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ABSTRACT 
The article discusses the problem of determining the differential characteristics of 

discontinuities, waves and currents behind them. In this paper research history of gas-

dynamic discontinuities’ differential properties is discussed. The concept of weak 

discontinuities (discontinuous characteristics, discontinuities of first order) is analyzed. 

The differential conditions of dynamic compatibility, connecting curvatures of 

discontinuities with non-uniformities of the flow before and after them are given. The 

typical problems of interference between discontinuities of first order are provided: 

interaction of the shock with a weak tangential discontinuity and discontinuous 

characteristics, refraction of weak discontinuity on a tangential discontinuity, interference 

of weak discontinuities between themselves. The article presented typical interference 

problem of discontinuities of first order: interaction of the shock with a weak tangential 

discontinuity and discontinuity characteristics, refraction of weak discontinuity on a 

tangential discontinuity, interference of weak discontinuities between themselves. The 

practical importance of first order problems of interference of discontinuities is shown, 

because the discontinuity in first derivatives can lead to the formation of shock waves 

within the smooth flow - the so-called "suspended shock wave." 
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Introduction 

Purpose of the work is to review the study history of differential properties of 

gas-dynamic discontinuities (GDD) and of weak discontinuities (discontinuous 

characteristics), as well as their interference, development of a new variant of 

the method of characteristics of second-order precision and the concept of weak 

discontinuities (discontinuous characteristics, first-order discontinuities). 

GDDs can be of zero order Ф0 (a center of rarefaction/compression wave, 

shock and a sliding surface) (Bulat & Bulat, 2015), on which gas-dynamic-

parameter flow parameters (P, v, ϑ) are discontinuous and of the first order, also 
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called weak discontinuities (discontinuous characteristics, weak tangential 

discontinuities) Ф1, on which first derivatives of the gas-dynamic variables are 

discontinuous (Uskov & Mostovykh, 2012). Discontinuity of streamlines 

curvature is a weak discontinuity. You can determine features (discontinuities) 

Фi of gas-dynamic variables space of any order. The term "weak discontinuity" 

was first introduced by R. D. Adhemar (1904). Note that some authors call weak 

discontinuities a discontinuous characteristic, since, as shown in the book by R. 

Courant, and K.O. Friedrichs (1948), weak discontinuities are the 

characteristics of a differential equations system, which describe the motion of 

the gas. Courant and Friedrichs showed that strong discontinuities do not 

coincide with the acoustic characteristics (propagation lines of small 

perturbations in the gas flow) whereas weak GDDs always do. Consequently, 

small perturbations in the area behind strong GDD influence its parameters and 

the geometry and properties of weak GDD are completely determined by the gas 

stream before it. 

The need to obtain ratios between characteristics of strong discontinuities 

such as flow acceleration along a streamline or curvature of streamlines with 

derivatives from gas-dynamics variables on both sides of a strong discontinuity 

has been associated mainly with three objectives: 

– The study of the behind the curved shock waves 

– Calculation of the interaction of strong and weak discontinuities 

– The origin of discontinuities in a smooth flow. 

The importance of latter problem is illustrated by a known fact - when 

building the profile of the Laval nozzle it is necessary to ensure the smoothness 

of generating line up to the second order inclusive (Silnikov, Chernyshov & 

Uskov, 2014). Discontinuity of nozzle wall curvature, for example, in conjunction 

of toroidal critical section with the main polynomial area results in the 

formation of suspended shock at the nozzle wall, which sharply increases the 

thermal load and may result in the burnout of the wall. 

Materials and Methods 

The linear partial differential equation with two independent variables is used: 

 
2 2 2

2 2
2 0

u u u u u
A B C D E Fu

x t x tx t

    
     

    
   (1) 

wherein A, B, C, D, E, F – functions x and t, and u - unknown function. 

