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ABSTRACT 
This study investigates college students’ understanding of arithmetic fraction operations as 
defined by the Common Core State Standards in grades three through six Mathematics. This study 
is meant to extend upon an extensive body of research regarding elementary and middle grades 
students’ understanding of fraction operations and see if recognized erroneous thinking among 
younger students persist among college students. Among these misconceptions include: fraction 
equivalence, common denominators, the algorithm and the concept of division, whole number 
bias, and incorrectly applying fraction operations. The results of this study suggest that college 
students have the same misunderstandings and misconceptions as elementary students in regards 
to fraction operations. 
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INTRODUCTION 
A plethora of research over the decades has reported that elementary school students struggle with skills 

and concepts regarding fractions and fraction arithmetic. Types of misconceptions in student understanding 
of fractions have been cataloged in detail. 

Since these misunderstandings often go unmitigated through a student’s K-12 academic career, a growing 
body of research is demonstrating that college students also struggle with these concepts and skills. 
Unfortunately, the bulk of this research is based on whether or not students are able to correctly perform 
fraction arithmetic. Often missing is detailing the precise nature of the mathematical errors, misconceptions, 
and misunderstandings discoverable only through painstaking analysis of student work and communication 
regarding fractions and fraction operations.  

To fill this gap, research is needed to investigate the nature of college students’ misunderstandings and 
misconceptions regarding fractions and fraction operations. This paper seeks to partially address this concern. 

BACKGROUND LITERATURE 
To consider college students misunderstandings and misconceptions regarding fractions and fraction 

operations, a number of dimensions were researched including: the Common Core Standards for Mathematics; 
procedural versus conceptual understanding of fractions; why students have difficulties with fractions; areas 
of fraction misunderstandings; and effects of not understanding fractions. These are addressed below. 

Common Core 

Under the Common Core Standards for Mathematics, elementary students begin working with fractions 
as early as the third grade (Common Core Standards Initiative (CCSSI, 2010)). According to these standards, 
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in third grade, students begin exploring unit fractions, considering the part-whole definition of a fraction, 
using visual fraction models, and considering fraction equivalence. 

In fourth grade, students extend their understanding of fractions by comparing fractions to a benchmark 
fraction and extend their understanding of fraction equivalence. Students also learn to add or subtract 
fractions with like denominators and solve word problems using this skill, to multiply a fraction by a whole 
number, and to compare decimal fractions. 

In fifth grade, using common denominators, students are to perform fraction addition and subtraction with 
unlike denominators and solve word problems. Multiplication is extended to include multiplying a fraction by 
a fraction and solving real world problems involving multiplication of fractions and mixed numbers. Division 
of whole numbers by fractions, and vice versa, is explored and students are expected to be able to understand 
these quotients in context. This leads to an understanding of division of fractions by fractions in sixth grade. 

Since college students have completed and passed all grades subsequent to these standards, theoretically 
they should have mastered these standards and possess an adequate foundation for fraction arithmetic. This 
study investigates this premise. 

Procedural versus Conceptual Understanding 

Conceptual knowledge is the ability to see interconnections among ideas and procedural knowledge is 
understanding processes and algorithms to produce results (Hallett, Nunes, & Bryant, 2010). Research has 
perennially detailed elementary students’ difficulties with fractions concepts (i.e. Braithwaite, Pyke, & Siegler, 
2017; Bulgar, 2003; Gabriel et al., 2013; Siegler et al., 2011; Valcke & Desoete, 2014; Van Steenbrugge, Lesage, 
Tirosh, 2000). Students are regularly seen as possessing instrumental or procedural knowledge versus 
conceptual knowledge of fractions and operations, limiting their understanding of fractions (Byrnes & Wasik, 
1991; Kerslake, 1986; Rittle-Johnson, Siegler, & Alibali, 2001). While Kerslake (1986) argues that students 
can solve some fraction problems using only procedural knowledge with limited conceptual understanding, 
Byrnes and Wasik (1991) note that the conceptual knowledge regarding fractions is a prerequisite for correctly 
performing fraction arithmetic. Somewhat resolving this debate, others suggest that conceptual and 
procedural knowledge grow and develop simultaneously, supporting each other as they develop (e.g., Rittle-
Johnson et al., 2001). 

Hallett et al. (2010) suggests that when learning fractions, some students rely more on procedural 
understanding, others rely more on conceptual understanding, and that individual differences can be 
recognized in how students combine conceptual and procedural knowledge. However, students who rely on 
conceptual knowledge may have an advantage when compared to their peers who rely on procedural 
knowledge. When students’ conceptual knowledge of fractions is limited in comparison to their procedural 
knowledge or procedures are not understood conceptually, they may only develop a basic understanding of 
fractions (Van Steenbrugge et al., 2014) and are more likely to develop misunderstandings (Hallett et al., 2010; 
Resnick, 1982; Van Lehn, 1983). Bulgar (2003) argues children are taught algorithms about fractions with 
little contextual basis, and instead of focusing on student understanding, students are being asked to 
remember procedures and that this method of instruction does not lead to full understanding. Examination of 
the errors that children make suggests that children make many errors when they use a procedure without 
conceptual understanding (Kerslake, 1986).  

Unfortunately, the explanation of the interplay of conceptual understanding and fraction arithmetic 
activity is insufficient in the literature. In other words, some students are able to correctly perform fraction 
arithmetic with limited conceptual understanding and others, through their limited understanding fail at 
performing arithmetic operations. Conversely, some students with seemingly solid conceptual understanding 
may be tripped up by teacher-taught techniques such as “keep-change-flip”. Left undiscovered is what is the 
driving force between wrong thinking and improper arithmetic actions.  

