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Students perennially demonstrate difficulty in correctly performing mathematical translations between 

and among mathematical representations. This investigation considers the respective difficulty of 

various mathematical translations based on student activity (defining mathematical errors during the 

translation process, teacher beliefs and instructional practices, student interpretive and translation 

activities, and the use of transitional representations) and the nature of individual representations (fact 

gaps, confounding facts, and attribute density). These dimensions are synthesized into a more complete 

model through which to analyze student translation work and delineate which mathematical 

translations are more difficult than others. 
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The generic terms translation and translation process refer to the psychological, 

intellectual, or cognitive processes subsumed in transforming information encoded in one 

mathematical representation (source) to another (target) (Janvier, 1987). Students perennially 

demonstrate difficulty in translating among verbal, tabular, graphical, and algebraic 

mathematical representations. Moreover, the literature reports of many types of errors 

students make when translating among these representations including total equation errors, 

product errors, reversal errors, slope/height errors, interval/point errors, discrete/continuous 

errors, iconic/syntactic errors, interpretation errors, preservation errors, and implementation 

errors (Adu-Gyamfi, Stiff, & Bossé, 2012; Bell, Brekke & Swan, 1987; Preece, 1993).  

Numerous studies have investigated components surrounding the translation process (e.g., 

Knuth, 2000), student successes and failures (e.g., Duval, 2006), techniques employed by 

students (e.g., Janvier, 1987; Pyke, 2003), and variations in the translation process by 

differing ability levels of students (e.g., Bossé, Adu-Gyamfi, & Cheetham, 2011a; Brenner, 

Herman, Ho, & Zimmer, 1999; Gagatsis & Shiakalli, 2004). Altogether, unfortunately, the 

vast majority of these studies remains disconnected from others and mostly expresses the fact 

that students have difficulty with particular translations without clearly articulating why this 

might be (Superfine, Canty, & Marshall, 2009). 

The purpose of this paper is to perform an extensive synthesis of existing literature and 

integrate such with novel findings in order to generate a model to concretize notions 

regarding the respective difficulty of each translation between mathematical representations. 

To accomplish such, we consider numerous dimensions reported in the literature, further 

these findings with novel research, and seek to assess student difficulties based on the 

literature and previously undeveloped connecting constructs.  
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Structure of the Paper 

In order to develop the internal argument and present the findings of this investigation, 

this paper is structured in the following manner. First, it is demonstrated that the difficulty of 

respective mathematical translations can be assessed on two dimensions: student-centered 

factors and content- or representation-centered factors. Second, numerous dimensions 

regarding the translation process (e.g., student translation errors, teacher beliefs and 

instructional practices, translation actions, and the use of transitional representations) are 

considered as they affect the respective difficulty of each translation. Third, dimensions 

regarding the interpretive activity surrounding individual mathematical representations (e.g., 

fact gaps, confounding facts, and attribute density) are investigated in respect to their affect 

upon the translation process. As an amalgamation, these dimensions paint a picture of the 

multifaceted nature of translations and the difficulties students encounter with such. Fourth, 

the authors briefly describe some of their previous research, which led to questioning whether 

some mathematical translations are more difficult than others. Fifth, all the preceding 

discussions are synthesized under novel constructs in a manner, which organizes and orders 

each translation in respect to its level of difficulty.  

Defining the Difficulty of Mathematical Translations 

Differentiating difficulty levels among various translations can consider numerous 

dimensions. These dimensions can be generalized to student-centered factors and content-

centered factors. Regarding student-centered factors, one can investigate the actions students 

take when performing translations. Since these actions differ among translations (Janvier, 

1987), it is conceivable that some of these actions are more difficult than others. Second, 

students often utilize dual translations as they begin with a source representation, translate to 

a transitional representation, and then translate the transitional representation into a target 

representation (Bossé, Adu-Gyamfi, & Cheetham, 2011b). The employment of dual 

translations adds another dimension of difficulty to some translations. Third, since concepts 

and tasks which are frequently experienced through instruction are mastered more readily 

than those which are less frequently experienced, it is understandable that classroom 

experiences may diminish the perceived level of difficulty of translations more frequently 

experienced and accentuate the perception of difficulty among translations less frequently 

experienced (Bossé et al., 2011b). 

Within the content- or representation-centered factors, additional issues are at play, which 

may affect the assessment of the difficulty level of respective translations. First, some 

representations require different interpretive techniques than others. This may lead to 

differing levels of difficulty. Second, some translations are inherently more complex, 

requiring greater conceptual understanding than others, and some require a greater number of 

steps in the translation process. These two factors are further examined herein.   

Altogether, the assessment of which translations are more difficult than others is 

necessarily an amalgam of these student- and content-centered translation factors and is, 

therefore, non-trivial. While all singleton factors introduce some valuable understanding of 

the nature of the translation process and the difficulties associated with each, independently 
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these do not paint a sufficient picture to fully assess the difficulty level of each translation. 

Thus, in this study, these factors are initially considered independently and then the gestalt of 

these dimensions is considered to establish a more encompassing evaluation of the level of 

difficulty of each translation.   

Dimensions Regarding Mathematical Translations 

In the discussions, which immediately follow, we consider the nature of, and difficulty 

associated with, mathematical translations based upon documented literature on student 

centered factors (i.e., errors, teacher beliefs and instructional practices, interpretive and 

translation activities, and translations that require use of transitional representations). For the 

most part, this literature creates an argument that some mathematical translations are more 

difficult than others. Fuller analysis, synthesis, and discussion of the differing levels of 

difficulty of various mathematical translations follow in later sections.  