The propagation of disturbances is studied by decomposition the unknown 

function into double Fourier integral 

( , ) exp[ ( )]ku x t dk d u i kx t

 

 

          (2) 

where k and ω satisfy the dispersion equation 

2 22 0k A k B C ikD F            (3) 

The characteristic is determined by rapidly varying disturbances, the 

coefficients A, B, C, D, E, F can be considered constant, and the wave number k 

and frequency ω - infinitely large, then the dispersion equation is simplified 

 2 22 0k A k B C     .     (4) 
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If some disturbance δu is added to the solution u(x, t), it then will propagate 

only along the characteristics determined by the dispersion equation, at a 

velocity of 

2B B AC
a

k C

 
 


.     (5) 

If B2 – AC>0 then there are two different characteristics and the original 

equation is hyperbolic. Since the velocity of disturbance propagation is dx/dt, 

then the characteristic equation can be written as V(x,t)=dx/dt, i.e. the slope of 

the characteristic is equal to the local velocity of disturbances propagation. 

If there is a line defined in space (Figure 1), the flow parameters along 

which is defined with the distribution of vector velocity inclination angle θi and 

of Pranndtl-Mayer functions  

2 21
arctan ( 1) arctan 1M M    


.   (6) 

 

Figure 1. Illustration of weak discontinuities method 

From each point on the curve (1-2-3) the flow line are coming out. If M> 1, 

then from these same points two characteristics of different families ν+, ν- are 

coming out. Flow lines are also the characteristics are also called entropy. 

The equations of supersonic flow of an ideal gas in the natural coordinate 

system s-n using the Prandtl-Meyer functions 

2 sin
1M

S n y
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where, 
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Adding and subtracting these equations, we obtain a new system 

 2 3sin
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     

  


        (10) 

projecting new equations on the characteristics direction and eliminating the 

derivatives along the normal to flow lines, we obtain the conditions along 

characteristics along the right discontinuity (χ = 1): 
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along the left discontinuity (χ = -1): 
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The second equation in the system (12.13) are the well-known conditions on 

the characteristics of different families written in the traditional form. The first 

equations (11.13) contain the nonuniformities of the flow. They allow defining 

the conditions on characteristics taking into account the first derivatives of the 

gas-dynamic functions. V.N. Uskov suggested formulating DDCC1 on weak 

discontinuity in a form of theorem on Uχ – function (Bulat, 2014) 

 ( )U
s


 


   .     (15) 

Theorem on Uχ - function. Euler equations allow a discontinuity of flow 

irregularities on characteristic, but Uχ-function on weak discontinuity remains 

continuous. 

Non-traditional conditions on the characteristics (11.13) can be rewritten 

using Uχ - function. For example, for nonvortical flow: 
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Conditions on characteristics can be rewritten in the form, which is 

explicitly permitted relatively to main flow nonuniformities 
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Results 

Differential dynamic compatibility conditions 

Thus, the derivatives of gas-dynamic variables before and after a weak 

discontinuity are related to each other and to the curvature of discontinuity. 

These ratios are called differential dynamic compatibility conditions (DDCC) on 

the weak discontinuity (DDCC1). 
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The first results in finding the ratio between derivative of gas-dynamic 

parameters on both sides of strong discontinuities (DDCC0), obtained in the late 

40s - 50s (Lighthill, 1949; Truesdell, 1952) concerned a particular case of a flat 

or axisymmetric curved stationary shock wave. Somewhat later these results 

have been summarized (Lighthill, 1957) for the case of problems with high 

dimensionality. 

The analytical solution of the problem of single shock’s interaction with 

weak gas-dynamic discontinuities was obtained by S.P. Dyakov (1957). In this 

paper we consider the gas flow with an arbitrary equation of state, but it was 

assumed that the incoming flow was weakly perturbed relatively uniform one, 

and the surface of shock was slightly different from flat. In this case S.P. Dyakov 

(1957) managed to build a special coordinate system in which the pressure 

behind the shock wave satisfies the Poisson equation, and in this coordinate 

system, to formulate conditions on the derivatives of gas-dynamic parameters. 