Why Students Struggle with Fractions 

Research finds student difficulties with fractions originates from conflicts with natural numbers (e.g., 
Siegler et al., 2011; Stafylidou & Vosniadou, 2004; Van Steenbrugge et al., 2014). Siegler et al. (2011) notes 
that children’s knowledge of natural numbers serves as a conceptual barrier to their later learning about 
fractions. Stafylidou and Vosniadou (2004) expand upon this notion and state that fractions are problematic 
to students due to their inconsistency with the counting principles applicable to natural numbers, difference 
in fractional symbolic representation compared to natural numbers, counting-based algorithms cannot be used 

http://www.iejme.com/


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   235 
 
 
 

for ordering fractions, and operations differ when performed. Whole number bias results in errors and 
misconceptions since students prior conceptual understanding of numbers no longer holds (Van Steenbrugge 
et al., 2014). Students have to overcome this conflict between natural numbers and fractions in order to 
construct their understanding of fractions. 

Some studies suggest that student difficulty with fractions arises from the fact that fractions comprise a 
multifaceted construct (e.g., Charalambous & Pitta-Pantazi, 2007; Kieren, 1976; Van Steenbrugge et al., 
2014). Questioning whether fractions comprise a single concept, Kieren (1976) suggests that fractions be 
thought of as interrelated concepts (i.e., ratio, operator, quotient, and measure, all later defined) and argues 
that understanding of fractions depends on developing an understanding of each of the subconstructs. It is 
important to note that Kieren did not initially consider part-whole as a sub-construct. Behr, Lesh, Post, and 
Silver (1983) suggests that the part-whole relationship comprise a fifth sub-construct. These five sub-
constructs are defined as (Charalambous & Pitta-Pantazi, 2007; Van Steenbrugge, et al, 2014): 

• The part-whole (PW) sub-construct defines a fraction as a comparison between the number of parts of 
the partitioned unit to the total number of parts in which the unit is partitioned.  

• The ratio (Ra) sub-construct refers to the idea of a comparison between two quantities and is thus 
considered a comparative index rather than a number.  

• The operator (Op) sub-construct is the application of a function to a number, object, or set.  
• The quotient (Qu) sub-construct allows for any fraction to be seen as the result of a division situation. 

Unlike the part-whole sub-construct, two different measure units are considered.  
• The measure (Me) sub-construct views fractions as numbers that can be ordered on a number line. 

Areas of Fraction Misunderstanding 

Misunderstandings regarding fractions are often classified as either procedural or conceptual. Procedural 
fraction misunderstanding includes whole number bias (WNB), incorrect fraction operation strategies (IFO), 
and division of two fractions (Div). Areas of conceptual misunderstandings include fraction equivalence (Eq) 
and abuses of the previously mentioned subconstructs (Braithwaite et al., 2017; Bulgar, 2003; Charalambous 
& Pitta-Pantazi, 2007; Gabriel et al., 2013; Siegler et al., 2011; Tirosh, 2000; Van Steenbrugge et al., 2014).  

Whole number bias involves performing the arithmetic operation on the numerators and denominators 
separately as if they were independent whole numbers (Braithwaite et al., 2017; Gabriel et al., 2013; Siegler 
et al., 2011; Van Steenbrugge et al., 2014). For example, 1

3
+ 1

4
= 1+1

3+4
= 2

7
 leads to an incorrect answer. 

Wrong fraction operation strategies involve a student treating the numerator or denominator incorrectly, 
but in a way that would be correct for a different fraction arithmetic operation (Braithwaite et al., 2017; Siegler 
et al., 2011; Van Steenbrugge et al., 2014). For example, students would generalize the ideas of common 
denominators in multiplication or division contexts, 3

5
⋅ 4
5

= 12
5

. 

Division of fractions is often considered students’ least understood and most difficult fraction arithmetic 
operation (Braithwaite et al., 2017; Bulgar, 2003; Tirosh, 2000). Tirosh (2000) refers to “algorithmically based 
mistakes” in respect to students incorrectly computing division expressions such as “flipping” the incorrect 
fraction or both. Since the algorithm for division of fractions is commonly not understood, this can lead to 
students forgetting steps or alternating the steps in a way that leads to errors.  

The misunderstanding associated with fraction equivalence relates to the idea of adding dissimilar 
fractions, since similar fractions have to be found through the process of common denominators 
(Charalambous & Pitta-Pantazi, 2007). The concept of fraction equivalence directly relates to why the process 
of common denominators is a valid method. Charalambous and Pitta-Pantazi (2007) also found the ratio 
subconstruct was directly related to students’ understanding of equivalence of fractions, since finding 
equivalent fractions is closely related to proportions and finding equivalent ratios. 

Charalambous and Pitta-Pantazi (2007) claim that the part-whole interpretation of fractions plays a 
significant role in developing the understanding of the other four subconstructs of fraction understanding and 
that the part-whole subconstruct should be considered necessary in developing an understanding of fractions. 
Van Steenbrugge et al. (2014) state that students are most successful with the part-whole subconstruct. 
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Effects of Not Understanding Fractions 

Elementary students’ struggles with fraction knowledge and operations follow them through middle 
grades, high school, and college, with many learners never reaching proficiency in fraction arithmetic 
(Braithwaite et al., 2017; Gabriel et al., 2013; Yontz, Bossé, & Sevier 2018). This affects both mathematical 
development and career aspirations. According to Siegler et al. (2012), fifth graders’ fraction knowledge 
predicts their knowledge of algebra and mathematics achievement in the tenth grade. Moreover, mathematics 
achievement at age seven predicts socioeconomic status at age 42, even after controlling for the child’s general 
intelligence, reading ability, and birth socioeconomic status (Ritchie & Bates, 2013).  

Fractions are among one of the most important topics discussed in mathematics classrooms and the 
understanding of fractions is critical to student’s success in more advanced mathematics courses (Booth & 
Newton, 2012; Braithwaite et al., 2017). Poor performance on problems associated with fraction understanding 
lead many students to be placed in collegiate developmental mathematics courses. Even in algebra, 
trigonometry, and calculus classes, students’ difficulties with fractions inhibit their mathematical 
development.  