Student Errors in Translating among Numeric, Algebraic, and Graphical 

Representations 

Students perennially demonstrate difficulty in translating among numeric, graphical, and 

algebraic representations of associated mathematical relations (Dreyfus & Eisenberg, 1987; 

Dunham & Osborne, 1991; Gagatsis & Shiakalli, 2004; Galbraith & Haines, 2000; Kieran, 

1993; Knuth, 2000; Macgregor & Stacey, 1993; Porzio, 1999). Moreover, the literature 

reveals different types of errors students make when translating among these representations, 

including: manipulation errors, where the student computes an arithmetic/algebraic problem 

incorrectly or utilizes variable names incorrectly, and conceptual errors, where a student 

either introduces an incorrect constraint (errors of commission) or overlooks a critical 

constraint (errors of omission). Some of these errors take the form of slope/height confusion 

errors, interval/point confusion errors, discrete/continuous confusion errors, and 

iconic/syntactic confusion errors (Bell, Brekke, & Swan, 1987; Kerslake 1987; Preece, 1993).  

For example, in a study investigating student actions during translations between 

numeric, symbolic, and graphical mathematical representations, Adu-Gyamfi et al. (2012) 

found three distinct types of common student errors: interpretation errors, implementation 

errors, and preservation errors. Figure 1 denotes both the type of error observed and between 

which pair of representations the errors occurred. In Figure 1, the arrows depict the direction 

of the translation (e.g., under Implementation Error, Symbolic→Table denotes that a 

symbolic representation is to be translated into a tabular representation) and the numeral on 

each arrow denotes the frequency of occurrence of the respective type of error as reported in 

the study. Therefore, for example, as students attempted to translate from a graph to a table, 

11 interpretation errors were observed from the cases of student work analyzed.  

Interpretation error “arises when the student incorrectly ascribes, characterizes, or 

exemplifies attributes or properties of either the source or target representation.” For instance, 

a student may incorrectly read the point (5,-3) on a graph as the ordered pair (-3,5). 

Implementation error denotes incorrectly executed steps, computations, and algorithms 

employed in the process of translating from one representation to another. For example, a 

student may substitute a value for y in an equation and solve for x, when it would have been 
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correct to substitute the value for x and solve for y. Preservation error occurs when “the 

student correctly maintains semantic congruence between the source and target 

representations for self-identified attributes or properties, but fails to confirm that other 

relevant attributes or properties are also correctly translated.” For instance, a student may 

recognize that a linear equation has a slope of 1/2 but may create an incorrect corresponding 

graph with a slope of 2/1, without sufficiently comparing the two representations.  
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Figure 1. Overview of findings from Adu-Gyamfi, Stiff, and Bossé (2012). 

Student Errors in Translating from and to Verbal Representations 

In translation situations which begin in verbal form and are translated into symbolic 

representations, such as the students-professors problem (Clement, Lochhead & Monk, 1981) 

and Mindy’s restaurant problem (Wollman, 1983), two consistent types of error processes 

have been identified from interview protocols: word order matching process and static 

comparison process. In word order matching, the student simply assumes that the order of 

key words in the problem corresponds to the order of the symbols appearing in the equation. 

Clement (1982) referred to this approach as a syntactic strategy, because it does not depend 

on the meaning of the expression. The static comparison process, in contrast, does consider 

the meaning of the expression and entails realizing that there are more students than 

professors but not knowing how to express this relationship. 

When tabular, symbolic, or graphical representations are translated into verbal form, 

additional dimensions arise which differentiate these from other translations (Gagatsis & 

Shiakalli, 2004; Janvier, 1987; Kerslake, 1981; Roth & Bowen, 2001; Wainer, 1992). First, 

however, it is necessary to define what is meant by translating to a verbal representation. In 

this investigation, verbal mathematical representations are defined as either verbal situations 

or verbal descriptions. Verbal situations are best defined as real world scenarios depicted 

verbally (e.g., “Jane and John are each carrying packages.  Jane’s package weighs 5 kg and 

John’s package weighs 10 kg …”). Verbal descriptions are characterizations in verbal form of 

mathematical representations in symbolic, tabular, or graphical form (e.g., “the function is a 
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polynomial with zeros at …”). Although “verbal representation” will herein always denote 

the situational scenario when it is the source and the descriptional scenario when it is the 

target, when necessary, these scenarios will be differentiated using the obvious denotations 

“verbaldescription” and “verbalsituation”. 

Beyond the fact that students more often struggle to perform translations from nonverbal 

to verbal representations and that there is variability in the definition for a target verbal 

representations, evidence demonstrates that these translations carry other factors which make 

them inherently more difficult than other mathematical translations. Bossé et al. (2011b) state 

that when students attempt to translate from graphs, tables, and symbolic representations to 

verbal form, they are rarely able to do so beyond the context of simple linear functions or 

simple exponential functions. When the relationship depicted in the non-verbal source 

representation is that of numerous other functions (polynomials, logarithmic, sinusoidal, and 

etc.), students are generally unable to capture the relationship in a verbal situation or word 

problem (Carlson, 1998; Kaput, 1989). Unfortunately, because these functions are more 

complex, it is difficult to determine if students’ failures are associated with the increasing 

complexity of the mathematics or their inability to perform these translations. 

