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Introduction 

Computers are the main and universal means of information processing. 

However, high accuracy of calculations cannot be provided in many cases, 

because noises that appear at the input of the computer along with the 

processed signal make a significant contribution to output errors. The use of 
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optical means (Demtröder, 2013; Alferov, 2014) may be preferable in cases that 

do not require high precision of calculations, but need efficiency, ease of use, 

small size, weight, power consumption and equipment cost. 

Optical systems are particularly useful in processing a two-dimensional 

image information (Savin, Zubova & Manevitch, 2005). Keeping in mind that 

these calculations are made at the speed of light simultaneously for all pixels of 

the image, and the calculation time depends only on the time of the input signals 

and output of results, the performance of optical devices may exceed computer 

performance. 

Taking into account rapid development of optical instrumentation, optical 

fiber communication, optical information recording and processing, further 

studies related to optical anisotropic crystals are required (Singh, Chaudhari & 

Pandey, 2016; Fabrizio & Rinaldi, 2015). Optical systems based on anisotropic 

crystals are of interest both in theoretical and in practical terms for the 

construction of electro-optical transmission devices, distribution and processing 

of information, in particular, laser measuring devices (Cattoor et al., 2014). 

Background Paper 

Crystalline systems provide the possibility to convert the frequency-modulated 

light into the amplitude - modulated; forming the desired optical filtering to 

optimize the processing of two-dimensional (optical) signals (Konoshonkin, 

Kustova & Borovoi, 2015; Porfiriyev, 2013; Chang, 2005). Two-component 

crystal-optical lenses at the output form the ordinary and extraordinary waves 

with varying degrees of polarization; their mixing by means of analyzers form 

different interference patterns being used in various laser measuring devices 

(Bazykin, 2014, Tarasov, Torshinina & Yakushenkov, 2014; Yang et al., 2015). 

The complexity of the calculations related to the propagation of electromagnetic 

waves in anisotropic medium (uniaxial and biaxial crystals) using the Maxwell’s 

electromagnetic theory, was pointed out in several research works (Boyd, 2008; 

Barkovskii & Borzdov, 1975; Arminjon & Reifler, 2013).  Using the covariant 

method within the framework of this theory provided detailed consideration of 

different characteristics of the reflected and refracted waves at the interface of 

uniaxial and biaxial crystals with the isotropic medium (Harris, 1963). 

Questions related to electrodynamics of anisotropic media (the construction of a 

one-dimensional wave equation and its solution matrix method) were discussed 

in the monograph M. Born & R. Wolf, (1997). Recent studies were marked by a 

new development in the method related to the analysis of the light propagation 

in an anisotropic medium, namely the particle-wave ratios of De Broglie, linking 

energy and momentum of a particle, with the frequency and wave vector 

respectively, were generalized to the case when the energy transfer and the 

wave distribution are directed (Mayer, 2007; Frieden, 2012; Khonina, 2013; 

Khonina, Karpeev & Alferov, 2012). Covariant method leads to the complicated 

general expressions, and its use in solving the problem of finding the direction of 

energy transfer in relation to the two-component crystal-optical systems is very 

difficult. In general, the problem does not imnply a strict analytical solution, the 

main difficulty is the need to take into account the parallelism of the wave 

vector K=2, describing transfer of the wave phase, and the energy-

propagation direction 𝑆 = [𝐸, 𝐻], describing transfer of the wave energy (- wave 

length, Е, Н - vectors of the electric and magnetic fields). In this regard, one 
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needs to provide the efficient method of calculating propagation of 

electromagnetic waves in crystal-optical lenses and to obtain the expression 

describing beam path at the output of the crystal-optical lenses. 

In this article, propagation of the ordinary (o) and extraordinary (e) waves 

in an anisotropic dielectric medium with the boundary conditions for the bifocal 

lens (BL) is described by the simplest and quite general methods of geometrical 

optics in paraxial approximation, i.e., assuming infinitely narrow parallel beam 

incidence in different points of the input face of the anisotropic medium. This 

calculation method allows identifying all the basic properties of the studied BL 

and provides the possibility to compare calculation results with the 

experimental data 

Research Purpose 

The purpose of this study is to develop an efficient method for calculating 

propagation of electromagnetic waves through the two-component crystal-optical 

lenses based on uniaxial Iceland spar crystals with different orientations of the 

optical axes of the crystals in the lens components. 

Research questions 

The study aims at obtaining an expression that could provide the possibility to 

describe propagation of electromagnetic waves at the output of two-component 

crystal optical lenses using a narrow beam method (paraxial approximation); 

conducting a comprehensive experimental study of crystal-optical lenses in a 

split mode of electromagnetic waves at the output of crystal-optical lenses; 

making comparison of results obtained by calculations according to the formulas 

with the experimental data. 

Method 

Bifocal lenses (BL) with the binary structure based on the uniaxial crystals 

consisting of two glued plano-convex and plano-concave lens components with a 

different orientation of the optical axes, were described in detail by Y. Osipov 

(1973). 

Assume that the circularly polarized wave extends through BL in the z 

direction. Given this choice of polarization state of this wave, "binding" the 

polarization vector to the optical axis of the crystal at the ACL input is 

negligible, which allows further unification of the theory for BL-1 and BL-2 

(Figure 1). 

 
а) BL-1     b) BL-2 

Figure 1. Two types of bifocal lenses 
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Assume that 0z   and 1z   present the left and right BL edges 

respectively, then the spherical boundary could be expressed by the following 

equation 

 x2 + y2 + (z − σ)2 = R2 (1) 

where    - the distance from the coordinate origin to the center of the 

spherical BL surface. The interval between z = 0 and the spherical surface (1) is 

marked 1, and the rest is marked 2 (see Figure 2b). The convexity direction of 

the boundary is determined, naturally by the value sign  . The directions of 

optical axis in ACL-1 and ACL-2 are specified by unit vectors 
1 (1,0,0)a   and 

2 (0,sin ,cos )a   , respectively, where   - the angle between 
2a  and the 

axis z . Assume that the narrow parallel beam of light strikes upon the left BL 

edge in the arbitrary point 1M  along the axis z (Figure 2а). Assume that 1M  has 

coordinates dcosφ, dsinφ, 0, where   - the angle between the axis x  and the 

radius-vector d , set off from the coordinate origin z = 0 to 
1M . Hereafter, we 

assume that d ≪ R, where R – curvature of BL spherical boundary and the value 
2

d

R

 
 
 

 is negligibly low. 

 
а)     б)     

Figure 2. Propagation of electromagnetic waves through the anisotropic crystalline lens 

made of 𝐂𝐚𝐂𝐎𝟑 uniaxial crystal. 