Students pursuit of STEM fields at the collegiate level and in careers are often hindered by limited 
mathematical knowledge, including fundamental concepts regarding fractions (Wang, 2013). Wang’s (2013) 
research suggests high school preparation in math and science plays a crucial role in developing students’ 
interest in pursuing STEM fields and influencing entrance into STEM majors. By 2018, nine of the ten fastest 
growing occupations that require at least a bachelor’s degree will depend on significant math or science 
training, and many science and engineering occupations are predicted to grow faster than the average rate for 
all occupations (Lacey & Wright, 2009; National Science Board, 2010). Unfortunately, student interest in 
STEM fields is not consistent with the demand of the changing workforce (Wang, 2013). With mathematics 
achievement and math self-efficacy beliefs being major factors in student interest in STEM fields, it is 
imperative to develop students’ confidence and understanding of mathematics topics, including fractions. 

METHODOLOGY 

Participants 

Participants for this study included students of various majors at a medium sized university in 
southeastern United States. While the research opportunity was advertised globally to all students, fifty 
students volunteered for the study and eight students were randomly selected to participate. The research 
work was not connected to any class that the students were taking. Demographic information including class 
level and declared major are provided with the reported transcripts. 

Task 

Participants were given up to 60 minutes to complete both the research task and participate in some 
remedial discussions regarding the understanding of fractions and fraction arithmetic. The task included 
performing four arithmetic operations on fractions and explaining their work:  

2
3

+ 5
4
   11

4
− 4

3
   3

5
× 6

4
   15

4
÷ 2

3
 

The problems were selected to cover the four operations of addition, subtraction, multiplication, and 
division, with each expression not including common denominators. It was anticipated that, through the work 
and explanations provided by the participants, these four examples would be sufficient to ascertain student 
understanding regarding fractions and fraction arithmetic. In addition to paper and pencil, participants were 
provided a number of manipulatives in order to either perform the arithmetic or explain their reasoning for 
such. Directions for the tasks stated: 

For each of the following problems involving fractions, perform the arithmetic operation (i.e., 
+, −, ×, and ÷). Please explain all of your work and thoughts out loud as thoroughly as 
possible. A researcher may ask clarifying questions to see what you think. 

After completing the research task with no questions or comments from the researchers, the participants 
were asked probing questions to delve deeply into their understandings and misunderstandings regarding 
fractions and fraction arithmetic. This resulted in much information which could not have been captured from 
the written mathematical work alone. Additionally, as will be later seen, student participants also experienced 
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instructional intervention through which to (a) glean even further insight into their understanding and (b) 
assist them to leave possessing a more complete knowledge of fraction arithmetic. 

Data Collection and Analysis 

Participants agreed to be video-recorded in an interview session of up to 30 minutes. A task-based 
interview design (Goldin, 2000) was used through which to observe, record, and analyze student thoughts and 
actions. The videos were transcribed by one of the researchers. Two researchers then independently analyzed 
and performed open coding on the transcripts to determine themes and categories within the student work 
and articulations (Bogden & Biklen, 2003; Creswell, 2003). Among numerous other dimensions noticed in the 
data was a distinction between students’ computational work and their ability to articulate the reasoning 
behind the work. 

The data was coded in the following manner. Transcripts were coded with WNB, IFO, or Div if participants 
demonstrated misunderstandings associated with those concepts. Notably, these codes connoted that the 
student interacted with the associated mathematics through procedural rather than conceptual 
understanding. In respect to conceptual understanding, the codes Eq, PW, Ra, Op, Qu, or Me were assigned 
when participants exhibited correct understanding of these constructs and Eq, PW, Ra, Op, Qu, or Me were 
assigned when they exhibited incorrect understanding. Notably, Eq, PW, Ra, Op, Qu, and Me can be 
interpreted as lacking conceptual understanding in these constructs or, almost synonymously, as 
demonstrating procedural understanding. Employing these codes, both researchers independently coded the 
transcripts. Then, to ensure validity of the coding structures, the researchers together compared and 
contrasted results using check-coding (Miles & Huberman, 1994) to clarify thinking, sharpen code definitions, 
and reach consensus (Strauss & Corbin, 1990). This led to the final iteration of coded transcripts which were 
used to analyze and synthesize findings. 

FINDINGS 
Notably, the following transcripts are very brief excerpts from much lengthier transcripts. Transcripts are 

from after the participants independently completed the four problems and during the interview session with 
the researcher. Each set of transcripts includes participant demographic information regarding class level and 
major field of study.  

Student 1 (S1): Female, Freshman, Nursing major.  

[Student 1 correctly performed the addition and subtraction problems. However, on the 
multiplication problem, she performed 3

5
× 6

4
= �3

5
⋅ 4
4
� × �6

4
⋅ 5
5
� = 12

20
⋅ 30
20

= 360
400

 [IFO], and on the 

division problem, she performed 15
4

÷ 2
3

= �15
4
⋅ 3
3
� ÷ �2

3
⋅ 4
4
� = 45

12
÷ 8

12
 [IFO], became confused, 

and halted her work.]  

S1: I just want to put everything in the common form; they both have the same denominators. 
That seems logical for the first one, but all the other ones seemed different. For subtracting 
and adding, I feel like that’s ok; but these two, multiplying and dividing, I don’t think that’s 
right. I know that you can’t do the addition without common denominators. You want to 
have it in the same whole number in the end. Right?... You could probably do it a different 
way, I just forget the other way to do it. You can like cross multiply or something. [IFO] I 
forget.  