Instructional Practices and Teacher Beliefs 

Summarily, when the total number of errors is considered irrespective of the particular 

type of representations being translated, the work of almost all previously cited studies 

reveals, either tacitly or explicitly, that students experience difficulties with some translations 

more than others. The question naturally arises as to why students struggle with certain types 

of mathematical translations. In the discussions, which immediately follow, we consider the 

nature of, and difficulty associated with, performing mathematical translations based upon 

instructional techniques and teacher beliefs, as deciphered from the extant literature.  

In order for students to succeed in any mathematical translation, they must be able to 

work with configurations of text, syntax, and characters of given source and target 

representations. They must also be able to automatically switch from syntactically processing 

these configurations to semantically processing these configurations and vice versa (Kaput, 

1989). Since these skills or processes do not automatically develop, there is a need for a 

classroom culture where opportunities are provided for students to not only perform these 

translations but to also have their translation difficulties diagnosed and addressed. 

Subsequently, curricular and instructional emphasis has been identified as one of the most 

significant mitigating factors to students’ difficulties as well as errors in mathematical 

translations (Cunningham, 2005; Knuth, 2000). 

Surveys and observations of instructional practices reveal that teachers heavily emphasize 

some translations (symbolic→graph, symbolic→table, table→graph, and graph→table), give 

significantly lesser attention to other translations (verbal→symbolic, verbal→table, 

table→symbolic, and graph→symbolic), and almost completely avoid some translations 

(symbolic→verbal, table→verbal, and graph→verbal) with the exception that students were 

to verbally define what they observed in a table, graph, or symbolic expression (e.g., Bossé et 

al., 2011b; Cunningham, 2005; Porzio, 1999). Clement et al. (1981) note that students are 

rarely asked to generate a formula from a given verbal representation but are usually asked to 

select one from a well-defined list and to manipulate it. Altogether, it becomes immediately 
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apparent that a connection may exist between student errors and teacher instructional 

practices in regards to mathematical translations. That is, teachers provide the least number of 

opportunities for students in translations where students have the most difficulty.  

Additionally, researchers have also found significant correlations among student ability 

with various translation and teacher expectations regarding which translations students should 

be able to correctly perform. Numerous studies (e.g., Prozio, 1999; Schoenfeld, Smith & 

Arcavi, 1993) find that secondary Algebra and Pre-calculus teachers believe that students are 

generally successful in some translations (verbal→table, symbolic→graph, symbolic→table, 

table→graph, and graph→table), less successful in others (verbal→symbolic, 

table→symbolic, and graph→symbolic), and rarely successful in others (symbolic→verbal, 

table→verbal, and graph→verbal). Teachers report that, to some extent, students are 

generally able to verbally describe attributes and characteristics found in graphs, tables, and 

functions (graph→verbaldescription, table→verbaldescription, and symbolic→verbaldescription) (Bossé 

et al., 2011b). Thus, to the degree that verbally describing other representations is considered 

translating to a verbal form, students are often successful. Additionally, students are generally 

able to perform the verbal→graph translation, albeit by employing a transitional 

representation (usually verbal→table→graph). However, this generally falls well short of 

translating any nonverbal representation into a verbal representation in the form of a problem 

scenario or situation. These translations (graph→verbalsituation, table→verbalsituation, and 

symbolic→verbalsituation) are generally considered most difficult and are least often performed 

successfully by students (Mevarech & Kramarsky, 1997; Monk, 1992; Roth & Bowen, 2001).  

Altogether, it could be argued that student difficulty with particular translations may be 

correlated to the fact that teachers believe (or do not believe) that students can perform such 

and, may therefore, emphasize (or de-emphasize) experiences with these translations during 

classroom instruction. However, the literature indicates that placing the onus singularly on 

teacher beliefs and instructional practices may not sufficiently account for difficulties 

students experience with certain translations (e.g., Resnick & Omanson, 1987; Yerushalmy, 

1991). For example: Webb (1990) reports that students who had the most classroom practice 

translating between verbal and numerical representations and between algebraic equations 

and verbal descriptions showed the worst performance on problems of these types; Clement 

et al. (1982) suggest a focus on the translation skill itself in order to better understand the 

nature and source of student difficulty; and Leinhardt, Zaslavsky and Stein (1990) identify 

two types of activities involved in a translation: interpretation and construction. In the 

following discussion, these two activities will be further explicated in respect to student 

translation difficulties.  

Constructive Activity (Translation Action) 

Construction refers to the action of generating new parts that are not given, such as 

building a graph from a function rule or a table. Each construction activity, when considered 

in the context of a translation, is uniquely associated with an action, technique, or heuristic 

(e.g., curve fitting and sketching) that specifies how constructs or descriptions expressed in 

the source representation can be directly articulated through structures available in the target 

representation (Galbraith & Haines, 2000; Lesh, Landau, & Hamilton, 1983). A list of 

construction activities, denoted by Janvier (1987) as translation actions, between each type of 
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representation is provided in Figure 2. Since each of these construction activities denotes a 

different skill (and some are vastly dissimilar), some of these translation skills differ in 

complexity, and possibly difficulty (Duval, 2006). Therefore, the type of action associated 

with a translation may play a role in the difficulty of the translation (whether causal or 

correlational). The question naturally arises as to the role of these actions in respect to student 

errors during translations.  