The permittivity tensor in the principal axes of the crystal is diagonal and is 

set by the formula (2). Wave refraction index for о-wave in the intervals of І and 

ІІ is identical and equals to n0, аnd for the е – wave this index can be expressed 

as follows: 

 ε = (
ε 0 0
0 ε 0
0 0 ε

) (2) 

 nẽ =
ne

√1+δ(ki
⃗⃗  ⃗ai⃗⃗  ⃗)2

 , (3) 

where ki
⃗⃗  ⃗ (i = 1, 2) - unit wave vector in the intervals І and ІІ respectively and  

 δ =
(ne

2−n0
2)

n0
2 . 
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Obviously, the unit wave vector for о – and  е – waves  in the interval І  

could be expressed as k1
⃗⃗⃗⃗  (0,0,1), and it coincides with the direction of beam 

propagation. Mutual transformation of the о – and е – waves occurs on the 

spherical boundary of BL. The wave vector k2
⃗⃗⃗⃗  in the interval ІІ belongs 

(proceeding from the boundary conditions) to the plane, going through the axis z, 

defined by the angle φ, therefore, it can be expressed as follows:  

  2 2 2 2sin cos ;sin sin ;cosk       (4) 

where 𝛼2- the angle between  k2
⃗⃗⃗⃗  and the axis z. 

Hereafter, the vector  k2
⃗⃗⃗⃗  and the angle d2 will be marked by indexes (оо), 

(ое), (ео), and (ее). More specifically, (оо) indicates refraction of o – wave along 

with maintaining its polarization type, (ое) indicates transformation of the in-

going wave (о) to the refracted (е) wave and so on. In general, four waves and 

four boundary conditions should be considered. It is obvious that α2
00=0. The 

angle α2
0е can be defined by the refraction law on the spherical surface:  

n0
2[1 − (k1

⃗⃗⃗⃗ n1⃗⃗⃗⃗ )2] =
ne

2

1+δ(k2
oe⃗⃗ ⃗⃗ ⃗⃗  ⃗a2⃗⃗ ⃗⃗  )2

[1 − (k2
oe⃗⃗ ⃗⃗ ⃗⃗  n1⃗⃗⃗⃗ )2], where n1⃗⃗⃗⃗ = {

d

R
cosφ;

d

R
sinφ; −√1 −

d2

R2} - 

normal unit vector. The beam cross point with the spherical boundary has the 

following coordinates (dcosφ, dsinφ, δ − √R2 − d2). Inserting values of the vectors 

n1⃗⃗⃗⃗ , k1
⃗⃗⃗⃗ k2

oe⃗⃗ ⃗⃗ ⃗⃗  иa2⃗⃗  ⃗ в (4), we obtain  
no

2

ne
2

d2

R2
(1 + δcos2φ) = (sind2

oe =
d

R
)2, it follows that    

    d2
oe =

d

R
(
no

ne
√1 + δcos2φ − 1)     (5) 

The (ео) wave refraction law on the spherical surface will be expressed as follows:  

 
ne

2

1+δ(k1
⃗⃗ ⃗⃗  a1⃗⃗ ⃗⃗ )2

[1 − (n1
⃗⃗ ⃗⃗⃗⃗ k1

⃗⃗⃗⃗ )2] = [1 − (n1
⃗⃗ ⃗⃗⃗⃗ k2

oe⃗⃗ ⃗⃗ ⃗⃗ )2] no
2 (6) 

From (6) we obtain  d2
eo =

d

R
(
ne

no
− 1)       (7) 

The (еe) wave refraction law on the spherical surface will be expressed as 

follows: 
ne

2

1+δ(k1
⃗⃗ ⃗⃗  a1⃗⃗ ⃗⃗ )2

[1 − (n1
⃗⃗ ⃗⃗⃗⃗ k1

⃗⃗⃗⃗ )2] = [1 − (n1
⃗⃗ ⃗⃗⃗⃗ k2

oо⃗⃗ ⃗⃗⃗⃗ )2]
ne

2

1+δ(k1
⃗⃗ ⃗⃗  a1⃗⃗ ⃗⃗ )2

  

   (8) 

Thus, inserting values of the vectors  η⃗ , k,⃗⃗ k2
oe⃗⃗ ⃗⃗ ⃗⃗  ,a2 ⃗⃗ ⃗⃗   и a1⃗⃗  ⃗  we obtain   

 d2
 oe =

d

R
(√1 + δcos2φ − 1) (9) 

Next, the wave unit vector of the beam, going out of BL will be expressed as 

follows: 

 к3⃗⃗⃗⃗ = {sind3cosφ:  sind3sinφ; cosd3}  (10) 

The (оо) wave is expressed as follows: d3
00 = 0. The wave (ео) refraction law 

on the boundary  z   will be expressed as follows:  

 no
2 [1 − (n1

⃗⃗ ⃗⃗⃗⃗ k2
oe⃗⃗ ⃗⃗ ⃗⃗ )2] =[1 − (n1

⃗⃗ ⃗⃗⃗⃗ k3
oe⃗⃗ ⃗⃗ ⃗⃗ )2] (11) 

where n2⃗⃗⃗⃗  = (0,0,1) – normal to the plane z  . From the expression (11) we obtain   

 d2
eo =

d

R
(ne − n0) (12) 
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For the (ое) wave, the expression (11) will be as follows:  

 
ne

2

1+δ(k2
0e⃗⃗ ⃗⃗ ⃗⃗  ⃗a1⃗⃗ ⃗⃗ )2

[1 − (n2
⃗⃗ ⃗⃗ ⃗⃗ k2

oe⃗⃗ ⃗⃗ ⃗⃗ )2] = [1 − (n2
⃗⃗ ⃗⃗ ⃗⃗ k3

oо⃗⃗⃗⃗⃗⃗ )2] (13) 

From here, we obtain α3
ое =

d

R
(n0 −

ne

√1+δcos2ψ
)    (14) 

The (еe) wave refraction law on the boundary  z   will be expressed as follows: 

 
ne

2

1+δ(k2
ee⃗⃗ ⃗⃗ ⃗⃗  ⃗a2⃗⃗ ⃗⃗ )

2 [1 − (n2⃗⃗⃗⃗ k2
ee⃗⃗⃗⃗⃗⃗ )

2

] = [1 − (n2⃗⃗⃗⃗ k2
ee⃗⃗⃗⃗⃗⃗ )

2

] (15) 

From here, we obtain  α3
ее =

d

R
nе(1 −

ne

√1+δcos2ψ
)   (16) 

The formulas (15)-(16) allow finding the beam trajectories. Inserting the 

unit vector of the beam group speed S⃗  will result in the following expression:   

S⃗ = μ1a2⃗⃗⃗⃗ + μ2k2
⃗⃗⃗⃗ ;                 [S⃗ ] = 1   (17) 

where μ1 and  μ2 – coefficients.   