Overall, Student 1 had a vague understanding regarding the need for common denominators in addition 
and subtraction problems, but she did not know when and how to use them and could not articulate why 
common denominators were needed other than that they made the arithmetic easier. She generalized the idea 
of common denominators to the multiplication and division problems. She found common denominators and 
applied the operation to the numerators and kept the common denominator. In additional transcripts, she 
remembered the phrase “keep-change-flip” in respect to fraction division, but did not remember the process 
and when and how to apply it. [Div] Her misunderstanding of common denominators [IFO] and vague 
remembrance of fraction arithmetic caused her to incorrectly perform the multiplication and division problems 
and caused confusion when she was asked specific questions.  
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Student 2: Male, Senior, English major.  

[Student 2 correctly completed the addition, subtraction, and multiplication problems and 
was able to explain his use of arithmetic procedures. [Eq, PW, Op, Qu] For the division 
problem, he remembered the words “keep-change-flip” to do the division problem. When the 
researcher asked how he knew that was a valid method, he said that he knew that “keep-
change-flip” was correct because that is what he had been taught and it worked. [Div] He 
never wondered why it was valid.]  

Student 2 was able to correctly perform all the operations and correctly explain the processes he used. But 
he could not explain the underlying concepts regarding fraction division.  

Student 3: Female, Senior, Biology major.  

[Student 3 quickly and correctly completed all the arithmetic problems. After which, the 
researcher began inquiring about why she used her chosen techniques.] 

R: When you worked on the addition problem, you converted the two fractions each into an 
equivalent fraction. You multiplied the 2

3
 by something and you multiplied the 5

4
 by 

something; but they were different somethings? 

S3: Yes. So, the 2
3
 was multiplied by 4 and the 5

4
 was multiplied by 3. [Eq] 

R: A minute ago you told me that the 2
3
 was multiplied by 4 over 4. 

S3: It wouldn’t be 4 over 4 because that would be 1. [WNB] That makes sense, right? 

R: You said you multiplied the top and the bottom by 4. 

S3: Right, but that doesn’t necessarily mean that would be 4 over 4 [Eq] because we know 4 
over 4 is equal to 1. [PW, Eq] So, to multiply, I would have to multiply the numerator and 
denominator by 4 separately. [Eq, PW] If I’m looking at the number 2 as just being 2 [WNB], 
I can multiply that by 4, and then if I’m looking at 1

3
 [PW] as being divided by 4 [WNB, Op]. 

So that could make it a 4 over 4. But then, if I’m dividing 1 over 3 by 4 over 4 or by 1 over 4 
then I would multiply by the reciprocal. No. Because then that would give me 4 over 3. Ok, 
this is a hard question. All I really know is that I can do it. 

Student 3 quickly performed all of the operations correctly but was unable to explain the processes involved 
[Eq, PW, Ra, Op]. She saw the connection in common denominators to equivalent fractions. However, she 
recognized multiplying the numerator and denominator separately and did not make the connection that she 
was actually multiplying the fraction by 1. [Eq] Overall, while her arithmetic skills were perfect, her 
understanding beyond the purely procedural was severely lacking.  

Student 4: Female, Freshman, Exercise Science major.  

[After getting correct answers on all problems, Student 4 reconsiders her work regarding 
multiplication of fractions. She second guesses her work and decides to redo the 
multiplication problem, this time starting with finding common denominators [IFO] and then 
multiplying across the numerators and retaining the common denominator.] 

S4: So, this would be 12 times 30, and writes 12
20
⋅ 30
20

= 360
20

= 36
2

= 18 [IFO, Eq]). 

R: So, you multiplied across the numerator. But then you kept the common denominator. 

S4: Because, if it’s the same denominator, you just multiply the numerator. [IFO]  

In additional transcripts, Student 4 was initially able to correctly perform all the operations. However, 
when asked to explain the processes she used, she often could not explain processes and began to doubt her 
work, resulting in numerous mistakes and misconceptions. While she recognized that the use of common 
denominators in addition was simply an application of multiplying the fractions by 1, she displayed incomplete 
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understanding of this process in two ways. First, she saw this multiplication as little more than “doing the 
same thing on the top and the bottom”. [WNB] For instance, she stated that when a fraction is added to a 
fraction equal to 1 (e.g., 𝑎𝑎

𝑎𝑎
) it was appropriate to simply add across the numerators and denominators (e.g., 2

3
+

𝑎𝑎
𝑎𝑎

= 2+𝑎𝑎
3+𝑎𝑎

). [Eq] But, after only a quick moment of contemplating what she said, she changed her mind and stated 
that this was not correct and that it only works for multiplication. When explaining multiplication, she became 
confused regarding keeping the common denominator or multiplying across the denominators. [IFO] While 
she correctly explained the “keep-change-flip” procedure, she had no understanding as to why the process was 
valid. [Div] In respect to the division problem, she struggled with the concept of the fractional denominator 
being the contextualized “whole”. [Ra, Qu] 

Student 5: Female, Freshman, Computer Science major 

[After completing the problems with many errors, the interview revealed numerous 
misconceptions. For the addition problem, Student 5 performed: 2

3
+ 3

4
= 2

3
⋅ 4
4

+ 3
4
⋅ 3
3

= 8
12

+
9
12

= 17
144

.] [IFO, Eq] 

S5: You’re supposed to get common denominators and then do the parenthesis, like the 
multiply, add, subtract, or divide thing. [IFO] 

[For the subtraction problem, the student performed: 11
4
− 4

3
= 11

4
⋅ 3
3
− 4

3
⋅ 4
4

= 33
12
− 16

12
= 17

12
.] 

S5: I think that this is wrong. But I can’t do what I want. 

R: What do you want to do? 

S5: I think that I should do 33-16 on the top and 12-12 on the bottom. [WNB] But that would 
give me 0 on the bottom. We can’t have a 0 in the bottom. So, I kept the 12. [Qu] 

R: So, you only kept the 12 because you couldn’t have a 0? 

S5: Yes 

R: On the multiplication problem, you just multiplied across the numerators and 
denominators. Why? 