To 

From 

Situations, Verbal 

Description 
Table Graph 

Formulae 

[Symbolic] 

Situations, Verbal 

Description 
 Measuring Sketching Modeling 

Table Reading  Plotting Fitting 

Graph Interpretation Reading off  Curve fitting 

Formulae [Symbolic] Parameter Recognition Computing Sketching  

Figure 2. Translation actions (adapted from Janvier, 1987). 

Altogether, initial correlation seems to exist between the translation action and the level 

of student success in the respective translations. For instance, students seem generally more 

able to utilize some translation techniques  

measuring
verbal table , 

sketching
symbolic graph , 

plotting
table graph , and 

reading off
graph table  

and less successful in other translation techniques  

parameter
recognition

symbolic verbal , 
reading

table verbal , 
interpretation

graph verbal , and 
sketching

verbal graph . 

Arguably, computing, reading off, and plotting, are less complex techniques than are 

sketching, curve fitting, and fitting (Janvier, 1987). Additionally, sketching as associated with 

the symbolic→graph translation and sketching as associated with verbal→graph translation 

have both similarities and dissimilarities. Unfortunately, apart from correlation with the 

frequency of success or failure of the various translations (Adu-Gyamfi et al., 2012), little 

direct analysis of the varying difficulty of each of these translation techniques is available. 

Interpretative Activity (Proximity) 

Interpretation refers to the action by which a student makes sense of, or gains meaning 

from, a representation (Leinhardt et al., 1990; Wainer, 1992). Researchers argue that, since a 

one-to-one relationship cannot always be established between information associated with 

source and target representations in a translation, interpretation of facts within each 

representation and across representations has to be made in order to resolve ambiguities. For 

example, in order to construct a graph for a given set of ordered pairs, a translator must 

necessarily know that to every ordered pair of numbers in the set one can associate a point on 

a coordinate plane. This interpretative act is described by some researchers as a local 
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interpretation (e.g., Leinhardt et al., 1990). However, in order to construct a symbolic rule 

for a given set of ordered pairs, a translator must not only know how the coordinates of each 

ordered pair are changing in relationship to each other but must also recognize the overall 

variation occurring among the ordered pairs of the set. This type of interpretative behavior is 

described as a global interpretation (Duval, 2006).  

Many researchers postulate a connection between the nature of student errors in 

translations and the type of interpretive activity required in such translations; students have 

more difficulty and perform more errors in respect to translations requiring global as opposed 

to local interpretive actions (e.g., Dreyfus & Eisenberg, 1987; Dunham & Osborne, 1991; 

Gagatsis & Shiakalli, 2004). Figure 3 depicts the local or global interpretive activities 

associated with each translation (Adu-Gyamfi et al., 2012; Knuth, 2000). In this figure, the 

left hand column denotes the form of the source representation and the top row denotes the 

form of the target representation in a respective translation. For instance, to perform the 

translation from graph to a table requires a local interpretive activity and to translate from a 

graph to a formula requires a global interpretive activity. 

To 

From 

Situations, Verbal 

Description 
Table Graph 

Formulae 

[Symbolic] 

Situations, Verbal 

Description 
 Global Global Global 

Table Global  Local Global 

Graph Global Local  Global 

Formulae 

[Symbolic] 
Global Local Local  

Figure 3. Interpretive activity associated with translations. 

Interestingly, as depicted in Figure 3, when a translation is reversed, the nature of the 

interpretive action can be significantly different. For example, while the 
plotting

table graph  

translation requires a local interpretive action involving a one-to-one mapping between 

constituent elements of the table to the graph, the 
reading

graph table translation requires a 

global interpretation action guided by understanding of qualitative variables (Duval, 2006).  

Transitional Representations 

While each translation action from one representation to another is singularly denoted, 

it has been recognized that various translations necessitate more than one constructive 

activity or process. While Janvier (1987) signifies translations requiring more than one 

process as “indirect processes” (as opposed to “direct processes”), Bossé et al. (2011a, 

2011b) use the term “transitional representation” to indicate that the translation process from 

source to target representation includes two translation actions and passes through an 

intermediary representation. For instance, in performing three translations (verbal→graph, 
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symbolic→graph, and verbal→symbolic), students generally utilize transitional 

representation and perform the compound translations (including the dimension of 

proximity):  

measuring plotting
verbal table graph

global local

  ; 
measuring fitting

verbal table symbolic
global local

 
  

and
 

computing plotting
symbolic table graph

local local

  . 

Notably, then, these compound translations are mechanisms for converting global interpretive 

activities into local interpretive activities. 

This leads to a different means for evaluating the difficulty of particular translations. 

Previously, dimensions such as the translation action, the proximity of interpretive activity, 

and the nature of student errors were considered to shed light on the potential difficulty of 

each translation. However, it is only conceivable that translations that require a transitional 

representation (and therefore more than one translation action) may carry some additional 

degree of complexity and potentiality for error. Indeed, the very translations that require 

transitional representations (verbal→graph, symbolic→graph, and verbal→symbolic) are the 

selfsame ones which most researchers and teachers report as most problematic to students 

and which teachers are most reluctant to cover in class instruction. 