From (S⃗ a⃗ ) = 
εе(k⃗⃗ a⃗ )

√ε(0)2+(ε(е)2−ε(0)2)(k⃗⃗ a⃗ )

 we obtain 

(s a2⃗⃗⃗⃗ ) = 
nе

2(k⃗⃗ 2a⃗ 2)

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

   (18) 

The coefficients μ1 and μ2 can be defined by taking the square of the 

equation (17)    μ1
2 + μ2

2 + 2μ1μ2(к⃗ 2а⃗ 2) = 1     (19) 

From (18) and (19) we obtain:  

 (s a2⃗⃗⃗⃗ )=μ1 + μ2(к⃗ 2а⃗ 2) =
nе

2(k⃗⃗ 2a⃗ 2)

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

  (20) 

Therefore,  

(s a2⃗⃗⃗⃗ ) 2=μ1
2 + 2μ1μ2(к⃗ 2а⃗ 2) + μ2

2(к⃗ 2а⃗ 2) =
nе

2(k⃗⃗ 2a⃗ 2)

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

 (21) 

Considering (20), we obtain 

  μ2 =
nе

2

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

   (22) 

and using the expression (20), we obtain  

  μ1 =
(nе

2−n0
2)(к⃗ 2а⃗ 2)

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

   (23) 

Inserting (22) and (23) in (17), we obtain  

   S⃗ =
[(nе

2−n0
2)(к⃗ 2а⃗ 2)a⃗ 2+n0

2k⃗⃗ 2]

√ne
4(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2+no
4[1−(k2

⃗⃗ ⃗⃗  a2⃗⃗ ⃗⃗ )2]

   (24) 
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The expression (24) for the beam vector S⃗  is required to determine the 

trajectory of the е – beam in BL.  

Obviously,  ψ = 0 , which corresponds to BL-1 and  ψ =
π

2
 – to BL-2. 

Data, Analysis, and Results 

Calculation of electromagnetic wave propagation through BL  

For a uniaxial crystal of Iceland spar (CaCO3) n0 > ne and, consequently, 

from (14), under ψ =
π

2
, we obtain α3

ое < 0. This means that the о – beam in 

medium 1 exiting BL-2 deviates from the axis z, and therefore the parallel beam 

striking upon BL-2 will be divergent with regard to the given polarization. For 

the (ео) and (ее) beams, with regard to (12) and given ψ = 0 from (15) we obtain 

α3
ое < 0α3

ее < 0. This means that the (ео) and (ее) beams will cross the axis z at 

two different points. Thus, using the BL-1 provides realization of an interesting 

case related to the spatial division of a plane wave into two spherical waves with 

different foci along the axis z.  

The unique property of ACL-1 related to creating two foci for the circularly 

polarized collimated beam is interesting in terms of optical measurements in the 

longitudinal direction (along z coordinate). Therefore, one should take a closer 

look at the location and structure of these foci.    

First, let us consider the (ео) beam. The directing vector of the beam in the 

interval 2 is the vector 2

eok , and at the output of BL -1 z > 𝑙 – the vector 3

eok . 

Solution of the geometric problem related to the trajectory of the (ео) – beam 

shows that it crosses the axis  z  in a point М4
ео (Figure 3) with the applicate z4

ео =
l + Fe0, where Fe0 - focal length.  

 
Figure 3. Electromagnetic wave propagation through a bifocal lens of BL-1 type 
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Defining the trajectory of the (ео) – beam involves finding points М3
ео and 

М4
ео by using the wave vectors 2

eok  and 3

eok , respectively. In the interval 2 – 

equation of the line М2М3
ео is expressed as folows: 

  
х−dcosφ

К2х
=

y−dsinφ

K2y
=

z−(δ−√R2−d2)

K2z
   (25) 

From here we find coordinates of the point М3
ео, assuming that z = l 

x3
ео = (l − h)k2x + dcosφ 

y3
ео = (l − h)k2y + dsinφ    (26) 

z3
ео = (l) 

where k2x =
d

R
(

ne

no
) cosφ; k2y =

d

R
(
ne

no
) sinφ; k2z = [1 − (

d

R
)
2
(
ne

no
)2]1\2;  

The equation of the line М3
еоМ4

ео could be expressed as  

   
x−x3

eo

k3х
=

y−y3
eo

k3y
=

z−z3
eo

k3z
,    (27) 

where  

k2x =
d

R
(ne−no)cosφ; k2y =

d

R
(ne−no)sinφ; k2z = [1 − (

d

R
)
2

(ne−no)
2]1\2; 

 

In the focus (in the point М4
ео ) х=у=0, and from (28) taking into account the 

paraxial approximation, we obtain   

 Z4
eo = Z3

eo −
k3x

k3z
x3

eo = l +
R

no−ne
−

l−h1

no
   (28) 

 

From here we obtain 

  Feo =
R

no−ne
−

h

no
     (29) 

where h = l − h1 - height of the spherical segment in the interval 2, h1 - 

distance between the left edge (Z0 = 0) and the spherical boundary. 

Focal length Fее for the (ее)-beam could be found in a similar way, the 

difference is that the beam vector S⃗ 2
ее , which determines energy transfer, is 

taken into account instead of the wave vector 3

eek  in the interval 2, At the output 

of BL-1, the vector 3

eek  is parallel to the vector 3

eok . Keeping in mind values of the 

vectors a⃗ 2 and 2

eek  from (30), we express  S⃗ 2
ее as: 

S2x
ee = ∆2

−2\1
nosinα2

eecosφ 

S2y
ee = ∆2

−2\1
(ne

2 − no
2)cosψsinψ + ∆2

−2\1
no

2sinα2
eosinφ

no
2ne

2

∆1
  (30) 

S2z
ee = ∆2

−2\1
[∆2 +

no
2ne

2

∆1
(ne

2 − no
2)sinψcosψsinα2

eosinφ 

where  ∆1= ne
4cos2ψ + no

4sin2ψ;  ∆2= ne
2cos2ψ + no

2sin2ψ 
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From (30) it follows that S⃗ 2
ее belongs to a plane, which could be defined by 

the angle φ and the axis Z only provided ψ = 0 and ψ =
π

2
. Given the angles ψ ≠

0,    
π

2
 (ее) – beam does not cross the axis z and BL-1 does not have focusing 

properties. Provided  ψ = 0, we obtain  

S2x
ee = (

no

nе

)2cosφsinα2
ee 

S2y
ee = (

no

nе
)2sinφsinα2

eo    (31) 

S2z
ee = 1 

Provided ψ =
π

2
, we obtain S2x

ee = S2y
ee = 0;     S2z

ee = 1α2
ee = 0. Therefore, 

provided ψ = 0 the (ее)-beam is focused. In order to determine focal length Fее 

one needs to find coordinates of М3
еоand М4

ео. Whereas the line М2М4
ее is defined by 

the equation    
x3
ee−dcosφ

S2х
=

y3
ee−dsinφ

S2y
=

z−(δ−√R2−d2)