For an arbitrary shock curvature DDCC0 were obtained in 1962 by Shih-I Pai 

(1962), and then summarized by V.V. Rusanov (1973) for the case of non-

stationary flows. In the case of a uniform incident flow Rusanov, in a Cartesian 

coordinate system, managed to get an expression of differential characteristics of 

the flow behind the shock through its curvature. In the paper by S. Molder 

(1979), the single arbitrary curved shocks in a uniform flow of an ideal gas are 

researched. The ratios obtained for the derivatives of gas-dynamic variables 

behind the shock allowed to describe a small vicinity behind a strong 

discontinuities using decomposition of various gas-dynamic variables: pressure, 

density, modulus and incline angle of velocity vector. Most of ratios between 

derivatives on both sides of a strong discontinuity mentioned above were rather 

cumbersome. As a result, the problem of interference between strong and weak 

discontinuities in gas dynamics were either solved by the method of small 

perturbations, or obtained as a special case of problems of strong discontinuities 

interference. 

Considering the ratio limit on a shock with 1J  , V.N. Uskov obtained 

ratios, remarkable by their simplicity and ease of use, between the non-

uniformities of flow Ni before the shock and after it (Mostovykh & Uskov, 2011). 

5

1

i i ij j

j

N c A N


       (20) 

The main gas-dynamic non-uniformities of flow Ni: 

 0

1 2 3

lnln
, ,

PP
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s s n

 
  

  


    (21) 

where P - pressure, θ – incline angle of velocity vector, P0 - total pressure, ζ - 

vorticity, n - the length of a normal to streamlines, s - the length of an arc along 

a streamline. N1 - flow nonisobariy (pressure gradient) along the direction, 

projected on a current line. N2 - curvature of the streamlines. For the purpose of 

generality N4=δ/y (δ=0 for plane flow) and N5=Kσ (curvature of the shock) were 

added to the equations. Coefficients Аij, ci were published in (Uskov, 1987) and 

are studied in detail by A. L. Starykh. 

Problems of interaction between weak discontinuities 

Apparently, the first general solution of interaction of a weak discontinuity with 

one-dimensional shock wave (Figure 2) was obtained by G. B. Whitham (1977). 
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Similar solutions for refraction of a plane stationary shock wave on a weak 

tangential discontinuity were received by A.L. Adrianov (2000). A great job of 

summarizing the results was performed by A. V. Omelchenko. In his paper 

(Omelchenko, 2002), he deduced a simple ratio between derivatives on non-

stationary one-dimensional shock wave. 

 

a)    b) 
Figure 2. A one-dimensional unsteady interaction of a weak discontinuity and shock waves. 

(a) - a weak counter discontinuity, (b) - a weak catching discontinuity. 1 - shock wave, 2-

weak discontinuity, 3 - reflected weak discontinuity, 4 - shock waves moving with changed 

acceleration, τ- reflected weak discontinuity 

V.N. Uskov (1980) in his doctoral dissertation in obtained explicit analytic 

solutions of the problems of first order for a single shock, regular reflected shock 

from the curved wall, triple configurations of shocks, the interaction of two shock 

of one direction and of opposite directions, shock’s refraction on a tangential 

discontinuity, shock’s interaction with the counter and catching weak 

discontinuity (Figure 3a), refraction of shock and weak discontinuity on weak 

discontinuity (Figure 3b), the interaction of weak discontinuities of one direction 

and of different directions with themselves (Figure 3c). 

 

Figure 3. Interaction of weak discontinuities. a) the intersection of a shock and a weak 

discontinuity; b) the refraction a shock and a weak discontinuity on weak discontinuity; 

c) interaction between weak discontinuities. σi - shocks, τν - weak tangential discontinuity, 

νi - weak discontinuity (discontinuous characteristic) 
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Discussions 

Equations on the characteristics are, in geometric sense, equivalent to the 

Newton equation for particles moving along the characteristics (Uskov, et al., 

2014). In the classical formulation the characteristics are introduces as the 

directions, along which the small disturbances propagates, so they are also 

called lines of influence.  