First Summary  

 From a number of dimensions (e.g., student errors, teacher beliefs and instructional 

practices, translation actions, proximity of these actions, and transitional representations), the 

literature reveals that students find some mathematical translations are more difficult than 

others. Synthesizing the previous research, five levels of difficulty are recognizable among 

the different translations: easy (table→graph, graph→table, symbolic→table, and 

verbal→table); easy and using transitional representations (symbolic→graph); more difficult 

(table→symbolic and graph→symbolic); more difficult and using transitional representations 

(verbal→graph and verbal→symbolic); and most difficult (graph→verbal, symbolic→verbal, 

and table→verbal). This ordering of difficulty will be further investigated through additional 

dimensions of representations in the following discussions. Previously, the activity of 

instruction and the nature of the translation skill (the translator) were central; in the following 

discussion, the nature of the representations involved in the translation is primary.  

Representations 

In this paper, the term representation (mathematical representation) is used in reference to 

external objects, such as tables, graphs, verbal expressions, or algebraic (or symbolic) 

depictions, whose relationship with the mathematical object or concept they signify is 

established through shared mathematical conventions. When individual representations are 

considered in respect to student difficulties with translations, a number of dimensions begin 
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to emerge, including: fact gaps, attribute density, and confounding concepts (Adu-Gyamfi et 

al., 2012; Adu-Gyamfi et al., 2011a, Bossé et al., 2011a). Altogether, these dimensions, 

along with the numerous dimensions previously listed, paint a clearer picture regarding the 

varying levels of difficulty among mathematical translations. 

Fact Gaps 

Each mathematical representation contains missing information particularized to certain 

contexts. For instance, given a table of values representing a function, the x- and y-intercepts 

may or may not be present in the data. If the context for examining the table is to determine if 

the relationship depicted represents a function, the absence of these entries in the table have 

little effect on this determination and do not represent fact gaps associated with this 

investigation. However, if the table is to be investigated to find x- and y-intercepts and these 

values are not in the table, these represent fact gaps for this representation under this context. 

Notably, in some instances, representations can be transformed to remove fact gaps. For 

instance, the quadratic x
2
 + x – 6 can be written as (x + 3)(x – 2) or (x – 1/2)

2
 + 23/4 (which 

will herein be denoted as different forms of the same representation). Thus, depending on the 

given form, the quadratic reveals its coefficients and its graph’s concavity, the factors and 

zeros are evident, or the vertex is recognized. Associated with most representations are 

techniques for transforming from one form to another in order to alter the fact gaps: equations 

can be rewritten; table rows can be reordered; verbal representations can be restated; and one 

can zoom in or out to particular regions on a graph. Altogether, a student’s understandings of 

both the representation and techniques for transforming such can affect his ability to fill fact 

gaps and more efficiently translate from a source to a target representation. 

The number of fact gaps associated with any representation can only be determined in 

conjunction with considering three factors: the purpose for inspecting the representation (or 

the translation being attempted); whether or not the student is able or allowed to transform 

the source representation before attempting the translation; and whether the representation 

acts as a source or a target in the translation. This latter factor produces interesting results. 

For instance, when a table is a source representation and is to be translated into an equation, 

the table may contain numerous fact gaps (and indeed provide insufficient information to 

allow the translation to occur), the type of function may be indistinguishable, and the zeros of 

the function may not be provided. However, when the translation is from an equation to a 

table, the table will contain very few fact gaps, in that it can contain as many elements as the 

student wishes to compute from the equation.  

The number of fact gaps associated with either the source or target representation 

involved in a translation may speak to the difficulty of the translation (Adu-Gyamfi et al., 

2012; Bossé et al., 2011a). Students may perceive translations rife with fact gaps as more 

difficult than translations with fewer fact gaps.   

Confounding Facts 

Through revealed facts, attributes, and characteristics, every mathematical representation 

depicts concepts; however, most representations can also potentially contain confounding 

facts in respect to the desired translation. For instance, while the graph of a polynomial 

function may include numerous relative maxima and minima (singletons between each real 
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zero), all of this information may be both unnecessary and confounding as students attempt to 

translate the graph into some form of an equation. Additionally, if data in a table is not 

presented in sequential order in respect to x or if the table depicts numerous ordered pairs in 

which different x values are associated with the same y value, students may become confused 

by the data and struggle to plot such on a graph. 

As with fact gaps, the number of confounding facts associated with any representation 

can only be determined in respect to: the purpose for inspecting the representation (or the 

translation being attempted), whether or not the student is able or allowed to transform the 

source representation before attempting the translation, and whether the representation acts as 

a source or a target in the translation. For instance, when a graph (source) is being translated 

into an equation (target), the graph may potentially possess numerous characteristics, which 

may perturb the translation process and produce more confusion than assistance. However, 

when a table of values is being plotted onto a graph, apart from potentially understanding the 

scaling of the axes, little information in the graph should hinder the student’s performing of 

the translation and the students should be confused by very little.  

The number of confounding facts associated with either the source or target 

representation involved in a translation may speak to the difficulty of the translation (Adu-

Gyamfi et al., 2012; Bossé et al., 2011a). Students may have more difficulty interpreting each 

representation and performing the translation action between representations when numerous 

confounding facts are present.  

Attribute Density 

Adu-Gyamfi et al. (2012) define attribute density as a characteristic of mathematical 

representations, which considers simultaneously how much information a representation 

provides, and how much effort is required to find additional information in a representation. 

For instance, both tables and verbal representations provide limited information and 

unearthing more information from these representations can involve significant work. 

Equations and graphs provide a rich amount of information and unearthing more information 

is often simply a case of transforming the equation into another symbolic form or zooming 

onto different parts of the graph. Thus, from least dense to most dense, mathematical 

representation are organized in the order of:  

low density

table and verbal  and 

high density

graph and equation . 