S2z
  

 (32) 

coordinates of the point М 3
ее we express as  

 

Х3
ee = (l − h)S2x + dcosφ     

Y3
ee = (l − h)S2x + dsinφ    (33) 

Z3
ee = l       

Accordingly, from the equation of the line М3
еоМ4

ео  

 
x−x3

eе

k3х
=

y−y3
eе

k3y
=

z−z3
eе

k3z
    (34) 

For the applicate of the point М4
ее we have  Z4

ee = Z3
ee −

K3z

K3x
X3

ee or 

Z4
ee = l +

R

no−ne
−

(l−h1)

ne
2 n0    (35) 

and the focal length of the (ее) wave will be expressed as follows   

Fee = Z4
ee − l =

R

no−ne
− h

n0)

ne
2     (36) 

From (29) and (36) we obtain the distance between the foci:  

∆F = Feo − Fee = h
no

2−ne
2

none
2     (37) 

The expression (37) shows that the distance between the foci depends only 

on the h value and birefringent properties of the crystal, which forms the basis 

of BL-1.  

In the case of a negative crystal (CaCO3), no > neFee < Feo. In the case of a 

positive crystal (SiO2), when no < ne, the (ео) beam focus is located closer (Fee >
Feo). For the BL made of CaCO3 provided  h = 5,35 mm and R = 24,7 mm, given 

laser radiation with λ = 632,8 nm,    n0 = 1,65504,     ne = 1,48490  , the calculation 

according to (29) and  (37) provides Fее = 141,3 мм,   Fео = 142,1  mm and ∆F =
0,8 m, which is qualitatively correlated with the experiment (see Figure 4). 

The above consideration implies that ACL-1 focuses part of the parallel 

beam at two points, defined by the expressions (29) and (37), whereas BL-2 fixes 

it in one point (29). It should be noted that two parallel beams are formed in the 

output of BL-1 along with the intact (circular) polarization of the incident beam. 
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Figure 4. Light intensity distribution in the focal plane of BL-1 (in foci 𝐅𝐞𝐞 and 𝐅𝐞о): 1 – 

without analyzer (А), 2 – under А||а𝟏⃗⃗⃗⃗  (axis of the analyzer is parallel to the optical axis of 

the crystal а𝟏⃗⃗⃗⃗ ), 3 – under А┴а𝟏⃗⃗⃗⃗  (axis of the analyzer is perpendicular to the optical axis of 

the crystal а𝟏⃗⃗⃗⃗ )  

Figure 4 shows the experimental curves of the light flow (1) intensity 

distribution along the axis z in the focal plane M4
eeand M4

eo БЛ-1. The curve 1 

was obtained through PMT (input diaphragm – 3 um), which was moved along 

the axis z by horizontal comparator of IZA-2 type. Setting the analyzer parallel 

to а1⃗⃗  ⃗ (curve 2) and perpendicular to а1⃗⃗  ⃗ (curve 3), the authors determined largely 

orthogonal-elliptical state of the light flux polarization at the foci Fее and  Fеo. 

Experimental measurements of the polarization selection in the ACL-1 foci 

cause difficulties due to the length of the test beams along the axis z. As regards 

the intensity of Iееand Iеo in the foci of BL-1, they are not identical as shown by 

Figure 4. According to relevant calculations, their ratio should make 
Іее

Іео
  = 3, 

which is qualitatively correlated with the experiment (curve1).  

It is known that the wave reversibility is not observed in two or more 

polarizing systems, in other words, wave polarization is not kept intact during 

direct and reverse propagation through the system (Khonina, 2013). Therefore, 

it seems expedient that the problem of the reverse propagation of the parallel 

light beam through the BL be separately considered. For BL-1, the е and о- 

beams are indistinguishable at normal incidence to the area 2, as they propagate 

along the optical axis а2⃗⃗  ⃗. This means that the o-beam propagating to the left of 

BL-1 keeps its direction, and the е-beam crosses the axis z. Considering the 

focus of e-beam, the formula (29) demonstrates that at normal incidence of the 

beam having cylindrical form to the right of the BL-1, with radius 𝑟о at the 

output of BL-1 the beam is elliptically contoured (Khonina, Karpeev & Alferov, 

2012). In this case, the wave vector in the interval 2 of ACL-1 is determined by 

the unit vector as К1
⃗⃗ ⃗⃗  =(0,0,-1), and the optical axes of BL-1 are determined by the 

unit vectors, namely, а1⃗⃗  ⃗ =(1,0,0); а2⃗⃗  ⃗=(0,0,1). The unit normal to the spherical 

surface in point М2: 

n⃗ 1 = {
d

R
cosφ;    

d

R
sinφ;   −√1 −

d2

R2
} 
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The wave vector in the interval 1 of ACL-1 could be expressed as follows:  

K⃗⃗ 2 = {sind2cosφ;      sind2sinφ;   −cosd2}. 

Obviously, for the (о)-beam 𝑑2
0= 0, 𝑑3

0= 0. The refraction law for the е-beam 

on the spherical surface is expressed as follows:  

𝑛0
2 [1 − (𝑘⃗ 1𝑛⃗ 1)

2
] =

𝑛𝑒
2

1+𝛿(𝑘⃗ 2𝑛⃗ 1)
2 [1 − (𝑘⃗ 1𝑛⃗ 1)

2
]  (38) 

Thus, upon inserting values of the vectors 1k ,𝑛1⃗⃗⃗⃗ , 2k  and  а1⃗⃗  ⃗ , we obtain  

𝑑2
𝑒 =

𝑑

𝑅
(1 −

𝑛𝑜

𝑛𝑒
)     (39) 

On the boundary z=0 the refraction law for the е-beam is expressed as 

follows:  

𝑛𝑒
2

1+𝛿(𝑘⃗ 2𝑛⃗ 1)
2 [1 − (𝑘⃗ 1𝑛⃗ 1)

2
] = [1 − (𝑘⃗ 1𝑛⃗ 1)

2
]   (40) 

where 𝑛2⃗⃗⃗⃗ =(0,0,1)-normal to the plane ᵶ=0. From (39) we obtain 

 𝑑3
𝑒 =

𝑑

𝑅
(𝑛𝑒 − 𝑛𝑜)    (41) 

The beam vector in the interval 1 of ACL – 1 will have the following 

expression (with regard to the expression (24) 

𝑆 2 =
𝑛𝑒

2−𝑛𝑜
2

𝑛𝑜
2 𝑠𝑖𝑛𝑑2

𝑒𝑐𝑜𝑠𝜑𝑎 1 + 𝐾⃗⃗ 2   (42) 

From here we obtain   

𝑆2𝑥 =
𝑛𝑒

2

𝑛𝑜
2 𝑠𝑖𝑛𝑑2

𝑒𝑐𝑜𝑠𝜑 

𝑆2𝑦 = 𝑠𝑖𝑛𝑑2
𝑒𝑠𝑖𝑛𝜑    (43) 

