International Electronic Journal of Mathematics Education

Optimal Shock-Wave Structures
  • Article Type: Research Article
  • International Electronic Journal of Mathematics Education, 2016 - Volume 11 Issue 5, pp. 1245-1259
  • Published Online: 02 Aug 2016
  • Article Views: 677 | Article Download: 646
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Bulat PV. Optimal Shock-Wave Structures. Int Elect J Math Ed. 2016;11(5), 1245-1259.
APA 6th edition
In-text citation: (Bulat, 2016)
Reference: Bulat, P. V. (2016). Optimal Shock-Wave Structures. International Electronic Journal of Mathematics Education, 11(5), 1245-1259.
Chicago
In-text citation: (Bulat, 2016)
Reference: Bulat, Pavel V.. "Optimal Shock-Wave Structures". International Electronic Journal of Mathematics Education 2016 11 no. 5 (2016): 1245-1259.
Harvard
In-text citation: (Bulat, 2016)
Reference: Bulat, P. V. (2016). Optimal Shock-Wave Structures. International Electronic Journal of Mathematics Education, 11(5), pp. 1245-1259.
MLA
In-text citation: (Bulat, 2016)
Reference: Bulat, Pavel V. "Optimal Shock-Wave Structures". International Electronic Journal of Mathematics Education, vol. 11, no. 5, 2016, pp. 1245-1259.
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Bulat PV. Optimal Shock-Wave Structures. Int Elect J Math Ed. 2016;11(5):1245-9.

Abstract

The article demonstrates the tasks that require designing of shock-wave structure with extreme values of the total pressure recovery coefficient, the relationships between flow velocity, static pressure, temperatures, and acoustic constant of the medium - the acoustic impedance. The problem of designing optimal shock-wave structure for supersonic air intakes of external, internal and mixed compression. The transition from the study of shock-wave processes to managing them, as well as to the construction of shock-wave structures with desired properties is accompanied by the increasing complexity of the mathematical apparatus and numerical techniques. Long-term efforts in this area have allowed performing a parametric study of SWS with properties, extreme by some parameter. In terms of optimal control theory problems of SWP management are formulated. Optimal combination of shocks composed of oblique shocks of same direction and a closing straight shock. Another optimal combination can include oblique incident shock and one reflected from the wall and closing direct shock. The problem of designing optimal triple of configurations shock waves arises in the study of supersonic air. It intakes work at nonisobaric mode, flows in three-dimensional nozzles with nozzle shocks, detonation waves is discussed.

References

  • Abramovich, G. N. (1991) Applied gas dynamics. Moscow: Publishing House “Nauka”. 304p.
  • Bulat, M. P. & Bulat, P. V. (2013) The analysis centric isentropic compression waves. World Applied Sciences Journal, 27(8), 1023-1026.
  • Bulat, P. V. (2014) About the concept of a wave compressor and optimal shock­wave structures. Kholodilnaya Tekhnika, 6, 14-18.
  • Bulat, P. V. & Uskov, V. N. (2012) On the problems of designing diffusers ideal compression supersonic flow. Fundamental Research, 6(1), 178-184.
  • Bulat, P. V., Zasukhin, O. N. & Prodan, N. V. (2012) Application features of turbulence models in the calculation of flows in supersonic tracts of advanced jet engines. Engine, 1(79), 20-23.
  • Gelfand, B. E., Silnikov, M. V. & Chernyshov, M. V. (2010) On the efficiency of semi-closed blast inhibitors. Shock Waves, 20(4), 317-321.
  • Malozemov, V. N., Omelchenko, A. V. & Uskov, V. N. (1998) The minimization of the total pressure loss accompanying the breakdown of a supersonic flow. Journal of Applied Mathematics and Mechanics, 62(6), 939-944.
  • Omelchenko, A. V. & Uskov, V. N. (1996) Optimal shock-wave systems under constraints on the total flow turning angle. Fluid Dynamics, 31(4), 597-603.
  • Omelchenko, A. V. & Uskov, V. N. (1997a) An optimal shock-expansion system in a steady gas flow. Journal of Applied Mechanics and Technical Physics, 38(2), 204-210.
  • Omelchenko, A. V. & Uskov, V. N. (1997b) Geometry of optimal shock-wave systems. Journal of Applied Mechanics and Technical Physics, 38(5), 679-684.
  • Omelchenko, A. V. & Uskov, V. N. (1998) Maximum turning angles of a supersonic flow in shock-wave systems. Fluid Dynamics, 33(3), 419-426.
  • Omelchenko, A. V. & Uskov, V. N. (1999) Optimum overtaking compression shocks with restrictions imposed on the total flow-deflection angle. Journal of Applied Mechanics and Technical Physics, 40(4), 638-646.
  • Petrov, G. I. (1950) Diffusers for supersonic air breathing engine. Trudy CIAM, 169, 1-25.
  • Petrov, G. I. & Ukhov, E. P. (1947) Pressure recovery computation at a passage from the supersonic flight to subsonic one at different systems of planar shocks. Tekhnicheskie zapiski, 1, 1-7.
  • Silnikov, M. V., Chernyshov, M. V. & Uskov, V. N. (2014) Analytical solutions for Prandtl–Meyer wave–oblique shock overtaking interaction. Acta Astronautica, 99, 175-183.
  • Uskov, V. N. (2000) Optimal one-dimensional shock waves running on gas flow. Proceedings of XV Session of the International School on Models of Continuum Mechanics, 63-78.
  • Uskov, V. N. & Chernyshov, M. V. (2001) Special and optimal properties of stationary Mach configuration. Izvestiya of Tula State University, 4(1), 216-220.
  • Uskov, V. N. & Chernyshov, M. V. (2002) Theoretical analysis of compression shock wave triple configuration features. Collection of articles, 75-99.
  • Uskov, V. N. & Chernyshov, M. V. (2006a) Analysis and optimization of supersonic gas jet shock wave structure. IX All-Russian Congress of Theoretical and Applied Mechanics, 2, 174-178.
  • Uskov, V. N. & Chernyshov, M. V. (2006b) Special and extreme triple shock-wave configurations. Journal of Applied Mechanics and Technical Physics, 47(4), 492-504.
  • Uskov, V. N. & Chernyshov, M. V. (2013) Extreme loads on structural elements, delivered by a shock-wave system. Collection of works of the 8th All-Russian scientific-practical conference “Problems of explosion protection and counter-terrorism”, 203-226.
  • Uskov, V. N. & Chernyshov, M. V. (2014) Extreme shockwave systems in problems of external supersonic aerodynamics. Thermophysics and Aeromechanics, 21(1), 15-30.
  • Uskov, V. N., Chernyshov, M. V., Erofeev, V. K. & Genkin, P. (2006) Optimal shock-wave structures and new ideas about supersonic gas jet noise generation. Direct access: http://icsv13.tuwien.ac.at
  • Uskov, V. N., Malozemov, V. N. & Omelchenko, A. V. (1998) On the minimization of the total pressure losses during supersonic flow deceleration. Journal of Applied Mathematics and Mechanics, 62(6), 1015-1021.
  • Uskov, V. N., Mostovykh, P. S. & Chernyshov, M. V. (2008) Special and Extreme Structures of Stationary and Non-Stationary Shocks. Proceedings of 18th International Shock Interaction Symposium. Rouen, 71-74.
  • Uskov, V. N. & Omelchenko, A. V. (1995) Optimal shock-wave systems. Fluid Dynamics, 6, 126-134.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.