), relying on the 
appearance of the bars to 
determine how many times it 
would fit. 

 Student responses to Tasks 1 and 2 are off by more than 1 
from the correct relation (note that students at Stages 2 
and 3 might represent the relations as unit fractions).

 Student responses to Task 3 indicate that they estimated 
the number of times small bar fit into long bar (possibly 
further indicated by partitioning marks), rather than 
taking the product of responses to Tasks 1 & 2.

 Students add their solutions to Tasks 1 and 2 to solve Task 
3. 

 Students do not respond, or otherwise indicate they do 
not know. 

Stage 2 Students can take two 
levels of units (a composite 
unit) as given, and may 
coordinate three levels of 
units in activity. 

Students mentally iterate the 
medium bar within the long 
bar four times, with each 
iteration representing a 3 
(i.e., 3, 6, 9, 12). 

 Students use relational language (e.g., “every medium bar 
is 3 small bars”).

 Student drawings incorporate the two relations 
determined in Tasks 1 and 2.

 Student responses justify the use of multiplication.
Stage 3 Students can take three 

levels of units (a composite 
unit of composite units) as 
given, and can thus flexibly 
switch between two and 
three-level structures 
without reliance on 
figurative material. 

Students use the given 
relations to determine that 
there are four 3s (small bars) 
in the long bar.  

Task 4 

Students’ Unit Structures Student Reasoning on Task 4 Written Indicators of Reasoning 

Stage 1 Students can take one level 

of units as given, and may 

coordinate two levels of 

units in activity. 

Students rely upon the 

appearance of the bars without 

using given relations. 

 Students rely upon the appearance of the bars rather than

using the given relations (e.g., partitioning/segmenting the

given bars).

 Students add or subtract the numbers given in the relations.

 Students do not respond, or otherwise indicate they do not

know.

Stage 2 Students can take two 

levels of units (a composite 

unit) as given, and may 

coordinate three levels of 

units in activity. 

Students use the second given 

relation to form a composite unit 

that they can iterate through 

activity, by the number in the 

first given relation. 

 Students coordinate relations appropriately and with a

drawing illustrating size relations, but writing indicates the

drawing was the solution method (e.g., solution appears

below the drawing, or erasures/corrections are present in the

drawing).

 Student explanations and drawings appropriately refer to

multiple two-level relations, but not a single three-level

relation.

 Student responses indicate use of multiplication without

justification or illustration (possibly with a multiplication

error).

Stage 3 Students can take three 

levels of units (a composite 

unit of composite units) as 

given, and can thus flexibly 

switch between two and 

three-level structures 

without reliance on 

figurative material. 

Students take the first given 

relation as a composite unit that 

they mentally distribute across 

the units given in the second 

relation, thus justifying the use 

of multiplication. 

 Student drawings are used to justify or illustrate appropriate

solutions rather than to produce them (e.g., drawing is

integrated with or appears below an explanation).

 Student explanations and drawings refer to a single three-level 

relation, with appropriate size relations.
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Tasks 5 and 6 [record indicators present for either task] 

Students’ Unit 
Structures 

Student Reasoning on 
Tasks 5 and 6 

Written Indicators of Reasoning 

Stage 1 Students can take one 
level of units as given, and 
may coordinate two levels 
of units in activity. 

Students mentally iterate the 
short (medium) bar, 
imagining how many times it 
would fit into the medium 
(long) bar. 

 Students rely upon the appearance of the bars rather than 
using the given relations (e.g., partitioning/segmenting the
given bars).

 Students add or subtract the numbers given in the
relations. 

 Students do not respond, or otherwise indicate they do not 
know. 

Stage 2 Students can take two 
levels of units (a 
composite unit) as given, 
and may coordinate three 
levels of units in activity. 

Students use the two given 
two-level relations to 
generate representations 
with which to relate them 
figuratively.  

 Student drawings or explanations indicate multiplicative
reasoning but not reverse multiplicative reasoning 
(leading them to multiply instead of dividing, possibly 
because they misread the task).

 Student responses indicate use of division, but without 
justification or supporting illustrations.

 Students rely upon their drawings of the given relations to 
determine the unknown relation.

 Student explanations and drawings appropriately refer to 
multiple two-level relations, but not a single three-level 
relation.

Stage 3 Students can take three 
levels of units (a 
composite unit of 
composite units) as given, 
and can thus flexibly 
switch between two and 
three-level structures 
without reliance on 
figurative material. 

Students assimilate the two 
given two-level relations into 
a structure for coordinating 
all three levels. 

 Students reverse their multiplicative reasoning for both 
tasks. 

 Student drawings are used to justify or illustrate
appropriate solutions rather than to produce them.

 Student explanations and drawings refer to a single three-
level relation, with appropriate size relations. 

 Students use division in ways that are consistent with 
drawings and explanations.

Task 7 

Students’ Unit 
Structures 

Student Reasoning on 
Task 7 

Written Indicators of Reasoning 

Stage 1 Students can take one 
level of units as given, and 
may coordinate two levels 
of units in activity. 

Students mentally iterate 
the medium bar, imagining 
how many times it would fit 
into the long bar. 

 Students rely upon the appearance of the bars rather than 
using the given relations (e.g., partitioning/segmenting the
given bars).

 Students add or subtract the numbers given in the relations.
 Students multiply the numbers in the given relations without

any explanation.
 Students do not respond, or otherwise indicate they do not 

know. 
 Students make no attempt to account for the leftover part.

Stage 2 Students can take two 
levels of units (a 
composite unit) as given, 
and may coordinate three 
levels of units in activity. 

Students establish a 
composite unit of 4 and 
estimate how many of these 
fit into a length of 9.  

 Students refer to fractional part as 1/9 rather than ¼.
 Students respond with 2 and a remainder.
 Student responses indicate use of division, but without 

justification or supporting illustrations.
 Student drawings or explanations indicate multiplicative

reasoning but not reverse multiplicative reasoning (leading 
them to multiply instead of dividing, possibly because they 
misread the task).

 Student explanations and drawings appropriately refer to 
multiple two-level relations, but not a single three-level 
relation.

Stage 3 Students can take three 
levels of units (a 
composite unit of 
composite units) as given, 
and can thus flexibly 
switch between two and 
three-level structures 
without reliance on 
figurative material. 

Students coordinate 9 as 
two 4s with one unit left 
over without losing the 
relationship between this 
unit and the others. 

 Students appropriately account for the left over part with a 
fraction or a decimal (e.g., “2 ¼”).

 Student drawings are used to justify or illustrate appropriate 
solutions rather than to produce them.

 Student explanations and drawings refer to a single three-
level relation, with appropriate size relations. 

 Students use division in ways that are consistent with 
drawings and explanations.