As with fact gaps and confounding facts, albeit more stable and less affected by whether 

the representation serves as a source or target in a translation, attribute density still contains 

some of these concerns. For instance, although it may be difficult to discern any additional 

information from a table apart from what is immediately available in such, as a target this is 

rarely necessary. Data from a verbal, symbolic, or graphical representation can be entered 

into the table without much need for attempting to discern more information from the table. 

Thus, as a table alters from source to target, its density may change slightly; but because the 

information it contains is still limited, the density of a table remains low. Other 

representations seem, however, even less affected by the source/target directionality.    
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Attribute density seems to have some impact on the difficulty of some translations over 

others. As will be further developed in the following discussion, the interconnection of all 

preceding dimensions will provide the most complete picture of which translations are more 

difficult than others.  

Second Summary 

Previously, this paper considered the respective difficulty of various mathematical 

translations based on student activity. Some of these considerations included, defining 

mathematical errors during the translation process, teacher beliefs and instructional practices, 

student interpretive and translation activities, and the use of transitional representations. 

Through these dimensions, some translations were recognized as more difficult and error 

prone than others. In this section, the nature of individual representations is recognized to 

play additional roles in determining which translations are more difficult than others; 

translations that involve source representations with high fact gaps and confounding facts and 

low attribute density lead to more difficult translations. However, still missing from this 

analysis is a mechanism to consider the fact gaps, confounding facts, and attribute density in 

respect to both the source and target representations. Additionally missing is some unifying 

mechanism through which to simultaneously consider all of these dimensions in order to 

determine which mathematical translation students find most problematic. These missing 

elements are addressed in following discussions. 

Additional Connected Research by the Authors 

Throughout this paper, references are made to a number of studies in which the authors 

have investigated aspects of interpretive processes students use in respect to mathematical 

representations and translation processes they implement between mathematical translations. 

While coherent and complementary in their findings, each study considers a distinct aspect 

associated with these processes. The following terse descriptions of these studies are 

expanded upon in proceeding and following discussions as these studies are both connected 

to research published by others and further placed into the context of the investigation at 

hand.  

Investigating student translation work between numeric, symbolic, and graphical 

mathematical representations, Adu-Gyamfi et al. (2012), have found three distinct types of 

common errors that arise and quantify the respective frequency of these error types. 

Altogether, these three error types encapsulate all possible errors that can occur during the 

translation process. Expanding upon this study, Adu-Gyamfi et al. (2011b) analyze student 

activity in the linguistic-to-algebra translation process, define error types made, and 

recognize the frequencies of such. Comparing and contrasting various explanations for 

linguistic-to-algebra translation errors, they develop a conceptual framework (Translation-

Verification Model) which considers three interrelated constructs defining student actions and 

understanding and provide a framework through which errors can be characterized and their 

respective frequencies quantified. The cumulative findings of these two studies regarding 

translation error types, the frequency of each error type, and the total number of errors 
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between each pair of respective representations, provide some insight into the relative 

difficulty of each translation activity. 

Examining student actions, interpretations, and language in respect to questions raised 

regarding table, graph and symbolic representations in the context of functions, Adu-Gyamfi 

et al. (2011a) have found that although students may be able to mechanically perform some 

translations between representations, they may do so without fully understanding salient ideas 

encoded within each representation. Thus, fully understanding mathematical representations 

and translating between such are far more complex than can be defined by simple procedural 

algorithms. Furthermore, Bossé et al. (2011b) found that teacher beliefs, expectations, and 

instructional practices all work together to provide students experiences leading to differing 

levels of success in respect to mathematical translations, explaining in part why some 

translations seem to be more difficult than others.  

In two complementary investigations regarding student ability, understanding, and 

activities in respect to connecting mathematical concepts and performing translations 

between mathematical representations, the same team of authors has found significant 

variances between students of differing ability levels. In Adu-Gyamfi, Bossé, and Cheetham 

(2011c), a framework is developed and applied which allows a deeper analysis of student 

understanding and actions in respect to the conceptual connection they make across 

mathematical representations. This framework considers various types of mathematical 

concepts found within and among representations (micro-concepts, confounding micro-

concepts, macro-concepts, sub-constructs, infra-constructs, and super-constructs), allows 

analysis of student understanding of concepts within and between representations, and 

provides a mapping of how students of different ability levels make different connections 

among mathematical representations. Bossé et al. (2011a) investigate the translation process 

itself and map different translation processes among students of different ability levels. 

Altogether, these studies again provide evidence that, even factoring for differing student 

ability, some translations between representations are more difficult than other translations. 

These research projects assist to construct a more expansive picture of students’ 

understanding and processes in the translating of mathematical representations. These studies, 

synthesized with numerous studies by other researchers, serve to provide a rubric through 

which argument can be made regarding the relative level of difficulty can be associated with 

each translation. This is developed in the following discussions.      

Unifying Dimensions and Levels of Difficulty in Mathematical Translations 

With an initial order of difficulty among mathematical translations previously established 

via student activity (mathematical errors, instructional experiences, interpretive and 

translation activities, and the use of transitional representations), a simultaneous 

consideration of fact gaps, confounding facts, and attribute density creates a more complete 

gestalt explicating the respective level of difficulty of translations. This gestalt 

simultaneously unifies the extant literature previously discussed and transcends such by 

generating a more interconnected and complete model through which to both investigate 

individual translations and solidify an ordering of translations in respect to their respective 

level of difficulty. 
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The symbolic form of the novel interconnected model, depicted in Figure 4, denotes a 

notably dense coding structure. In the symbolic coding, dimensions of fact gaps, confounding 

facts, attribute density, translation action, and proximity of interpretive activities are 

represented. 