𝑆2𝑧 = 1 

We find coordinates of the e-beam intersection points in the plane Z=0.  The 

coordinates of М2 can be expressed as follows (𝑑𝑐𝑜𝑠𝜑, 𝑑𝑠𝑖𝑛𝜑6  𝛿 − √𝑅2 − 𝑑2)  

𝑥3−𝑑𝑐𝑜𝑠𝜑

𝑆2𝑥
=

𝑦3−𝑑𝑠𝑖𝑛𝜑

𝑆2𝑦
= 𝛿 − 𝑅 = ℎ    (44) 

From here we obtain 

𝑥3 = ℎ1
𝑛𝑒

2

𝑛0
2 (1 −

𝑛0

𝑛𝑒
)

𝑑

𝑅
𝑐𝑜𝑠𝜑 + 𝑑𝑐𝑜𝑠𝜑     

𝑦3 = ℎ1 (1 −
𝑛0

𝑛𝑒
)

𝑑

𝑅
𝑠𝑖𝑛𝜑 + 𝑑𝑠𝑖𝑛𝜑    (45) 

z3 = 0 

The equation related to the e-beam propagation in output of ACL-1 can be 

expressed as follows:  
𝑥−𝑥3

𝐾3𝑥
=

𝑦−𝑦3

𝐾3𝑦
=

𝑧−𝑧3

𝐾3𝑧
    (46) 

From here we obtain 

𝑥 = 𝑥3 + (𝑧 − 𝑧3)𝐾3𝑥 

𝑦 = 𝑦3 + (𝑧 − 𝑧3)𝐾3𝑦    (47) 
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Taking into account (45) and (41) and proceeding from the assumption that 

𝑑=𝑟0, from the expression (47) we obtain  

𝑥 = [ℎ1
𝑛𝑒

2

𝑛0
2 (1 −

𝑛0

𝑛𝑒
) + 𝑅 + 𝑧(𝑛𝑒 − 𝑛0)]

𝑟0

𝑅
𝑐𝑜𝑠𝜑 = 𝐴𝑐𝑜𝑠𝜑   

𝑦 = [ℎ1 (1 −
𝑛0

𝑛𝑒
) + 𝑅 + 𝑧(𝑛𝑒 − 𝑛0)]

𝑟0

𝑅
𝑠𝑖𝑛𝜑 = 𝐵𝑠𝑖𝑛𝜑  (48) 

From (48) we obtain the obtain the desired ellipse equation (intensity 

distribution in the foci 𝐹𝑜𝑒and 𝐹𝑒𝑜)  
X2

A2 +
Y2

B2 = 1    (49) 

where 

𝐴 = [ℎ1

𝑛𝑒
2

𝑛0
2 (1 −

𝑛0

𝑛𝑒
) + 𝑅 + 𝑓(𝑛𝑒 − 𝑛0)]

𝑟0
𝑅

 

𝐵 = [ℎ1 (1 −
𝑛0

𝑛𝑒
) + 𝑅 + 𝑓(𝑛𝑒 − 𝑛0)]

𝑟0

𝑅
   (50) 

and   f=z. 

As can be seen from (50), the parameters of the ellipse A and B do not 

simultaneously make zero at any f. Strictly speaking, this means that there is no 

focus. However, either at А=0, or at В=0 the ellipse turns into in a vertical or 

horizontal line segment with the following values of f:   

𝑓1 =
𝑅

𝑛0 − 𝑛𝑒
− ℎ1

𝑛𝑒

𝑛0
2 

𝑓2 =
𝑅

𝑛0−𝑛𝑒
−

ℎ1

𝑛𝑒
    (51) 

From (51) it follows that 𝑓1 > 𝑓2 and  

∆𝑓 = 𝑓1 − 𝑓2 = (
1

𝑛𝑒
−

𝑛𝑒

𝑛0
2) ℎ1 =

𝑛0
2−𝑛𝑒

2

𝑛𝑒𝑛0
2 ℎ1     (52) 

Dimensions of the vertical and horizontal "focal segments" are equal to 

   ∆𝑙 = 2
𝑟0

𝑅

𝑛0
2−𝑛𝑒

2

𝑛𝑒𝑛0
2 ℎ1 = 2∆𝑓

𝑟0

𝑅
   (53) 

This phenomenon is associated with the phenomenon of astigmatism, in 

which the beam corresponds to the wave surface of double curvature. In this 

case, the intersection of the rays occurs in multiple points located on the two 

mutually perpendicular rectilinear segments. The distance between the "focal 

segments" ∆𝑓 is called the astigmatic difference. The normal cross section of the 

beam between the "focal segments" has the form of arc, and it is called the circle 

of least confusion. With the reduction of the astigmatic difference ∆𝑓 the length 

of the "focal segments" and the radius of the circle of least confusion diminish. It 

should be emphasized that in this case one can speak only about the extended 

focal plane, which dimensions are determined by the expressions (52) and (53).  

The above picture of the light beam passage is also valid for the BL-2 for the 

(ое)-wave as the interval 2 contains the o-beam, which after refraction at the 

spherical surface transforms into the e-beam. However, in contrast to the BL-1, 

BL-2 also creates the divergent (ео) - beam resulting from the transformation of 

the e-beam (from the interval 2) into the o-beam (in the interval 1). 
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Discussion and Conclusion 

Angular dividing characteristics between the o and e-beams in BL  

The two-component crystal optical lenses of BL-1 and BL-2 types have a 

noticeable effect, which implies beam dividing (picture doubling). Unlike the 

well-known systems (Konoshonkin, Kustova & Borovoi, 2015; Harris, 1963), the 

dividing angle (the angle between (o) and (e) beams) at the BL output has a 

strong nonlinear dependence on the angle of incidence (Khonina, Karpeev & 

Alferov, 2012). This property of the BL-1 and BL-2 lens types provides several 

new features in terms of their application. 

 
Figure 5. Beam propagation through BL-1 (a) and BL-2 (b) 

Figure 5 shows beam propagation through BL-1 and BL-2. Provided normal 

incidence of the beam on the entrance face of the lens, the wave vectors of o- and 

e-waves at the output of ACL-1 and ACL-2 provide the following angles to the 

axis z:    for BL-1: 

𝑑3
𝑜𝑜 = 𝑑3

𝑜𝑒 = 0 

𝑑3
𝑒𝑜 =

𝑑

𝑅
(𝑛𝑒 − 𝑛𝑜) 

𝑑3
𝑒𝑒 =

𝑑

𝑅
(𝑛𝑒 − 𝑛𝑜)    (54) 

  for BL-2: 

𝑑3
𝑜𝑜 = 𝑑3

𝑒𝑒 = 0 

𝑑3
𝑜𝑒 =

𝑑

𝑅
(𝑛𝑒 − 𝑛𝑜) 

𝑑3
𝑒𝑜 =

𝑑

𝑅
(𝑛𝑒 − 𝑛𝑜)    (55) 

As could be seen from (54) and (55), given normal incidence of the beam to 

the entrance face of ACL-1 and ACL-2 the wave deflection angle at the output of 

these lenses (relating to the initial direction) is linearly dependent on the radius 

vector 𝑑 (Figure 6). 