S5: Because it just says multiply. 

R: If you multiply straight across because it says multiply, then why don’t you just add or 
subtract straight across when those are the operations? 

S5: I don’t know. 

[For the division problem, the student performed: 15
4

÷ 2
3

= 15
4
⋅ 3
2

= 45
8

.] 

Most of Student 5’s misunderstandings seemed connected to the notion, purpose, and appropriate use of 
common denominators [Eq, IFO] and a failure to recognize that the underlying process associated with 
rewriting fractions into possessing common denominators is multiplying by one. This led the majority of the 
remaining discussions. While she was able to explain the process of finding the common denominators, she 
had no understanding of why to multiply by 𝑎𝑎

𝑎𝑎
 or 𝑏𝑏

𝑏𝑏
. [Eq, PW] She multiplied the common denominators in the 

addition problem [IFO], left the common denominator in the subtraction problem (because 17
0

 would be wrong) 
[Qu], multiplied the denominators in the multiplication problem “because of the multiplication sign” [WNB], 
and used “keep-change-flip” in the division problem and then multiplied across the denominators. She 
demonstrated no consistency of ideas or techniques.  
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Student 6: Female, Senior, Psychology and Studio Arts major.  

[Student 6 completes the addition and subtraction problems. Completing the multiplication 
problem, she cross multiplies [IFO], considers this for a moment, and then correctly redoes 
the example multiplying across the numerators and denominators. [Op] She then correctly 
completes the division problem. After completing the problems, she confessed that she had 
some difficulty on the multiplication and division examples and repeatedly denoted the 
fraction operation processes as simply “remembering the right tricks.” She is unable to 
explain why any of the processes work or are valid. [Eq, PW, Ra, Op]]  

Student 6 correctly completes all the problems using the “tricks” she remembers, but does not recognize, 
the mathematical justifications supporting these techniques. Not being able to immediately recollect the 
correct algorithm caused her to initially make an error on the multiplication problem – only to quickly correct 
it. While she interacts procedurally with the concepts, she seems only inches away from conceptual 
understanding. For instance, upon being asked to explain how she determined a common denominator and 
equivalent fractions in the context of addition, the probing questions immediately lead her to understand that 
she was multiplying by a fraction in the form of 𝑎𝑎

𝑎𝑎
 which was equal to 1.  

Student 7: Female, Senior, Psychology and Philosophy major.  

[Student writes 3
5

× 6
4

= 3
5

× 4
6
 [IFO], but does not complete the calculations. Then she writes 

15
4

÷ 2
3

=
15
4
2
3

 [Div, Ra], stops, and writes 15
4

÷ 2
3

= 15
4

× 3
2

= 45
8

. She then returns to the 

multiplication problem and writes 3
5

× 6
4

= 18
20

= 9
10

.] 

R: I like your vocabulary, that you’re saying the “whole”. So let’s go back to your division 
problem. What is the contextualized whole in this problem? 

S7: The denominator in a single fraction is what determines the whole. [Div] So, in the 
division problem, the denominator should be the whole. But here you are comparing two 
different fractions. 15

4
÷ 4

3
 has two wholes. [Ra, Op] The whole should be the denominators 

because those are what you’re comparing, but there are two different denominators. Oddly, 
this 2

3
 is the whole. But that doesn’t make sense. [WNB] But neither does 3 being the whole.  

R: Could you give me a real-world situation where maybe 2
3
 could be the whole? 

S7: Yes, but also having a fraction as your whole just feels wrong. [WNB] Cause then a whole 
one is a whole, like a full thing. But you know a fraction typically is not. [Ra] It’s just part of 
the whole, which is why I feel like the fraction can’t be a whole. [PW] Except that maybe it 
can.  

Student 7 initially “flips” the second fraction in the multiplication example [IFO], but then remembered 
that to be the process for division [Div]. Once completing the division example, she realizes that she simply 
multiplied across the numerators and denominators [WMB] and uses that idea to return to correctly complete 
the multiplication problem. Through additional transcripts, she made several mistakes in the “simplifying” 
stages of most of the problems. Her work indicated a lack of conceptual understanding that the rewriting of a 
fraction into an equivalent form included the step of multiplying by 𝑎𝑎

𝑎𝑎
= 1. While she seemed to understand 

that 2
3

= 8
12

 [Eq], she did not understand that 2
3

= 2
3
⋅ 1 = 2

3
⋅ 4
4

= 8
12

 [Eq]. In attempting to generate fractions with 

common denominators, she procedurally used the notation 4 �2
3
� = 8

12
 to represent 4

4
⋅ 2
3
. [Qu] 

She also struggled to understand the concept of the contextualized whole and wrestled with accepting that 
a fraction could be the contextualized whole in a particular expression. [Div] During the discussion with the 
researcher, Student 7 provided understanding that 2

3
 could be the contextualized whole in a real-world problem 

(e.g., 2
3
 of a pizza as a whole serving). [PW] However, she was confused when attempting to explain that, for 

15
4

÷ 2
3

= 45
8

, the contextualized whole for the problem is 2
3
 and that 45

8
⋅ 2
3

= 15
4

 [PW, Div].  
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Student 8: Female, Freshman, English major.  

[Student 8 fully explains common denominators and why they are necessary as well as the 
connection to equivalent fractions and multiplying by 𝑎𝑎

𝑎𝑎
= 1. [Eq, PW]] 

R: Can you explain why changing a division problem to multiplication might work? 