Alternative representation of conditions on characteristics using Uχ - 

function has an important advantage. Uχ - function remains continuous during 

passing through the discontinuous characteristics. Consequently, the conditions 

written in this form “do not notice” the weak discontinuities, which seriously 

increases the method’s accuracy and simplifies the construction of numerical 

algorithms. In the traditional characteristics method for the proper operation it 

is required to locate and track their formation on suspended shocks (Katskova et 

al., 1961). The system (2) and equation derived therefrom allow, any spatial 

point, to calculate the curvature of the flow line, curvature of two 

characteristics, Mach number gradient along the flow line, Mach number 

gradient along the characteristics. 

In 1989 P.V. Bulat (1989), basing on solutions obtained by V.N. Uskov 

(2014) for interaction of weak discontinuities with shocks and between 

themselves, developed a characteristics method of second order (Bulat, Zasukhin 

& Uskov, 1989), which were called the method of weak discontinuities (MWD). 

In some special cases the author managed to reduce the solution to analytical 

and ordinary differential equations (Bulat et al., 1990; 2000). The numerical 

implementation of the method was much easier and convenient than the 

previously developed characteristics methods of second order (Panov, 1957). 

On the basis of weak discontinuities method and DDCC1 P.V. Bulat and 

V.N. Uskov developed pseudo-one-dimensional nozzle theory, which takes into 

account the curvature of the nozzle and the curvature of the shock waves. The 

jet boundary, the incident shock wave in overexpanded jet (Figure 4) are build, 

the dependence of boundary curvature of shock’s jet on the edge of the nozzle is 

researched (Bulat et al., 1993). Later M.V. Chernyshev researched all 

differential characteristics of the flow in overexpanded jet in the vicinity of 

nozzle edge, revealed specific values of nonisobarity ratio, researched specific 

points on the incident shock. 

 

Figure 4. Overexpanded jet. A – nozzle edge, B – intersection point of the shock reflected 

from the axis with the jet boundary, AB – jet boundary, T – triple point, AT – incident shock 
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Then P.V. Bulat et al. (2002) found similar solutions for underexpanded jet. 

He researched the formation of suspended shock inside it, obtained the 

dependences of jet boundary curvature and of the suspended shock’s formation 

point on a nonisobarity ratio. He also described the flow in the interaction area 

of shock, reflected from the axis of symmetry, with the mixing layer at the jet 

boundary, as well as the flow before the Mach disc. In all cases the obtained 

computation time is much lesser than while using the traditional characteristics 

method. 

Conclusion 

Many problems of gas dynamics in mathematical terms are reduced to solving a 

system of quasi-linear equations in partial differentials. The solution is obtained 

by integrating the system of ordinary differentials along specific directions, 

which are called characteristics. On the basis of these ratios the article provides 

analysis of the problems of one-dimensional shock wave’s interaction with 

colliding and catching weak discontinuities. As an example of using the obtained 

results in applications of gas dynamics we consider the problem of shock wave 

propagation through the channel of variable section.  The resulting solutions of 

interaction of strong and weak discontinuities are related to stationary plane 

flows. As it is known, from the kinematic point of view these tasks are 

equivalent to interaction of one-dimensional non-stationary waves and 

discontinuities (strong and weak). 
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hyperbolique. J. Math. Pures et Appl. Se ́r., 5(10), 131-207. 

Adrianov, A. L. (2000) On model shock wave curvature in a pulsating flow. Computational 

Technologies, 5(6), 3-14.  

Bulat, P. V. (2014) Reflection of a weak discontinuity of the axis and the plane of symmetry. 

American Journal of Applied Sciences, 11(6), 1025-1031. 

Bulat, P. V., Bulat, M. P. (2015) Gas-dynamic Variable Relation on Opposite Sides of the Gas-

dynamic Discontinuity. Research Journal of Applied Sciences, Engineering and Technology, 

9(12), 1097-1104. 

Bulat, P. V., Zasukhin, O. N. & Uskov, V. N. (1989) Development of an updated methodology for 

calculating the first barrel of a supersonic jet with the viscous effects. Leningrad Mechanical 

Institute report, 7432925. 



 
 
 
 

IEJME — MATHEMATICS EDUCATION                       1021 

 
 
 
 
 
 

Bulat, P. V., Zasukhin & O. N., Uskov, V. N. (1990) Calculation of the compressed layer of a 

supersonic jet. Proceedings of XV All-Union seminar on gas jets, 23 p. 