In the case of the beam incidence on the entrance face of BL-1 and BL-2 at 

an arbitrary angle, the calculation of doubling the beam (picture), the paraxial 

approximation provides bulky and uncomfortable for the physical analysis of the 

results. In this case, double beam (image) in the lenses CLA-1 and CLA-2 will be 

considered upon the previously developed techniques (Mayer, 2007), in relation 

to the prisms of variable angle doubling (DPPUD), consisting of two wedges 

uniaxial crystal glued hypotenuse side, with different orientation axes in the 

wedge components. 
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Figure 6. The dependence of the dividing angle in the ACL-1 and ACL-2 on the radius - 

vector d 

Direction of the optical axes of the lenses could be defined by the vectors а1⃗⃗  ⃗ 
и а2⃗⃗  ⃗, normal to the parallel faces – as 𝑛⃗ , normal to the spherical surface (1) – as 

𝑛1⃗⃗⃗⃗ . Obviously, 𝑛1⃗⃗⃗⃗  is defined by the expression 

𝑛⃗ 1 = {
𝑋

𝑅
;   

𝑌

𝑅
;   

𝑧−𝛿

𝑅
}      (56) 

where х ,𝑦, and z – δ- coordinates of the surface, where normal is taken.  

Determination of the beam angle doubling at the output of BL  

Suppose that a monochromatic electromagnetic wave strikes through the 

front face of the lens in the form of a narrow beam at an arbitrary angle to the 

normal 𝑛⃗ . Provided circular polarization of the incident wave refracted at the 

front edge, it is divided into two waves with linear polarization: the o and e-

wave.  

On a spherical surface, each of these waves in turn will be divided into two, 

so there will be four waves at the BL output in general. The intensity of the 

latter is defined by the relevant Fresnel coefficients on the front face and a 

spherical surface, and the BL output intensity for some waves may be very 

small.  

It is obvious that the wave with the o-polarization passes BL without 

changing its original direction, while the other wave changes it.  

Consider first the situation where in all BL intervals the wave has the e-

wave polarization. Suppose that the propagation direction of the e-wave is 

defined by the unit vectors 𝑘⃗ 0, 𝑘⃗ 1, 𝑘⃗ 2 and 𝑘⃗ 3 in the intervals І, ІІ, ІІІ and ІV 

respectively. (Figure 5). The directions of these vectors are determined obviously 

from the boundary conditions at the interface in the ACL. A rigorous solution of 

this problem results in extremely cumbersome results, which are not suitable for 

physical analysis. Therefore, the authors suggest using the approximate 

calculation as in (Mayer, 2007), which is based upon the use of a small 

parameter. 

   𝛿 =
𝑛𝑒

2−𝑛𝑜
2

𝑛𝑜
2      (57) 



 
 
 
 

IEJME — MATHEMATICS EDUCATION          2039 

 
 
 
 
 
 

and the accuracy of the calculation is determined by the value  𝛿2. The error in 

this case (related to BL calculations) does not exceed 5-10%. 

The method, developed in (38), gives the possibility to assert that the 

vectors 1k , 2k  and 3k  can be expressed as:  

𝐾⃗⃗ 1 = 𝐾⃗⃗ 1
(0)

+ 𝛿𝐾⃗⃗ 1
(1)

 

𝐾⃗⃗ 1
(0)

=
∆ − (𝑛⃗ 𝑘⃗ 0)

𝑛𝑒

𝑛⃗ +
1

𝑛𝑒

𝑘⃗ 0 

𝐾⃗⃗ 1
(1)

=  
(𝐾⃗⃗ 1

(0)
𝑎⃗ 1)

2
(1−(𝐾⃗⃗ 1

(0)
𝑛⃗ )

2
∆(𝑛⃗⃗⃗⃗ 𝑘⃗ 0)) 

2𝑛𝑒∆
𝑛⃗ −

(𝐾⃗⃗ 1
(0)

𝑎⃗ 1)
2

2𝑛𝑒
  (58) 

where  ∆= √𝑛𝑒
2 − 1 + (𝑛⃗ 𝑘⃗ 0)

2 and 

𝐾⃗⃗ 2 = 𝛿
(𝐾⃗⃗ 1

(0)
𝑎⃗ 2)

2
−(𝐾⃗⃗ 1

(0)
𝑎⃗ 1)

2

2(𝐾⃗⃗ ⃗⃗ 1
(0)

𝑛⃗ )
𝑛⃗ 1 + [1 − 𝛿

(𝐾⃗⃗ 1
(0)

𝑎⃗ 2)
2
−(𝐾⃗⃗ 1

(0)
𝑎⃗ 1)

2

2
]𝑘⃗ 1 (59) 

The vector 𝑛1⃗⃗⃗⃗  is measured at the intersection of the beam with a spherical 

surface, and it can be shown that 

 

  𝑛⃗ 1 =
𝑁⃗⃗ 

𝑅
−

(𝐾⃗⃗ 1
(0)

𝑁⃗⃗ )+√(𝐾⃗⃗ 1
(0)

𝑁⃗⃗ )2−𝐾1
(0)2

(𝑁2−𝑅2)𝑠𝑖𝑛𝑎

𝐾1
(0)2 𝐾⃗⃗ 1

0
  (60) 

where  𝑁⃗⃗ ={х0, 𝑦0 − 𝛿} – the vector drawn from the center of the spherical 

boundaries within ACL to the entry point of the beam into the lens (see Figure 

5), where δ > 0 defines the beam incidence at the left of BL and  δ< 0 − defines 

the beam incidence at the right of BL (Figure 3). 