S8: Hmm. Because 2
3
 is already division [Qu] and you have one other division sign too, so it’s 

technically dividing twice and you’re kind of dividing something that’s already a division 
[Div, Op] and then that’s going to end up being multiplication. It’s like your taking something 
and you’re breaking it up into a fraction, which ends up giving you like a larger number, like 
I just… I’ve never really thought about it. I just know that, when you divide by something 
less than 1, you end up with a larger number [Me]. Because you’re kind of breaking it up into 
something. When you break it up, when you divide by something larger than 1 you end up 
with a smaller number and when it’s the opposite when you’re dividing by something less 
than 1 [Div] you end up with a greater number. Wait, division of a division becomes 
multiplication just like subtracting a negative makes a positive. [IFO] 

Overall, Student 8 demonstrates an excellent understanding of fractions and is able to communicate her 
thinking about fractions very well. However, she demonstrates confusion regarding fraction division. [Div] 
She seemed to confuse the idea of “subtracting a negative makes a positive” and applied this to division stating 
that dividing by a fraction means multiplication. [IFO] Thus, her communication reveals that she considered 
fraction division procedurally rather than conceptually. She also struggled with the concept of the 
contextualized whole in fraction division [Div], insisting that the contextualized whole in a division problem 
would necessarily be a whole number [WNB]. 

Initial Summary 

Summarily:  
• Student 1 demonstrated procedural understanding through IFO and Div constructs. 
• Student 2 performed operations correctly but demonstrated procedural understanding through the Div 

construct. 
• Student 3 demonstrated only a few instances of conceptual understanding through Eq and PW concepts, 

but numerous instances of procedural understanding through WNB, Eq, PW, and Op. 
• Student 4 demonstrated no examples of conceptual understanding and numerous examples of 

procedural understanding through the constructs WNB, IFO, Eq, Div, Ra, and Qu. 
• Student 5 exhibited no examples of conceptual understanding and numerous examples of procedural 

understanding through the WNB, IFO, Eq, PW, and Qu, constructs. 
• Student 6 demonstrated only one example of conceptual understanding [Op] and numerous examples 

of procedural understanding through IFO, Eq, PW, Ra, and Op. 
• Student 7 exhibited only one example of conceptual understanding [Eq] and numerous examples of 

procedural understanding: WNB, IFO, Div, Eq, PW, Ra, and Op. 
• Student 8 demonstrated both conceptual understanding [Eq, PW, Op, Qu, and Me] and procedural 

understanding [Div and IFO]. 
Additional initial summaries of the findings are provided through two stages: prior to and following 

instructional intervention. 
Prior to Intervention. The most common observations among participant work can be simplified to:  
● While only a couple participants were able to correctly perform the four operation examples, none of 

the participants could fully explain why their algorithms worked or were mathematically valid. 
● Most students remembered either the appropriate algorithms to perform the operations or portions of 

those algorithms.  
● Participants commonly misremembered when they needed to use common denominators and attempted 

to apply common denominators in incorrect situations.  
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● Almost no students recognized that multiplying by 𝑎𝑎
𝑎𝑎
 was equivalent to multiplying by 1 and that the 

purpose was to produce a different yet equivalent expression.  
● While some students understood the technique of rewriting a division operation to multiplication of the 

inverse, no student could provide an explanation of how this may be mathematically valid. 
● No student understood concepts regarding fraction division including that the contextualized whole of 

a problem need not be a natural number and what division by a fraction means.  
Summarily while these students demonstrated procedural knowledge regarding fraction operations, they 

had very limited conceptual understanding of what they were doing. 
During and After Intervention. Since this research activity was also an opportunity through which 

participants could learn more about fraction operations and computations, near the end of the interview 
session, one of the researchers used inquiry-based instructional techniques to lead the participant to deeper 
understanding of the investigated concepts. It was anticipated that more data could be gleaned regarding 
student understanding after this brief intervention. Although the remedial instruction was based on the 
individual participant’s needs, understanding, and misunderstandings, the topics generally covered the 
following: 

1. Investigating that, since 𝑏𝑏
𝑏𝑏

= 𝑑𝑑
𝑑𝑑

= 1 and 𝑎𝑎
𝑏𝑏
⋅ 𝑑𝑑
𝑑𝑑

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

, it can be seen that 𝑎𝑎
𝑏𝑏

± 𝑐𝑐
𝑑𝑑

= 𝑎𝑎
𝑏𝑏
⋅ 𝑑𝑑
𝑑𝑑

± 𝑐𝑐
𝑑𝑑
⋅ 𝑏𝑏
𝑏𝑏

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

± 𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏

=
𝑎𝑎𝑎𝑎±𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏

. 

2. Noticing that, since 𝑎𝑎
𝑏𝑏

÷ 𝑐𝑐
𝑑𝑑

=
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑

=
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
⋅ 1 =

𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
⋅
𝑑𝑑
𝑐𝑐
𝑑𝑑
𝑐𝑐

=
𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐

=
𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏
1

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 and 𝑎𝑎
𝑏𝑏

÷ 𝑐𝑐
𝑑𝑑

=
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑

=
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
⋅ 1 =

𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
⋅ 𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏

=
𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏
𝑑𝑑

=
𝑎𝑎𝑎𝑎
1
𝑏𝑏𝑏𝑏
1

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

 

come to the same result as 𝑎𝑎
𝑏𝑏

÷ 𝑐𝑐
𝑑𝑑

= 𝑎𝑎
𝑏𝑏
⋅ 𝑑𝑑
𝑐𝑐

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

, the latter must be mathematically valid. 

3. A diagrammatic area model was used to demonstrate the product of two fractions.  
4. Fraction bars (both physical and diagrammatic) and number line partitioning were used to 

demonstrate division by a fraction including the notion that, if 𝑎𝑎
𝑏𝑏

÷ 𝑐𝑐
𝑑𝑑

= 𝑒𝑒 𝑓𝑓
𝑔𝑔
, this means that �𝑒𝑒 ⋅ 𝑐𝑐

𝑑𝑑
�+

�𝑓𝑓
𝑔𝑔
⋅ 𝑐𝑐
𝑑𝑑
� = 𝑎𝑎

𝑏𝑏
. Thus, the remainder 𝑓𝑓

𝑔𝑔
 does not simply mean the value 𝑓𝑓

𝑔𝑔
, it means 𝑓𝑓

𝑔𝑔
 of the divisor, or 

contextualized whole, 𝑐𝑐
𝑑𝑑
.  