Bulat, P. V., Zasukhin & O. N., Uskov, V. N. (1993) Formation of the jet during a smooth start of the 

Laval nozzle. Scientific notes of St. Petersburg State University. A series of mathematical 

sciences. “Gas dynamics and heat transfer,” 10, 1-22. 

Bulat, P. V., Zasukhin, O. N. & Uskov, V. N. (2000). Investigation of the supersonic nozzle diffuser 

part influence on flow regimes and acoustic radiation of the jet. Proceedings of XVIII 

Intertational seminar “Gas and plasma flow in nozzles, jets and tracks”, 53p. 

Bulat, P. V., Zasukhin, O. N., Uskov & V. N. (2002) Gas dynamics and acoustics of a supersonic jet, 

which expires in a channel with sudden expansion. In  Modern Problems of Non-Equilibrium 

Gas Dynamics. St. Petersburg: BSTU press, 136-158. 

Courant, R. & Friedrichs, K. O. (1948) Supersonic Flow and Shock Waves. New York: Springer. 

322p. 

Dyakov, S. P. (1957). Interaction of shock wave with small perturbations. Journal of Experimental 

and Theoretical Physics, 33(4), 948–973. 

Katskova, O. N., Naumova, I. N., Shmyglevsky, Yu. D. & Shulinshina, N. P. (1961) Experience in 

Calculation of Plane and Axisymmetric Supersonic Gas Flows by Method of Characteristics. 

Moscow: Computing center of USSR Academy of Science. 363p. 

Lighthill, M. J. (1949) Renormalized Coordinate Stretching: A Generalization of Shoot and Fit with 

Application to Stellar Structure. Phil. Mag, 40, 1179-1201. 

Lighthill, M. J. (1957) Dynamics of a dissociating gas Part I Equilibrium flow. Journal of Fluid 

Mechanics, 2, 1-32.  

Molder, S. (1979) Flow behind curved shock waves. University of Toronto Institute for Aerospace 

Studies Report, 217, 254-256. 

Mostovykh, P. S. & Uskov, V. N., (2011) Compatibility conditions on a weak discontinuity in 

axisymmetric flows of non-viscous gas. Vestnik St. Petersburg University, 1(4), 123-133.  

Omelchenko, A. V. (2002) Differential characteristic of the flow behind a shock wave. Technical 

Physics, 47(1), 18–25.  

Pai, Shih-I. (1962). Introduction to the Theory of Compressible Flow. Moscow: Publishing House of 

Foreign Literatur, 344p. 

Panov, D. Yu. (1957) The numerical solution of quasi-linear hyperbolic systems of differential 

equations in partial derivatives. Moscow, State publishing house of technical and theoretical 

literature. 224p. 

Rusanov, V. V. (1973) Derivatives of the gasdynamic functions after curved shock wave. Keldysh 

Institute of Applied mathematics, 18p. 

Silnikov, M. V., Chernyshov, M. V. & Uskov, V. N. (2014) Two-dimensional over-expanded jet flow 

parameters in supersonic nozzle lip vicinity. Acta Astronautica, 97, 38-41.  

Truesdell, C. (1952) On curved shocks in steady plane flow of an ideal fluid. Journal of the 

Aeronautical Sciences, 19(12), 826-28.  

Uskov, V. N. (1987) Analysis of the shock-wave structures in a non-uniform steady flow. 

Fundamental Problems of Physics of Shock Waves, 2, 166-69. 

Uskov, V. N., Bulat, P. V. & Arkhipova, L. P. (2014) Gas-dynamic Discontinuity Conception.  

Research Journal of Applied Sciences, Engineering and Technology, 8(22), 2255-2259. 

Uskov, V. N. & Mostovykh, P. S. (2012) Differential characteristics of shock waves and triple shock 

wave configurations. Proceedings of 20th International Shock Interaction Symposium, 211-214.  

Whitham, G. B. (1974) Linear and Nonlinear Waves. New York: John Wiley&Sons. 654p. 