Proximity

Translation Action
Source Representation Target Representation

Fact Gaps Fact Gaps

Confounding Facts Confounding Facts

Attribute Density Attribute Density

  

Figure 4. Multidimensional coding for mathematical translations. 

The coding structure in Figure 4 takes into account dimensions that may alter in respect to 

a representation being either the source or target of the translation and in respect to which 

translation is being performed. For instance: (1) when the table is a source representation, 

both its fact gaps and its confounding facts are high. However, as a target, its fact gaps and 

confounding facts are low. (2) Considering a graph as a source representation, the graph’s 

confounding facts may differ depending on the chosen target representation. (3) As will be 

further discussed, the characteristics of a table can change as it is used as a transitional 

representation and changes orientation from target to source. 

Figure 5, represented as a table, utilizes the initial findings of level of translation 

difficulty based on student activity, further analyzes these translations based on additional 

dimensions, captures the nature of translations utilizing transitional representations, and 

reorganizes the translations in respect to difficulty. Notably, in this figure, the symbol  

denotes that in order to perform the translation on the left hand side of , students 

generally perform the translation using the transitional representation as depicted on the right 

hand side. 

The organization and order of the translations in the table (Figure 5) is based upon the 

recognized difficulty level of each translation, as determined by a multitude of previous 

studies, and the coding structure in the figure assists in answering why some translations are 

more difficult than are others. First, as recognized by others (e.g., Duval, 2006; Kaput, 1987; 

Leinhardt et al., 1990), translation actions which are considered more local are seemingly less 

difficult than are translation actions which are more global. However, this dimension alone 

seems only adequate to differentiate easier from more difficult translations and is incapable 

of further ordering of the difficulty level of each translation. 

Second, translations with source representations possessing both fewer fact gaps and 

fewer confounding facts (table→graph, graph→table, symbolic→table, and verbal→table), 

irrespective of the attribute density, tend to be easier than others. It very well may be that the 

easiest translations are more an issue of the nature of the source than the target representation. 

This may be because representations with few fact gaps and few confounding facts are easier 

to interpret, thus avoiding the error type most commonly recognized early in the translation 

process, interpretation errors (Adu-Gyamfi et al., 2012). 

Third, translations with target representations with a larger number of both fact gaps and 

confounding facts and low attribute density (graph→verbal, symbolic→verbal, and 

table→verbal) tend to be far more difficult than all others. (Notably, these equate to 
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translations with a verbal representation as their target.) With target representations 

possessing these characteristics, the translator may tend to feel as if the target is ill defined 

and amorphous, not know how to get to such an elusive end, and not know when his verbal 

representation is completed and correct (Bossé et al. (2011a). Therefore, it may also be that 

the most difficult translations are more an issue of the nature of the target than the source 

representation. 

Student Ability to 

Perform Particular 

Translations 

Translations Coded with Fact Gaps, Confounding Facts, Attribute 

Density, Proximity, Translation Actions, and Transitional 

Representations 

Generally Able to 

Perform These 

plotting
table graph

FG low FG low

C low C lowlocal

D low D high

 

 

 

  
computing

symbolic table

FG low FG low

C low C lowlocal

D lowD high

 

 



  

reading
off

graph table

FG low FG low

C low C lowlocal

D lowD high

 

 



  
measuring

verbal table

FG low FG low

C high C lowlocal

D low D low

 

 

 
  

Generally Able to 

Perform This 

(Using a 

Transitional 

Representation) 

sketching computin

Process employing transitio

g plott

n

ing
symbolic graph symbolic table graph

FG low FG high FG low FG low low FG low

C low C high C low C low low C lowglobal local local

D lowD high D high D high D high

     

     

   

  

al representation

 

Less Able to 

Perform These 
fitting

table symbolic

FG high FG low

C high C highglobal

D low D high

 

 

 

  
curve
fitting

graph symbolic

FG low FG low

C high C highglobal

D high D high

 

 

 

  

Less Able to 

Perform These 

(Using a  

Transitional 

Representations) 

Process employing

sketching measuring plottin

 transiti n

g

o a

verbal graph verbal table graph

FG high FG high FG low FG low high FG low

C high C high C high C low low C highglobal local local

D low D low D lowD high D high

     

     

   

  

l representation

 

Proc

model

ess employing tran

ing measuring fitting

si

verbal symbolic verbal table symbolic

FG high FG low FG low FG low high FG low

C high C high C high C low high C highglobal globallocal

D low D low D lowD high D high

     

     

   

  

tional representation

 

Rarely Able to 

Perform These 

interpretation
graph verbal

FG low FG high

C high C highglobal

D lowD high

 

 



  parameter
recognition

symbolic verbal

FG low FG high

C low C highglobal

D lowD high

 

 



  

reading
table verbal

FG high FG high

C high C highglobal

D low D low

 

 

 
  

Figure 5. Multidimensional aspects of translations. 
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Interestingly, of the twelve possible translations, the five which are recognized as most 

difficult, all involve the verbal representation as either a source or a target representation 

(compare with Clement, 1982; Koedinger & Nathan, 2004). It is hypothesized, herein, that 

this is because the verbal representation, beyond all others, is more prone to confounding 

facts. Recognition that the verbal representation possesses characteristic unique among all the 

representations is noted by many (e.g., Duval, 2006; Kaput, Sims-Knight, & Clement, 1985; 

Nathan, Kintsch, & Young, 1992).  