 

Consequently,  

  3 3 3 2k d n k      (61) 

where  

𝑑3 = (𝑘⃗ 𝑜𝑛⃗ ) − ∆ + 𝛿
𝑛𝑒(𝑘⃗ 𝑜𝑛⃗ ) [(𝐾⃗⃗ 1

(0)
𝑎 2)

2
− (𝐾⃗⃗ 1

(0)
𝑎 1)

2
]

2(𝐾⃗⃗⃗⃗ 1
(0)

𝑛⃗ )(𝑘⃗ 𝑜𝑛⃗ )
− 𝛿

𝑛𝑒
2(𝐾⃗⃗ 1

(0)
𝑎 1)

2

2∆
 

𝛽3 = 𝑛𝑒 − 𝛿
(𝐾⃗⃗ ⃗⃗  1

(𝑜)
𝑎⃗ 2)

2
𝑛𝑒    (62) 

The angle between the initial direction of the beam and its ACL output 

direction is obviously determined by the relation 0 3cos ( )x k k  or, keeping in 

mind its small values and with regard to (62)-(64) we obtain:  

 

𝜒 =
𝑛0

2−𝑛𝑒
2

𝑛0
2

[(𝐾⃗⃗ 1
(0)

𝑎⃗ 2)
2
−(𝐾⃗⃗ 1

(0)
𝑎⃗ 1)

2
]

2(𝑛⃗ 1𝑘⃗ 1
0)(𝑛⃗ 𝑘⃗ 0)

𝑛𝑒√(𝑛⃗ 1𝑘⃗ 0)
2 + (𝑛⃗ 𝑘⃗ 0)

2 − 2(𝑛⃗ 1𝑘⃗ 1
0)(𝑛⃗ 𝑘⃗ 0)(𝑛⃗ 𝑛⃗ 1)  (63) 

 

In deriving the expression (63) the authors assume that the e - beam retains 

its polarization at the intersection of all BL borders. One can show however, that 
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(63) describes all possible polarization options. Thus, if the o-beam is 

transformed into the e-beam on a spherical surface, the dividing angle χ can be 

found using the expression (63), assuming that (𝐾⃗⃗ 1
(0)

, 𝑎 1) =1. If the e-beam is 

transformed into the o-beam on the spherical surface, then the angle χ can be 

defined by (63), 
(0)

1 2( , ) 1k a  . In the case of the beam incidence on the entrance 

face of BL at an arbitrary angle, the wave vector of the beam is defined as 

follows:  

 

𝐾⃗⃗ 0 = {𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜑;    𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜑;    𝑐𝑜𝑠𝛼}    (64) 

where 𝜆- the angle between К0
⃗⃗ ⃗⃗   and the axis ОZ. The wave unit vector of the e-

beam in the interval II is determined as follows:   

 𝐾⃗⃗ 0 = {
𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜑

𝑛𝑒
;     

𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜑

𝑛𝑒
;       √1 −

𝑠𝑖𝑛2𝛼

𝑛𝑒
2 }   (65) 

The value of the normal to the spherical surface is defined by the equation 

of the beam propagation in the interval II: 

 
х2−х1

К1х
=

у2−у1

К1у
=

ᵶ2−ᵶ1

К1ᵶ
     (66) 

where  х1=dcos𝜑;  у1=dsin𝜑;  ᵶ1=0, coordinates of М1. From (66) we obtain 

coordinates of М2 

𝑥2 = 𝑥1 +
𝑘1𝑥

𝑘1𝑧

𝑧2 = [
𝑠𝑖𝑛𝛼

√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼

𝑧2 + 𝑑] 𝑐𝑜𝑠𝜑 

𝑦2 = 𝑦1 +
𝑘1𝑦

𝑘1𝑧
𝑧2 = [

𝑠𝑖𝑛𝛼

√𝑛𝑒
2−𝑠𝑖𝑛2𝛼

𝑧2 + 𝑑] 𝑠𝑖𝑛𝜑  (67) 

Inserting the expression (67) into the equation of spherical surface (1), we 

obtain 

 

 

 

2 2

2 2 2
2 2 2 2 2 2

sin sin sin
1

sin sin sin

e

e
e e e

d n

z
n

n x R n d n

   



   

   
 

    
     
  

 (68) 

From here we obtain  

𝑍2 =
1

𝑛𝑒
2 √𝑛𝑒

2 − 𝑠𝑖𝑛2𝛼[(𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼 − 𝑑𝑠𝑖𝑛𝛼)    

−√𝑅2𝑛𝑒
2 − (𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒

2 − 𝑠𝑖𝑛2𝛼)2   (69) 

Considering (68), from (69) we obtain  

 

𝑥2 = [√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼 [

(𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼 − 𝑑𝑠𝑖𝑛𝛼) −

𝑠𝑖𝑛𝛼√𝑅2𝑛𝑒
2 − (𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒

2 − 𝑠𝑖𝑛2𝛼)2

]
𝑐𝑜𝑠𝜑

𝑛𝑒
2
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𝑌2 = [√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼 [

(𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒
2 − 𝑠𝑖𝑛2𝛼 − 𝑑𝑠𝑖𝑛𝛼)

−𝑠𝑖𝑛𝛼√𝑅2𝑛𝑒
2 − (𝛿𝑠𝑖𝑛𝛼 + 𝑑√𝑛𝑒

2 − 𝑠𝑖𝑛2𝛼)2
]

𝑠𝑖𝑛𝜑

𝑛𝑒
2   (70) 

Inserting the expressions (68) and (70) in (56), we obtain the expression for 

the normal to the spherical surface at the point М2: 

 

 

2
2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

1 2

2 2 2 2 2 2

(

1
cos sin

e e e e

e e e e

e

e e e

n sin sin d n sin sin R n sin d n sin

n n sin sin d n sin sin R n sin d n sin
Rn

sin sin d n sin n sin R n sin d n

       

         

      

  
         

   

  
           

   

       
2

2 2

e sin 

 
 
 
 
 
 
 
 

   
   

    

 (71) 

Considering the expressions (64), (65) and (71), from (63), we obtain  

 

𝜒 =
𝛿

2
[(𝐾⃗⃗ 1

(0)
𝑎 2)

2
− (𝐾⃗⃗ 1

(0)
𝑎 1)

2
]

[
 
 
 

𝑡𝑔𝛼 −
(𝛿𝑠𝑖𝑛𝛼+𝑑√𝑛𝑒

2−𝑠𝑖𝑛2𝛼)2√𝑛𝑒
2−𝑠𝑖𝑛2𝛼

𝑐𝑜𝑠𝛼√(𝑅2𝑛𝑒
2−(𝛿𝑠𝑖𝑛𝛼+𝑑√𝑛𝑒

2−𝑠𝑖𝑛2𝛼)2)
]
 
 
 

 (72) 

The formula (72) defines the dividing angle in the output of BL-1 and BL-2. 