These interventions led most of the participants to deeper conceptual understanding of the fraction 
operations addressed in this study. However, possibly more importantly, it provided an additional window of 
opportunity to communicate with and observe the ideas articulated by the participants. This opportunity led 
to more nuanced understanding of some concepts held by the participants. These are addressed in the following 
discussions. 

DISCUSSION 
Through this study, the researchers found that college students share similar misconceptions regarding 

fraction arithmetic with elementary students. However, the reasoning of college students was more readily 
discerned because they were more articulate in their descriptions of their thought processes than are most 
elementary school children. This was found to be invaluable in analyzing and understanding their thinking 
processes.  

As previously stated, the findings above are reported in a rather simplistic manner. Deeper analysis of 
student work and communication led to further understanding of processes employed and understood when 
these participants performed arithmetic operations on fractions. These findings are provided below and 
separated by the fraction arithmetic operation considered. 

Multiplication 

Most student participants could algorithmically perform fraction multiplication. However, only one student 
could explain such using an area model. Some students recognized that 2

3
× 4

3
 would produce a product less 

than 4
3
 and greater than 2

3
, based singularly on the notion that 2

3
< 1 < 4

3
. Thus, rather than understanding the 

meaning of fraction multiplication or being able to model it in some manner, the students singularly 
understood that, for positive valued fractions, a factor less than 1 produced a product less than the other factor 
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and a factor greater than 1 produced a product greater than the remaining factor. Although most students 
correctly performed fraction multiplication, they demonstrated very limited conceptual understanding of their 
processes. 

Division 

While only some of the participants could perform the fraction division operation, observations revealed 
that none could explain why “invert-and-multiply” or “keep-change-flip” was mathematically valid. Two 
particular concepts seemed commonly lacking. First, students struggled with the notion of the contextualized 

whole (e.g., for 15
4

÷ 2
3

=
15
4
2
3

, 2
3
 would be the whole contextualized in this problem). When mentioned that 2

3
 of a 

pizza could be a “whole serving”, students recognized that a fraction could be the contextualized whole in a 
particular real-world situation. However, they struggled to apply this idea in fraction division segregated from 
real world applications.  

Second, students were unable to articulate meaning to the fraction division. They did not recognize that 
15
4

÷ 2
3
 meant “2

3
 divided into 15

4
” or even “2

3
 goes into 15

4
”. Notably, they interpreted 15

4
÷ 2

3
 to mean 15

4
× 3

2
. Students 

were then shown the meaning of fraction division through repeated subtraction using fraction bars. For 
instance, a length of 15

4
= 3 3

4
 was laid out on the table. Below it was aligned pieces of length 2

3
. Students 

immediately recognized that 2
3
 went into 3 3

4
 five times with 5

12
 of the 3 3

4
 yet unaccounted for. When asked “2

3
 

times what is 5
12

”, some wrote 2
3

× 𝑥𝑥 = 5
12

 and solved 𝑥𝑥 = 5
12

× 3
2

= 5
8
. Some came to understand that 15

4
÷ 2

3
= 5 5

8
. 

However, when asked “You have an answer of 5 5
8
, but 5 5

8
 what?” some students were unable to recognize that 

it meant 5 5
8
 of the conceptual whole, 2

3
.  

When they were asked to perform the operation 5 5
8

× 2
3
, most students were quite able to find the product 

15
4

. When pointed out, they were quite surprised to see that 15
4

 was the original dividend of the division problem. 
When contextualized with integers, they recognized that a ÷ b = c ⇔  a = bc; however, only one student came 
to recognize that 15

4
÷ 2

3
= 5 5

8
⇔ 15

4
= �5 5

8
� ⋅ 2

3
. 

Addition and Subtraction 

An interesting finding arose regarding the least common denominator associated with addition and 
subtraction problems. It can be noticed that the process of rewriting fractional addends into addends with 
common denominators includes the process of fraction multiplication (i.e., 𝑎𝑎

𝑏𝑏
+ 𝑐𝑐

𝑑𝑑
= 𝑎𝑎

𝑏𝑏
⋅ 𝑑𝑑
𝑑𝑑

+ 𝑐𝑐
𝑑𝑑
⋅ 𝑏𝑏
𝑏𝑏
).  

In this study, while most students were able to complete fraction multiplication, they failed to recognize 
the use of multiplication when finding common denominators for fractional addends; they recognized the 
process of rewriting fractions to share common denominators as something quite different from fraction 
multiplication. Students perceived rewriting fractions into common denominator form as a two-step process, 
as shown in Figure 1. 

 
Figure 1. Two-step process of rewriting into common denominators 

 In Step 1, they considered the fraction 𝑎𝑎
𝑏𝑏
 and by what value, c, they would need to multiply b in order to 

rewrite the fraction with a denominator common to the other fraction addend. In Step 2, they multiplied the 
numerator a by the same value c. Notably, they perceived these two steps as distinct and sequential. This is 
further developed through the following notions.  

First, students multiplied the numerator by c because “whatever you do to the denominator you do to the 
numerator.” When asked “Ok, so if you add a value to the denominator, do you add the same value to the 
numerator, and will this produce an equivalent expression?”, most students initially responded that they 
believed it would. Thus, they were more focused on performing two similar steps than they were on multiplying 
the fractions. 
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Second, when students were rewriting fractions into common denominators, some were asked, “So, you are 
multiplying by c over c?” To which some responded, “No, that would be the same as multiplying by 1, and if I 
multiply by 1, I’ll get the same thing” or “I am not multiplying by c over c. I am multiplying by c in the bottom 
and then by c in the top, to do the same thing.” This revealed important ideas in student reasoning: 

1. Students perceived multiplication of fractions as distinct from this rewriting a fraction with a common 
denominator. While multiplication of fractions was perceived as a matter of multiplying simultaneously 
across numerators and denominators, constructing fractions with common denominators was 
recognized as “doing the same thing” after the step was determined through investigation of the 
denominator. 