Fourth, this still leaves five translations (symbolic→graph, table→symbolic, 

graph→symbolic, verbal→graph, and verbal→symbolic) which lie between the four easiest 

and the three most difficult translations. Of these five translations, three most often employ 

transitional representations in the translation process (symbolic→graph, verbal→graph, and 

verbal→symbolic) and the two most difficult translations (verbal→graph and 

verbal→symbolic) have verbal representations as source representations. Notably, the two-

step translations utilizing transitional representations break one difficult translation into two 

simpler translations. 

When these two-step translations are dissected into two separate translations, based on the 

nature and characteristics of the source and target representations and the nature of the 

translation action, each of these separate translations should not be difficult. Therefore, it may 

be the simple fact that these are two-step translations, which make them more difficult. It 

may be because these two-step translations require two separate, yet interconnected 

translations, and double the work, which makes them more prone to implementation errors 

(Adu-Gyamfi et al., 2012). However, there may be an additional dimension involved in two-

step translations, which further explain why they possess greater complexity. 

When transitional representations are employed in a translation, the transitional 

representation first acts as a target and then as a source in the respective two-step translation 

process. This changing in the role of the representation carries with it a similar change in the 

representation’s characteristics of fact gaps and confounding facts. For instance, for  

modeling measuring fitting
verbal symbolic verbal table symbolic

FG high FG low FG low FG low high FG low

C high C high C high C low high C highglobal globallocal

D low D low D lowD high D high

     

     

   

   , 

the table representation first acts as a target with characteristics  

table

FG low

C low

D low






 

and becomes a source with characteristics  

table

FG high

C high

D low





 . 
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This change in the characteristics of the representation may be cognitively difficult for 

students to navigate in the translation process. Indeed, without specific instruction 

investigating this matter, this phenomenon may always remain tacit and unnavigable by most. 

Fifth, since verbal representations are significantly different from other representations, 

prove to be the most difficult to work with, are less frequently encountered in instructional 

settings, and much research on translations do not consider the verbal representation, it is 

valuable to consider the findings of this study independent of verbal representations. With 

this caveat in place, the delineation of simpler to more difficult translations becomes less 

complex and is denoted in Figure 6. 

Less Simple

More Difficult

Simplest

table graph
table symbolic

symbolic table symbolic table graph
graph symbolic

graph table




  




 

Figure 6. Order of translation difficulty without verbal representations.

 
With this streamlined structure, discovery of a more generalized predictor of a 

translation’s level of difficulty can be more readily made. It immediately becomes evident 

that translations with both low fact gaps and low confounding facts are significantly easier 

and those with both high fact gaps and high confounding facts are significantly more 

difficult.  

Unfortunately, in its current form, this study is unable to make more definitive statements 

regarding the singular effect of attribute density on translation difficulty or the effects of 

attribute density as it works in tandem with fact gaps and confounding facts. It is anticipated 

that future research would further answer these questions.   

Discussions, Implications, and Conclusions 

Altogether, this synthesis demonstrates that not all translations are alike and that 

numerous factors interact to make some translations more difficult than others. Translations 

involving verbal representations are among the most difficult and representations with fewest 

fact gaps and confounding facts are involved in translations, which are among the easiest. A 

cofactor affecting which representations are most difficult is the lack of attention some get 

during daily classroom instruction.  

While numerous previous studies shed some light on which translations may be more 

difficult than others, this synthesis paints a more complete picture regarding why particular 

translations are more difficult than others. Characteristics such as instructional practices, 

translation action, proximity, error types, the use of transitional representations, interacting 

with verbal representations, fact gaps, confounding facts, and representational density all 

interact to make some translations more problematic.  

The instructional implications from these findings are numerous and significant. In order 

for teachers to better assist students with mathematical translations, teachers must know 

which are easier and which are more difficult and provide a sufficient number of experiences 
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with the latter to help students gain facility with such. Additionally, teachers must use 

questioning techniques, which lead students to consider not only what information a 

representation provides but also what information may be missing in respect to a particular 

translation, and what information in the source may be confusing or confounding. 

With the findings of this paper in mind, teachers should be able to better construct 

instructional situations through which translation problem scenarios can be more revelatory 

in respect to student mathematical understanding. More than simply recognizing whether or 

not students are able to perform a particular translation, teachers may better recognize where 

in the translation process students stumble, what type of errors they commit, and why they 

are more likely to commit particular errors on certain translations. In a more positive light, 

rather than simply assessing student errors, teacher understanding of the nature and difficulty 

level of respective translations can lead to instructional practices that assist students in 

correctly interpreting mathematical representations and performing translations.  

It is hoped that the more interconnected model for considering the nature of translations 

between mathematical representations presented in this investigation will assist future 

research in respect to student actions, understanding, and ability in performing these 

translations. Beyond simply determining whether or not students are able to perform 

particular translations, it is hoped that findings herein will allow researchers a deeper and 

more complete look into student cognition and processes and determine more precisely what 

students are doing incorrectly, where their difficulties originate, why they struggle, and what 

instructional experiences can be provided to students to better mitigate problematic issues and 

cause students to more effectively perform these translations.   
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