For BL-2, the dividing angle for the (ео)-wave is defined as follows  

𝜒0 =
𝛿

2𝑛𝑒
2 (𝑠𝑖𝑛2𝛼𝑐𝑜𝑠2𝜑 − 𝑛𝑒

2)B    (73) 

where B = 𝑡𝑔𝛼 −
(𝛿𝑠𝑖𝑛𝛼+𝑑√𝑛𝑒

2−𝑠𝑖𝑛2𝛼)2√𝑛𝑒
2−𝑠𝑖𝑛2𝛼

𝑐𝑜𝑠𝛼√(𝑅2𝑛𝑒
2−(𝛿𝑠𝑖𝑛𝛼+𝑑√𝑛𝑒

2−𝑠𝑖𝑛2𝛼)2)

,  for the (ое)-wave from (72) we 

obtain  

𝜒𝑒 =
𝛿

2𝑛𝑒
2 (𝑛𝑒

2 − 𝑠𝑖𝑛2𝛼𝑠𝑖𝑛2𝜑) ∗ B    (74) 

The (ео) wave in the BL-2 output is propagated as the o-wave, along the 

converging line, and the (oe) – wave in the BL-2 output is propagated as the e-

wave along the diverging line. The dividing angle between these waves (e and o) 

in the output of BL-2 is determined as follows:  

 𝜒𝑒0 = 𝜒𝑒 + (−𝜒0) =
𝛿

2𝑛𝑒
2 (2𝑛𝑒

2𝑠𝑖𝑛2𝛼) ∗ B   (75) 

At normal incidence of the beam on the front face of BL-2, in other words, 

provided 0   the formula (75) takes a simple form: 

  𝜒ео=𝑆𝑛е
𝑑

𝑅
    (76) 

 

This was previously obtained in (54), in other words, the linear dependence 

of the dividing angle between the (о) and (е) waves in the output of BL-2 on the 

radius vector d. The dependence of the dividing angle 𝜒ое on the incidence angle 

d is shown in Figures 7a and 7b. The dividing angle of the (оо) - wave with 

regard to (72) is expressed as follows   

 𝜒оо=0     (77) 

Obviously, the direction of wave propagation does not depend on . 
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For the (ее)-wave from (72) we obtain  

  𝜒ее=
𝑆

2
𝑠𝑖𝑛2cos2𝜑∙B    (78) 

Provided 0  , or 𝜑=
𝜋

4
 from (78), we obtain  𝜒ее=0. 

The (оо) and (ее) waves are formed in the output of ACL-2 at high α values 

(α> 35˚). This is explained by the fact that full transformation of waves occurs on 

the spherical surface, in other words, the o-beam in the interval 2 is fully 

transformed into the е-beam in the interval 3 of BL-2, and е-beam in the 

interval 2 of the lens is fully transformed into the о-beam in the interval 3 of BL-

2. Therefore, provided normal incidence of the beam on the BL-2 (α=0) or 

provided 𝜑 ≠
𝜋

4
 and 0  , two waves are formed with (ое) and (ео) polarization 

in the output of BL-2.  

 
a) The angle between the (ое) and (ео) 

waves. Estimated dependence - unbroken 

line. Estimated and experimental 

dependencies differ only provided high 

angles of beam incidence (𝛂)  

b) The angle between the (оо) and (ее) 

waves. Estimated dependence - unbroken 

line. Estimated and experimental 

dependencies fully coincide. 

Figure 7. Dependence of the dividing angle in the BL-2 on the angle of beam incidence on 

the output face. Experimental dependence - x (dots)  

For the BL-1, the wave-dividing angle at the output of BL-1, is also defined 

by the formula (71). 

For the (оо)-wave we obviously obtain 𝜒оо=0 

For the (ое)-wave, we obtain  

   𝜒о𝑒 =
𝛿

2𝑛𝑒
2 𝑠𝑖𝑛2𝛼 ∗ 𝐵    (79) 

The dividing angle of the (ео) and (ее) waves is determined as follows: 

𝜒о𝑒 =
𝛿

2𝑛𝑒
2 (𝑛𝑒

2 − 𝑠𝑖𝑛2𝑐𝑜𝑠2𝜑) ∗ 𝐵    (80) 

𝜒𝑒𝑒 =
𝛿

2𝑛𝑒
2 (𝑛𝑒

2 − 𝑠𝑖𝑛2(1 + 𝑐𝑜𝑠2𝜑)) ∗ 𝐵   (81) 
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Under  = 0, from (79) we obtain 𝜒ое=0. The expressions (80) and (79) 

provided d = 0 will take the following form: 

    𝜒ео=𝜒ее= - 
𝑆

2
𝑛𝑒

𝑑

𝑅
     (82) 

As is clear from (82), we obtain a linear dependence of the dividing angle of 

the (eo) and (ee) waves from the radius vector d, which was obtained earlier in 

the paraxial approximation (see (54)  

The sign “-“ in (83) means that that the (ео) and (ее) waves in the output of 

BL-1 are propagated by converging line.  

The dependence of the dividing angle in BL-1 on the angle of incidence on BL-1 

is shown in Figures 8a, 8b and in Figure 9 for two values of the radius vector d 

(d = 0; d = 4 mm). 

 
a) the angle between the (оо) and (ое) waves. 

Estimated dependence: 1- provided d=0, 2 – 

provided d=4 mm. 

b) the angle between the (ое) and (ео) 

waves. Experimental dependence –x(dots). 

Estimated dependence – unbroken line 1- 

under d=0, 𝛗 =
𝛑

𝟒
; 2 - under d=4 mm, 𝛗 =

𝛑

𝟐
. 

Figure 8. Dependence of the dividing angle in BL-1 on the angle of beam incidence on the 

output face. Experimental dependence - x (dots)  
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Figure 9. Dependence of the dividing angle in ACL-1/the angle between the ое and ео 

waves/ on the angle of beam incidence on the output face. Experimental dependence - x 

(dots). Calculated dependence - solid line 

Implications and Recommendations 

Pursuant to the well-known theory of electromagnetic waves propagation in 

isotropic and anisotropic crystals, rigorous calculation of beam propagation in a 

system consisting of several anisotropic crystals, results in cumbersome 

expressions that are not suitable for engineering calculations and do not provide 

the possibility to study general properties of the two-component crystal-optical 

lenses.   

This article was based on paraxial approximation (narrow beam method) that 

provided the possibility to consider propagation of beams through the two-

component crystal-optic lenses under various orientations of optical axes in their 

components. 

The authors developed an effective method of calculating propagation of 

electromagnetic waves through the two-component crystal-optical lenses based 

on uniaxial Iceland spar crystals with different orientations of the optical axes of 

the crystals in the lens components. 
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The obtained expressions reflect all the main features of such systems provided 

arbitrary orientation of the optical axes in these lenses and are suitable for 

engineering calculations.  

Based on the analysis of the obtained expression, the study offers constructive 

division of BL’s into the BL-1 and BL-2 lens types, and consideration of the basic 

properties (including the focusing properties) of BL-1 and BL-2 lens types. The 

obtained expressions describe the beam path at the BL output in the case of a 

collimated laser beam; the calculation method of the known two-component 

crystal-optical systems was generalized. 

The authors presented a comprehensive experimental study of crystal-optical 

lenses in a split mode of electromagnetic waves at the output of crystal-optical 

lenses. 

The results of calculations by the above formulas are compared with 

experimental data. The study found a high agreement between the results of 

theoretical calculation with the experimental data, which proves correctness of 

the elaborated method aimed at calculating propagation of electromagnetic 

waves through the two-component crystal-optical lenses. 
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