2. The sequencing of the multiplications in Step 1 from Step 2 denoted that students were not actually 
multiplying 𝑎𝑎

𝑏𝑏
 by 𝑐𝑐

𝑐𝑐
. Indeed, some students explicitly stated that this was not what they wanted to do. 

They did not want to multiply by “c over c”; they wanted to multiply by c in the denominator and again 
in the numerator. Thus, either they (A) did not want to multiply by “c over c” or (B) they did not 
recognize that, in essence, that was exactly what they were doing, or (C) both A and B.  

3. Beyond not recognizing that they were multiplying 𝑎𝑎
𝑏𝑏
 by 𝑐𝑐

𝑐𝑐
, the students did not recognize that they were 

multiplying 𝑎𝑎
𝑏𝑏
 by 1, thus maintaining the value of 𝑎𝑎

𝑏𝑏
. Most of the students were completely oblivious to 

the purpose of the process was to produce 𝑎𝑎
𝑏𝑏

= 𝑎𝑎
𝑏𝑏
⋅ 1 = 𝑎𝑎

𝑏𝑏
⋅ 𝑐𝑐
𝑐𝑐

= 𝑎𝑎𝑎𝑎
𝑏𝑏𝑏𝑏

. And, when one student did recognize it, 
she indicated that this was NOT what she wished to do. 

IMPLICATION 
Numerous significant implications to the findings in this study are provided in this section. First, the 

students in this study may reveal that many students can adequately perform operations on fractions without 
the students possessing conceptual understanding of what they are doing. While being able to perform fraction 
operations is a positive result, it may be that lacking conceptual understanding will quell future potential 
mathematical development if not mitigated. This has implication for mathematics education in general. Since 
reform efforts dating back to the 1980s, there have been calls for greater emphasis in conceptual 
understanding in math learning (e.g., NCTM, 1989). It must be wondered how effective this has been. 

Second, for the college students involved in this study, it seems that their misconceptions and reliance on 
procedural versus conceptual understanding are in many ways consistent with those held by elementary and 
middle grades students. This causes one to wonder how widespread this is among broader audiences of college 
students. This should be further investigated to determine the breakdown between instructional practices and 
fractional understanding. Additionally, it warrants investigation as to how the K-12 mathematics curriculum 
could be further redesigned to help students learn and retain conceptual concepts regarding fractions and 
fraction operations.  

Third, college students’ focus on procedural understanding of fractions and fraction operations may lead to 
limitations in mathematical ability and limit them in future career paths. This may further exacerbate the 
difficulty of recruiting college students into high-demand STEM fields.  

Fourth, and possibly most importantly, the findings and discussion may shed light on how college students 
perform particular fraction operations and what they think when doing so. Particularly, the findings may 
indicate disconnected and fractured ideas regarding the operations of addition and subtraction, multiplication, 
and division. 

Regarding addition and subtraction, students may perceive 𝑎𝑎
𝑏𝑏

× 𝑐𝑐
𝑐𝑐
 differently when in the context of fraction 

multiplication rather than in the context of constructing fractions with like denominators. Indeed, these 
findings may imply that students do not understand that multiplication by 𝑐𝑐

𝑐𝑐
 is multiplication by 1 and 

intended to create a new fraction of equal value. The two-step process employed by the students of rewriting 
fractions into common denominators implies that students have limited conceptual understanding regarding 
this process. Rather students may only have the procedural understanding to “multiply the top by what they 
multiplied by in the bottom”. This disconnect between multiplication and finding common denominators 
suggests that these ideas are not being taught or learned as the same process. From this finding it can be 
argued that, to help students better make connections between these processes and strengthen their 
conceptual understanding, fraction multiplication should be taught prior to fraction addition and subtraction.  
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Regarding multiplication, the findings imply that students perform fraction multiplication algorithmically, 
with little understanding of what it means. Since fraction multiplication is central to the other fraction 
operations of addition, subtraction, and division, misunderstanding multiplication leads naturally to 
misunderstanding other fraction operations. This may mean that fraction multiplication should be taught and 
learned prior to fraction addition and subtraction.  

Students seem to automatically rewrite division by a fraction into multiplication by the inverse that most 
of the concepts regarding division seem lost or hidden including the contextualized whole in the problem, the 
justification that verifies rewriting as a multiplication problem, and the actual meaning of division apart from 
an arithmetic algorithm. Furthermore, this may imply that, since students do not fully understand that a ÷
b = c ⇔  a = bc, there may be many other fundamental concepts that they have not fully grasped. While the 
literature well documents that K-12 students struggle with division by fractions, it is also known that K-12 
mathematics teachers similarly struggle with this concept (Ma, 1999). Altogether, this may imply that much 
work is yet needed in K-12 mathematics to solidify concepts associated with division.  

Altogether, one far-reaching implication to this study is that the U.S. educational system may not be 
effective in the teaching and learning of fractions. This is not to cast blame on teachers, curricula, or students. 
Rather, in order to fix a problem, we must first recognize that one exists. 

CONCLUSIONS 
Our finding suggests that college level students have the same misunderstandings as elementary school 

students regarding fraction operations. While most of the participants in our study remembered “keep, change, 
flip” none could explain why this process was valid or even what they were doing when they used this process. 
Several students remembered the idea of common denominators and correctly applied them in the addition 
and subtraction problems, but some overgeneralized this process to every problem or did not know what to do 
once they had found common denominators. Overall, participant’s procedural understanding far outweighed 
their conceptual understanding. 
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